
Chapter-2

Fractional order thermoelasticity

12.1 Boundary integral equations formulation
for fractional order thermoelasticity

2.1.1 Introduction

The present section is devoted to formulate the boundary integral equations

for the solutions of equations in context of fractional order thermoelasticity in a

three dimensional Euclidean space. It is well accepted that most often numeri-

cal techniques are employed as an alternative tool to solve practical engineering

problems that are intractable to solve by any analytical method. Moreover,

the advent of high-speed computers in today’s time has drawn the attention

towards versatile and accurate numerical methods in engineering analysis. In

the recent years, the Boundary Element Method (BEM) or Boundary Integral

Equation Method (BIEM) has been playing a very crucial role for solving linear

partial differential equations due to its efficiency with respect to the computer

time and storage, its simplicity and the ease of its implementation as compared

to other numerical techniques. As mentioned by Brebbia (1978) , Brebbia and

Walker (1980), it becomes very methodical as compared to other numerical

methods like the Finite Element Method (FEM) for obtaining the solutions

of the same accuracy. Particularly, BIEM/BEM method is easily applicable

to solve the elasticity problem in an infinite region. BIEM can be applied in

many more areas of engineering and sciences including fluid mechanics, acous-

tics, electromagnetics and fracture mechanics. The first numerical treatment

of the BIE method was formulated by Jawson (1963) and Symm (1963). Rizzo

and Shippi (1977) introduced the boundary element method for steady state
1This work has been published in Journal “Computational Methiods in Sci-

ence and Technology”, 2014, 20(2), 49-58.
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thermoelasticity and showed numerical results for three dimensional linear ho-

mogeneous isotropic medium. Chen and Dargush (1995) reported the BIE for-

mulations for the dynamic coupled poroelasticity and thermoelasticity with re-

laxation times by using a unified approach. Work carried out by the researchers

like Cruse and Rizzo (1985), Banerjee and Butterfield (1981), Brebbia et al.

(1984), Ziegler and Irschik (1987) are also worth mentioning in this direction.

The application of the boundary element method for three dimensional prob-

lems of coupled thermo elasticity has been analyzed by Tanaka et al. (1995).

Anwar and Sherief (1988) has presented the boundary integral equation for-

mulation for generalized thermoelasticity with relaxation times. Subsequently,

several researchers like Kogl and Gaul (2003), El-Karamany and Ezzat (2004,

2004) El-Karamany (2004), Prasad et al. (2013), Semwal and Mukhopadhyay

(2014) have reported BIE formulations in various thermoelasticity theories.

In recent years, fractional calculus is playing a crucial role in developing

several models and it has been verified that the use of fractional order deriva-

tives/integrals lead to the formulation of certain physical problems which are

more economical and appropriate than the classical approach. Furthermore,

fractional calculus has also been proved to be very useful in the areas of diffu-

sion, heat conduction, viscoelasticity, continuum mechanics, electromagnetism

etc. Povstenko (2005) has developed a quasi-static uncoupled thermoelas-

tic model based on the heat conduction equation with fractional order time

derivatives. He has used the Caputo fractional derivative (Caputo (1967))

and obtained the stress components corresponding to the fundamental solu-

tion of a Cauchy problem for the fractional order heat conduction equation in

both the one-dimensional and two-dimensional cases. Remillat, Hassan and

Scarpa (2007) have given viscoelastic testing and fractional derivative model-

ing to describe the thermally induced transformation. In 2010, a new theory

of thermoelasticity in the frame of a new consideration of the heat conduction

equation with fractional order time derivatives has been proposed by Youssef
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(2010, 2012). The uniqueness of the solution has also been proved in the same

work. Youssef and Al-Lehaibi (2010) have studied a problem on an elastic

half-space using this theory. Subsequently, Sherief et al. (2010) has intro-

duced a theory of fractional order thermoelasticity that is based on a new

form of the heat conduction model in the frame work of the CV model. The

heat conduction law is proposed in the form

−K
−→
∇T = −→q (x, t) + τ

∂α−→q
∂tα

(2.1.1)

where (0 < α < 1) is the fractional order parameter and τ corresponds to

thermal relaxation parameter.

Here, Caputo’s definition of fractional order derivative is employed here.

The main objective of the present work is to formulate the boundary inte-

gral equations for the solutions of equations under fractional order thermoe-

lasticity as proposed by Sherief et al. (2010) in a three dimensional Euclidean

space. We consider a mixed initial-boundary value problem and derive the

expressions of fundamental solutions of the corresponding coupled and time-

fractional order differential equations in the Laplace transform domain. We

formulate the boundary integral equations on the basis of our fundamental

solutions and one reciprocal relation in the present context. This formulation

is believed to be helpful for the solution of problems under fractional order

thermoelasticity by using the boundary element method.

2.1.2 Mathematical formulation: Basic governing
equations

We consider a homogeneous isotropic elastic body occupying the region V

and bounded by a smooth surface S. We employ a three dimensional rectangu-

lar Cartesian co-ordinate system. The basic governing equations that describe

the physical components of the thermoelastic system in the context of frac-

tional order thermoelasticity can therefore be considered as follows (Sherief,
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2010):

Equations of motion:

µui,kk + (λ+ µ)uk,ki + ρFi − γθ,i = ρüi (2.1.2)

Equation of Energy

Kθ,kk = ρCe(θ̇ + τ0
∂α

∂tα
θ̇) + γT0(ė+ τ0

∂α

∂tα
ė)− ρCe(Q+ τ0

∂α

∂tα
Q) (2.1.3)

where (0 < α < 1), α being the fractional order parameter.

The constitutive equations:

σij = 2µeij + (λe− γθ)δij (2.1.4)

eij =
1

2
(ui,j + uj,i) (2.1.5)

where i, j, k varies from 1 to 3.

In the above equations, superposed dot and comma notations are used for

time derivative and the material derivative, respectively. Summation conven-

tion has been used here and δij denotes Kronecker delta. We assume that all

the functions are to be the function of x and t, where x = (x1,x2,x3).

2.1.3 Boundary conditions

We assume that (S1,S2) and (S3,S4) are the partitions of the surface S such

that

S1 ∪ S2 = S = S3 ∪ S4 (2.1.7)

S1 ∩ S2 = S3 ∩ S4 = φ (2.1.8)

Now, we assume the following boundary conditions:

Mechanical Loading Conditions:
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We consider that the traction vector component

pi = σijnj (2.1.9)

is specified on the part S1 of S. ui is specified on S2 . Here nj are the

components of the outward normal n on the surface S.

These conditions can be written as:

σijnj = pi0(x, t)onS1 (2.1.10)

ui = ui0(x, t)onS2 (2.1.11)

Thermal conditions:

Thermal conditions are taken as

θ = θ0(x, t)onS3 (2.1.12)

θ,n = θn0(x, t)onS4 (2.1.13)

We consider that the initial conditions are homogeneous.

Clearly, using equation (2.1.4), the components of the traction vector on the

surface S is obtained in the form

pi(x, t) = [2µeij+(λe−γθ)δij]nj(x) = µnj(x)ui,j+µnj(x)uj,i+λni(x)uj,j−γθni(x)

(2.1.14)

2.1.4 Governing equations in Laplace transform
domain

The Laplace transform of a function f(t) is given by

f̄(p) =

ˆ +∞

0

e−ptf(t)dt (2.1.15)
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Applying the Laplace transform on both sides of equation (2.1.2) - (2.1.4), we

get

µūi,kk + (λ+ µ)ūk,ki + ρF̄i − γθ̄,i = ρp2ūi (2.1.16)

Kθ̄,kk = ρCep(1 + τ0p
α)(θ̄ +

γT0
ρCe

ū,kk−
Q̄

p
) (2.1.17)

σ̄ij = 2µēij + (λūk,k − γθ̄)δij (2.1.18)

Now, we introduce Helmholtz decomposition of the displacement and body

force vectors in the following way:

ui = φ,i +εijkψk,j (2.1.19)

where,

ψi,i = 0 (2.1.20)

Fi = X,i +εijkYk,j (2.1.21)

where,

Yi,i = 0 (2.1.22)

In equations (2.1.19) and (2.1.21), φ, X are scalar potentials and ψk and

Yk are vector potentials. Therefore, by substituting (2.1.19) and (2.1.21) in

(2.1.16) and (2.1.17), we get

42
1φ̄−mθ̄ = −X̄

c21
(2.1.23)

42
2ψ̄i = − Ȳi

c22
(2.1.24)

Dθ̄ − ap(1 + τ0p
α)∇2φ̄ = −ρCe

K
(1 + τ0p

α)Q̄ (2.1.25)

where, we have introduced the notations:

m = γ
(λ+2µ)

, c21 = (λ+2µ)
ρ

, c22 = µ
ρ
, a = γT0

K
; 42

i ≡ ∇2 − p2/c2i for i = 1, 2, 3;
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and D ≡ [∇2 − ρCe
K
p(1 + τ0p

α)]

2.1.5 Fundamental solutions in Laplace
transform domain

In order to describe the action of body force, and heat source of very large

magnitude that act for a very short period of time upon the body, we shall

consider the following two cases:

Case 1: We assume that an instantaneous source of heat located at xi = yi

where y ∈ (V ∪ S) is acting upon an elastic body in the absence of the body

forces i.e. Q = δ(x− y)δ(t), Fi = 0

Let us denote the corresponding fundamental solutions by primes. Now, under

the above assumptions, the equations (2.1.23) - (2.1.25) reduce to

42
1φ̄
′ −mθ̄′ = 0 (2.1.26)

42
2ψ̄
′
i = 0 (2.1.27)

Dθ̄′ − ap(1 + τ0p
α)∇2φ̄′ = −ρCe

K
(1 + τ0p

α)δ(x− y) (2.1.28)

From equation (2.1.27), we can conclude that

ψ̄′i = 0 (2.1.29)

Decoupling equations (2.1.26) and (2.1.28) , we arrive at

(∇2 − k21)(∇2 − k22)φ̄′ = −mρCe
K

(1 + τ0p
α)δ(x− y) (2.1.30)

where k21 , k22 are the solutions of characteristic equation

Kv− [(ρCe+maK)p(1+ τ0p
α)+pα+1K

c21
]v2 +pα+2ρCe

(1 + τ0p
α)

c21
= 0 (2.1.31)
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The solution φ̄′ of equation (2.1.30) is given by

φ̄′(x, p) = −mρCe
(1 + τ0p

α)

(∇2 − k21)(∇2 − k22)
δ(x− y) (2.1.32)

By using the Helmholtz equation

1

(∇2 − k2)
δ(r) = − 1

4πr
e−kr (2.1.33)

and by using equation (2.1.32), we obtain

φ̄′(x, p) =
mρCe

4πK(k21 − k22)
(1 + τ0p

α)(e−k1r − e−k2r) (2.1.34)

Equations (2.1.19), (2.1.20) yield

ū′i(x, p) = φ̄,′i(x, p) (2.1.35)

Now, using r =
√

(xi − yi)(xi − yi),

r,i =
(xi − yi)

r
(2.1.36)

ū′i(x, p) = −ρCe
Kr

m(1 + τ0p
α)

4π(k21 − k22)
[e−k1r(1 +

k1
r

)− e−k2r(1 +
k2
r

)]r,i (2.1.37)

In view of equation (2.1.26), we find

θ̄′(x, p) =
1

m
(∇2 − p2

c21
)φ̄′(x, p) (2.1.38)

Hence, we can obtain θ̄′(x,p) as

θ̄′(x, p) =
ρCe
Kr

m(1 + τ0p
α)

4π(k21 − k22)
[e−k1r(k21 −

p2

c21
)− e−k2r((k22 −

p2

c22
)] (2.1.39)

Taking Laplace transform of traction vector, we get from equation (2.1.14)

p̄i(x, t) = µnj(x)ūi,j + µnj(x)ūj,i + λni(x)ūj,j − γθ̄ni(x) (2.1.40)
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Now, equation (2.1.37) yields

ū′i,j = −ρCe
K

[
r,i
r
g1,j −

(r,j r,i g1 − rr,ij g1)
r2

] (2.1.41)

where

g1 =
m(1 + τ0p

α)

4π(k21 − k22)
[e−k1r(1 +

k1
r

)− e−k2r(1 +
k2
r

)] (2.1.42)

and

g1,j =
m(1 + τ0p

α)

4π(k21 − k22)
[−k1e−k1rr,j (1+

1

r2
)−k21e−k1r

r,j
r

+k2e
−k2rr,j (1+

1

r2
)−k22e−k2r

r,j
r

]

(2.1.43)

Equation (2.1.41) can be simplified as

ū′i,j =
m(1 + τ0p

α)

4π(k21 − k22)
[r,i r,j

g3
r
− 1

r2
(δij − 3r,i r,j )g1] (2.1.44)

where

g3 =
(1 + τ0p

α)

4π(k21 − k22)
[k21e

−k1r − k22e−k2r] (2.1.45)

Therefore from equations (2.1.40) and (2.1.44), we get

p̄′l(x, p) =
ρCe
Kr
{[2µnk[r,l r,k (g3+3

g1
r

)
δlk
r

]+nl[λr,k r,k (g3+3
g1
r

)−3
λ

r
]} (2.1.46)

Here Case 1 is completed.

Case 2: In this case, we assume that in absence of heat source i.e. when

Q = 0, an instantaneous concentrated body force is acting at the point xi = yi

in the direction of xj axis. Therefore, we take

F̄i = F̄
(j)
i = δijδ(x − y). Let ū(j)i , θ̄(j) denote the corresponding fundamental

solutions.

We use Helmholtz Resolution for the vectors u(j)i and F (j)
i and so we can write

ū
(j)
i = φ̄

(j)
i + εilkψ̄

(j)
l,k (2.1.47)
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F̄
(j)
i = P̄

(j)
i + εilkR̄

(j)
l,k (2.1.48)

The potentials in R.H.S. of above equations satisfy the equations

(∇2 − k21)(∇2 − k22)φ̄(j) = − 1

c21
[∇2 − ρCe

K
p(1 + τ0p

α)]P̄ (j) (2.1.49)

θ̄(j) =
1

m
[(∇2 − p2

c21
)φ̄(j) +

P̄ (j)

c21
] (2.1.50)

(∇2 − p2

c21
)ψ̄

(j)
l = − 1

c22
R̄

(j)
i (2.1.51)

where k21 and k22 are the solutions of the same characteristic equation as given

by (2.1.31). In view of the body forces as chosen above, the corresponding

Helmholtz decomposition leads to

P̄ (j) = − 1

4π
(
δij
r

),i (2.1.52)

R̄
(j)
l =

1

4π
εilk(

δij
r

),k (2.1.53)

By using Helmholtz equation, solution of equation (2.1.49) can be written as

φ̄(j) =
1

4πc21

r,i
r2

δij
(k21 − k22)

[
2∑

n=1

(−1)n−1E(1 + knr)e
−knr] + δij

ri
r2

1

4πp2
(2.1.54)

where

E =
[k2n −

ρCep(1+τ0pα)
K

]

k2n
(2.1.55)

ψ̄
(j)
l = εijl(

r,i
4πp2r2

)[(1 +
pr

c2
)e
− pr
c2 − 1] (2.1.56)

ū
(j)
l =

U1δij
r

+
U2r,i r,j

r
(2.1.57)

where

U1 = [
1

4πp2
(
p2

c22
+

p

rc2
+

1

r2
)e
− pr
c2 +

2∑
n=1

(−1)n−1
Bn

r2
(1 + knr)e

−knr] (2.1.58)
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U2 = [− 1

4πp2
(
p2

c22
+ 3

p

rc2
+ 3

1

r2
)e
− pr
c2 ] +

2∑
n=1

(−1)n−1
Bn

r2
(k2n + 3

kn
r

+
3

r2
)]e−knr

(2.1.59)

Bn =
1

k2nc
2
1

1

(k21 − k22)
(k2n −

ρCep(1 + τ0p
α)

K
) (2.1.60)

With the help of equations (2.1.25) and (2.1.49) with the condition that the

source of heat is absent, we find

θ̄(j) = G

2∑
n=1

(−1)n−1e−knr(1 + knr)
r,i
r2

(2.1.61)

where G =
δij
4πc21

p(1+τ0pα)

(k22−k21)

Here, we achieve the conclusion that the temperature for the Case 2 is related

with the expression of the displacement for Case 1 as

θ̄(j) =
ρpε

mγ
u′j (2.1.62)

where ε = mak
ρCe

Then, the component of the traction vector can be obtained in a similar way

as in Case 1. Thus, we get

p̄
(j)
l (x, p) = µnk[(ū

(j)
l,k + ū

(j)
k,l ) + nl(λū

(j)
k,k − γθ̄

(j))] (2.1.63)

where,

ū
(j)
i,k =

U1,k

r
δij−

U1δij
r2

+
U2,k

r2
r,i r,j −

U2

r2
r,i r,j r,k +

U2

r
r,ik r,j +

U2

r
r,i r,jk (2.1.64)

U1,k =
2∑

n=1

(−1)n−1Bne
−knr r,k

r
[−k2n−2

(1 + knr)

r2
]+

r,k
4πp2

e
−pr
c2 [−p

3

c32
−2

p

r2c2
− 2

r3
− p2

c22r
]

(2.1.65)

U2,k = − r,k
4πp2

e
−pr
c2 [−p

3

c32
−6

p

r2c2
− 6

r2
−3

p2

c22r
]+

2∑
n=1

(−1)n−1Bne
−knrr,k [−k2n−6

kn
r2
−3

k2n
r
− 6

r3
]

(2.1.66)

U1,U2 are given by equations (2.1.58) and (2.1.59), respectively. This completes

Case 2.
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2.1.6 Reciprocity theorem

When a body is under the action at two different thermoelastic loadings,

the reciprocal relation states the relation between two sets of thermoelastic

loadings and corresponding thermoelastic configurations.

In order to find out the integral representations of the displacement and tem-

perature distributions in terms of boundary values, we will now employ a

reciprocity theorem for the linear theory of fractional order thermo elasticity

by using above two cases of thermoelastic loading. For this, we consider the

body with volume V subjected to two different systems of thermoelastic load-

ings L = (F
(β)
i , Q(β), p

(β)
i , u

(β)
i0 , θ

(β)
0 , θ

(β)
n0 ), for β = 1, 2 and the corresponding

thermoelastic configurations are denoted as Iβ = (uβi , θ
β); β = 1, 2.

Now by following Sherief et al. (2010), we can derive the following reciprocal

relation:

ρT0p(1 + τ0p
α)

k

ˆ
V

[F̄
(1)
i ū

(2)
i −F̄

(2)
i ū

(1)
i ]dV−ρCe(1 + τ0p

α)

k

ˆ
V

[Q̄(1)θ̄(2)−Q̄(2)θ̄(1)]dV =

ˆ
S3

[θ̄(1)θ̄,(2)n −θ̄(2)θ̄,(1)n ]dS +

ˆ
S4

[θ̄(1)θ̄,(2)n −θ̄(2)θ̄,(1)n ]dS

−T0p(1 + τ0p
α)

k
{
ˆ
S1

[σ̄
(1)
ij ū

(2)
i − σ̄

(2)
ij ū

(1)
i ]njdS +

ˆ
S2

[σ̄
(1)
ij ū

(2)
i − σ̄

(2)
ij ū

(1)
i ]njdS}

(2.1.67)

Clearly, for an infinite isotropic medium, the body forces, heat sources act

only in a bounded region and the surface integral in equation (2.1.67) will be

absent.

2.1.7 Boundary integral equations

In order to obtain the integral representation of the transformed displace-

ment and temperature inside the bounded region V in terms of the prescribed

functions p̄i0,ūi0,θ̄0,θ̄n0 on the surface S, the fundamental solutions ū′i,θ̄′,ū
(j)
i ,θ̄(j)

in the infinite region and their values ū′i0,θ̄′0,ū
(j)
i0 ,θ̄

(j)
0 on the surface S, we con-
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sider the following two cases:

First, as we have considered earlier F̄i = 0 and Q̄ = δ(x−y) where y ∈ (V ∪S)

thus equation (2.1.67) becomes

(1 + τ0p
α)∆(x)θ̄(x, p) =

K

ρCe
{
ˆ
S3

[θ̄′0θ̄,n−θ̄0θ̄′n0]dS +

ˆ
S4

[θ̄′θ̄n0 − θ̄θ̄′,n ]dS}

− T0
ρCe

p(1 + τ0p
α){
ˆ
S1

[p̄i0ū
′
i − p̄′i0ūi]dS +

ˆ
S2

[σ̄ijū
′
i0 − σ̄′ijūi0]njdS}

−T0
Ce

(p+ τ0p
α)

ˆ
V

F̄iū
′
idV + (1 + τ0p

α)

ˆ
V

Q̄θ̄′dV (2.1.68)

where ū′i,θ̄′ are the fundamental solutions obtained previously in Case 1 and

we denote
´
V
δ(x− y)dV (y) = ∆(x), where ∆(x) = 1, x ∈ V

∆(x) = 0, if /∈ (V ∪ S)

∆(x) = 1
2
, x ∈ S

Next, we assume

F̄
(j)
i = δijδ(x− y) and Q̄ = 0;

Therefore, from equation (2.1.66) we get as previously
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p(1 + τ0p
α)∆(x)ūj(x, p) =

K

ρT0
{
ˆ
S3

[θ̄0θ̄,
(j)
n −θ̄

(j)
0 θ̄,n ]dS

+

ˆ
S4

[θ̄θ̄
(j)
n0 − θ̄(j)θ̄n0]dS}+

1

ρ
p(1 + τ0p

α){
ˆ
S1

[p̄i0ū
(j)
i − p̄

(j)
i0 ūi0]dS

+

ˆ
S2

[σ̄ilū
(j)
i0 − σ̄

(j)
il ūi0]njdS}−p(1 + τ0p

α)

ˆ
V

F̄iū
(j)
i dV−Ce

T0
(1+τ0p

α)

ˆ
V

Q̄θ̄(j)dV

(2.1.69)

where, ūj,θ̄(j) denote the fundamental solutions which have been obtained pre-

viously in Case 2.

Now, applying the inverse Laplace transform to equation (2.1.68) and using

the Convolution theorem of Laplace transform as

L−1(F̄1(p)F̄2(p)) =
´ t
0
F1(τ)F2(τ)dτ

we arrive at

∆(x)[θ(x, t) + τ0
∂α

∂tα
θ(x, t)] = M1(x, t) (2.1.70)

where,

M1(x, t) =
K

ρCe

ˆ t

0

{
ˆ
S3

[θ′0(y, t− τ)θ,n (y, x, τ)− θ0(y, x, τ)θ′,n (y, t− τ)]dS

+

ˆ
S4

[θ′(y, t− τ)θn0(y, x, τ)− θ(y, x, τ)θ′n0(y, t− τ)]dS}dτ

+
T0
ρCe

ˆ t

0

{
ˆ
S1

[pi0(y, x, τ)(
∂

∂τ
+ τ0

∂α+1

∂τα+1
)u′i(y, t− τ)]dS

ˆ
S2

[σij(y, t− τ)(
∂

∂τ
+ τ0

∂α+1

∂τα+1
)u′i0(y, x, τ)]dS}dτ

− T0
ρCe

ˆ t

0

{
ˆ
S1

ui(y, x, τ)(
∂

∂τ
+ τ0

∂α+1

∂τα+1
)p′i0(y, t− τ)dS

+

ˆ
S2

ui0(y, t− τ)(
∂

∂τ
+ τ0

∂α+1

∂τα+1
)σ′ij(y, x, τ)dS}dτ

+
T0
Ce

ˆ t

0

ˆ
V

Fi(y, t−τ)(
∂

∂τ
+
∂α+1

∂τα+1
)u′i(y, x, τ)dV dτ+

ˆ t

0

ˆ
V

Q(y, t−τ)(1+
∂α

∂τα
)θ′(y, x, τ)dV dτ

(2.1.71)
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Solving equation (2.1.70), we get the expression of temperature in the follow-

ing manner:

θ(x, t) =
1

α∆xτ0
[

ˆ t

0

Eα,α(− 1

τ0
τα)M1(x, t− τ)dτ ] (2.1.72)

where, Eα,α(z) is known as "Mittag-Leffler" function which is defined as (Pod-

lubny (1999)) :

Eα,β(z) =
2∑

k=1

zk

Γ(αk + β)
(2.1.73)

Hence, equations (2.1.72) and (2.1.73) yield the solution for temperature dis-

tributions as

θ(x, t) =
1

α∆xτ0
[

ˆ t

0

e
− 1
τ0
τα
τα−1M1(x, t− τ)dτ ] (2.1.74)

Similarly, from equation (2.1.69), we obtain

∆(x)[uj(x, t) + τ0
∂α

∂tα
uj(x, t)] = M2(x, t) (2.1.75)

where,

M2(x, t) =
K

ρT0

ˆ t

0

{
ˆ
S3

[θ0(y, x, τ)
∂u′j(y, t− τ)

∂n
− u′j(y, t− τ)

∂θ(y, x, τ)

∂n
]dS

+

ˆ
S4

[θ(y, x, τ)
∂u′j(y, t− τ)

∂n
− u′j(y, t− τ)θn0(y, x, τ)]dS}dτ+

1

ρ

ˆ t

0

{
ˆ
S1

[pi0(y, x, τ)(1 + τ0
∂α

∂τα
)u

(j)
i (y, t− τ)dS]

+

ˆ
S2

[σil(y, t− τ)(1 + τ0
∂α

∂τα
)u

(j)
i0 (y, x, τ)nldS]}dτ

−1

ρ
{
ˆ t

0

ˆ
S1

ui(y, x, τ)(1 +
∂α

∂τα
)p

(j)
i0 (y, t− τ)dS

+

ˆ
S2

ui0(y, t− τ)(1 +
∂α

∂τα
)σ

(j)
il (y, x, τ)nldS}dτ

+

ˆ
V

Fi(y, t− τ)(1 + τ0
∂α

∂τα
)u

(j)
i (y, x, t− τ)dV dτ
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−
ˆ t

0

ˆ
V

Q(y, t− τ)(1 + τ0
∂α

∂τα
)u′j(y, x, t− τ)dV dτ (2.1.76)

In a similar way as we have done previously, the solution of equation (2.1.76)

yields displacement component as

uj(x, t) =
1

α∆xτ0
[

ˆ t

0

e
− 1
τ0
τα
τα−1M2(x, t− τ)dτ ] (2.1.77)

Taking the limit x → ξ, where ξ is a point on the boundary S, we get from

equations (2.1.74) and (2.1.77) as-

θ(ξ, t) = 2
ατ0

[
´ t
0
e
− 1
τ0
τα
τα−1M1(ξ, t− τ)dτ ]

uj(ξ, t) = 2
ατ0

[
´ t
0
e
− 1
τ0
τα
τα−1M2(ξ, t− τ)dτ ]. This completes our formulation.

The above two equations together with the prescribed boundary conditions

which are taken in the beginning and the limiting behaviour of fundamental

solutions as r → 0 can be used to set up linear equations of the boundary

integral equation method.

2.1.8 Example

Now, we will consider an example in order to illustrate the present formula-

tion. We consider a formulation, in which we determine the primary variables

ui(x, t) and θ(x, t) as the solution of the field equations (2.1.2) and (2.1.3),

subjected to the homogeneous initial and boundary conditions as follows:

σij(xB, t)nj(xB) = pi0(xB, t) = 0 (2.1.78)

θ,n (xB, t) = θn0(xB, t) = 0 (2.1.79)

where xB is a point on S1 = S4

and

θ(xB, t) = θ0(xB, t) (2.1.80)
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ui(xB, t) = ui0(xB, t) (2.1.81)

where xB is a point on S2 = S3

Now, using equations (2.1.68) and (2.1.69), we achieve

θ̄(x, p) = − K

ρCe(1 + τ0pα)
{
ˆ
S3

[θ̄0(y, x, p)θ̄
′,n (y, p)− θ̄′0(y, p)θ̄,n (y, x, p)]dS

+

ˆ
S4

[θ̄(y, x, p)θ̄′n0(y, p)− θ̄′(y, p)θ̄n0(y, x, p)]dS}

+
T0p

ρCe
{
ˆ
S1

[p̄i0
′(y, x, p)ūi(y, p)− p̄i0(y, p)ū′i(y, x, p)]dS+

ˆ
S2

[σ̄′ij(y, p)ūi0(y, x, p)− σ̄ij(y, x, p)ū′i0(y, p)]njdS}

−T0p
Ce

ˆ
V

F̄i(y, p)ū
′
i(y, x, p)dV +

ˆ
V

Q̄(y, p)θ̄′(y, x, p)dV (2.1.82)

pūj(x, p) =
K

ρT0(1 + τ0pα)
{
ˆ
S3

[θ̄0(y, x, p)θ̄,
(j)
n (y, p)− θ̄(j)0 (y, p)θ̄,n (y, x, p)]dS

+

ˆ
S4

[θ̄(y, p)θ̄
(j)
n0 (y, x, p)− θ̄(j)(y, x, p)θ̄n0(y, p)]dS} −

p

ρ
{
ˆ
S1

[p̄
(j)
i0 (y, p)

ūi(y, x, p)−p̄i0(y, x, p)ū(j)i (y, p)]dS+

ˆ
S2

[σ̄
(j)
ij (y, x, p)ūi0(y, p)−σ̄ij(y, x, p)ū(j)i0 (y, p)]njdS}

−p
ˆ
V

F̄i(y, p)ū
(j)
i (y, x, p)dV +

ˆ
V

Q̄(y, p)θ̄(j)(y, x, p)dV (2.1.83)

Here, we have taken ∆(x) = 1. In view of (2.1.80)-(2.1.81), the functions

θ(xB, t) and ui(xB, t) are unknowns on the part S1 = S4 of the surface S. We

further assume that the fundamental solutions satisfy the conditions

θ̄′0(xB, t) = θ̄
(j)
0 (xB, t) = 0 on S2 = S3and ū′i0(xB, t) = ū

(j)
i0 (xB, t) = 0 on

S2 = S3.

Therefore, by using these conditions and taking x→ ξ we get the equations

(2.1.82) and (2.1.83) as the system of two Fredholm’s integral equations:

0 = − K

ρCe(1 + τ0pα)
{
ˆ
S3

[θ̄0(y, p)
∂

∂n′(ξ)
θ̄′,n (y, ξ, p)]dS
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+

ˆ
S4

[θ̄(y, p)
∂

∂n′(ξ)
θ̄′n0(y, ξ, p)]dS}+

T0p

ρCe
{
ˆ
S4

[p̄i0
′(y, p)

∂

∂n′(ξ)
ūi(y, ξ, p)]dS+

ˆ
S3

[σ̄′ij(y, p)
∂

∂n′(ξ)
ūi0(y, ξ, p)]njdS} −

T0p

Ce

ˆ
V

F̄i(y, p)
∂

∂n′(ξ)
ū′i(y, ξ, p)dV

+

ˆ
V

Q̄(y, p)
∂

∂n′(ξ)
θ̄′(y, ξ, p)dV (2.1.84)

pūj(ξ, p) =
K

ρT0(1 + τ0pα)
{
ˆ
S3

[θ̄0(y, ξ, p)θ̄,
(j)
n (y, p)]dS

+

ˆ
S4

[θ̄(y, p)θ̄
(j)
n0 (y, ξ, p)]dS} − p

ρ
{
ˆ
S4

[p̄
(j)
i0 (y, p)

ūi(y, ξ, p)]dS +

ˆ
S3

[σ̄
(j)
ij (y, ξ, p)ūi0(y, p)]njdS}

−p
ˆ
V

F̄i(y, p)ū
(j)
i (y, ξ, p)dV +

ˆ
V

Q̄(y, p)θ̄(j)(y, ξ, p)dV (2.1.85)

Where n′(ξ) is the outer normal to the surface S4. By employing suitable

numerical techniques, the integrals involved in equations (2.1.84) and (2.1.85)

can be discretized and the problem then reduces to finding the solution of a

system of linear equations.The final solution can therefore be determined by

using the suitable numerical method of Laplace inversion.

2.1.9 Conclusions

In the present section of the thesis, fundamental solutions have been estab-

lished in the Laplace transform domain for fractional order thermoelasticity.

Then by employing a suitable reciprocal relation, we formulate boundary in-

tegral equations for a mixed boundary initial value problem.

At last, we have given an example which represents a better explanation

for our formulation. We believe that the present formulation will help to find

the numerical solution of a concrete problem under fractional order thermoe-

lasticity by the BEM / BIEM method.

There are many numerical methods for solving the BIE system like the

Point collocation method etc. In the point collocation method, the boundary

is discretized at some points (collocation points). This method is believed to
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be accurate for several one and two-dimensional problems and the convergence

rate of the point collocation method can be applied for better results.
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12.2 On harmonic plane wave propagation under
fractional order thermoelasticity: An analysis of frac-
tional order heat conduction equation

2.2.1 Introduction

In the present section, we employ fractional order theory of thermoelasticity (Ez-

zat and El Karamany (2011)) and make an attempt to investigate the effects of

fractional order parameter on the propagation of plane wave propagating through

a thermoelastic medium. Plane wave can be defined as the wave whose wavefronts

are infinitely long straight lines. Such waves travel in the direction perpendicular to

the wavefronts. Several researchers have shown their interest in the study of plane

waves propagating through elastic medium in the context of coupled thermoelastc-

ity theory. It is worth to mention that Chadwick and Sneddon (1958) studied the

propagation of plane waves in classical thermoelasticity. In generalized thermoe-

lasticity, the propagation of plane waves with one relaxation time is analyzed by

Nayfeh and Nemat-Nasser (1971) and subsequently by Puri (1973). Later on, Puri

(1976) studied the plane wave propagation in infinite rotating elastic medium. Agar-

wal (1979) established the whitham-stability of harmonic plane waves in TRDTE

media. Haddow and Wegner (1996) re-checked the propagation of wave in Green

Lindsay model and Lord Shulman model. Suh and Burger (1998) achieved the or-

der of magnitude of thermal relaxation time in TRDTE. Chandrasekaraiah (1996)

reported the investigation of plane waves in the context of thermoelasticity of Green

and Naghdi of type- II. Puri and Jordan (2004) and Kothari and Mukhopadhyay

(2012) investigated the propagation of plane waves in type-III thermoelastic media.

1This work has been published in Journal “Mathematics and Mechanics of Solids”,
2015, DOI: 10.1177/1081286515612528.
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Sherief et al. (2010), Ezzat and El KAramany (2011) have developed two different

models in generalized thermoelasticity by using fractional order time-derivatives.

Recently, some investigations in the context of fractional order thermoelasticity are

carried out by some authors including Kumar and Gupta (2015) and Atwa (2011).

The main objective of the present work is to analyze the fractional order heat

conduction law as compared to the classical Fourier law of heat conduction and

the Cattaneo-Vernotte law of heat conduction that includes one thermal relaxation

parameter. For this, the present study investigates the influence of fractional order

parameter α (which lies between 0 and 1) on the propagation of harmonic plane

wave and compare the results predicted by fractional order thermoelasticity theory

with respect to the classical coupled thermoelasticity theory as well as the gener-

alized thermoelasticity theory. After formulating the problem, we find associated

dispersion relation and with the help of dispersion relation solution, we have ana-

lyzed the effects of α on the behavior of harmonic plane wave. This study brings

to light some specific features of the proposed heat conduction model that involves

fractional order derivative with fractional parameter, α.

2.2.2 Basic governing equations: Problem
formulation

We employ the thermoelasticity theory with fractional order heat conduction.

Therefore, the equations that represent the displacement and thermal fields in

isotropic elastic medium in the absence of body forces and heat sources are written

as follows:

Equation of motion without body force:

µui,jj + (λ+ µ)uj,ji − γT0θ,i = ρüi (2.2.1)
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Equation of heat conduction in the context of fractional order thermoelasticity

without heat source (Ezzat and El Karamany (2011)):

Kθ,ii = ρCv(θ̇ +
τα0

Γ (α + 1)

∂α

∂tα
θ̇) + γT0(ė+

τα0
Γ (α + 1)

∂α

∂tα
ė) (2.2.2)

In the above equations, the superposed dot and comma notations are used for time

derivative and the material derivative respectively. δij denotes kronecker delta. Sum-

mation convention has been used here and i, j, k varies from 1 to 3. τ0is the thermal

relaxation time and α is the fractional order parameter (see Ezzat (2011)).

For solving this problem, it is important to simplify it and for that we introduce

the following non dimensional quantities

u′i = ui
c0tr

, θ′ = θ−T0
T0

, x′i = xi
c0tr

t′ = t
tr

, K ′ = K
ρCvc20tr

, τ ′0 = τ0
tr

, a2 = γ
ρCv

where tr > 0 is the characteristic response in time for the medium and c0 =
√

(λ+2µ)
ρ

is the velocity of longitudinal elastic wave. For our analysis, we will consider only

longitudinal plane wave solution; since it is found that the transverse plane wave is

neither modified nor contributed by the temperature field of the medium.

2.2.3 Dispersion relation solution

By using the above non-dimensional quantities, we transform the governing equa-

tions into their non dimensional forms. However, for simplicity we drop primes from

the equations which were obtained by introducing the non dimensional quantities in

equations (2.2.1) and (2.2.2). Hence, we obtain the following equations:

µui,jj + (λ+ µ)uj,ji − γT0θ,i = ρc20üi (2.2.4)

Kθ,ii = (1 +
τα0

Γ (α + 1)

∂α

∂tα
)(θ̇ + a2 ˙ui,i) (2.2.5)
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We have taken longitudinal plane wave solution in the form:

uj = Adje
i(ωt−γnixi) (2.2.6)

θ = Bei(ωt−γnixi) (2.2.7)

where ω > 0 is the angular frequency of wave, dj is the unit vector in the direction of

displacement, γ is a complex constant, nj is the unit vector normal to the wavefront

and A and B are complex amplitudes. Phase velocity of waves is defined by ω
Re[γ]

.

Then equations (2.2.6) and (2.2.7) correspond to the dilatational wave for which

ω
2π

is the frequency and 2π
Re[γ]

is the wave length. For considering physically realistic

wave, we must take here Re[γ] > 0 and Im[γ] ≤ 0.

Now, employing equations (2.2.6) and (2.2.7) into equations (2.2.4) and (2.2.5)

and after doing some manipulations, we obtain-

(γ2 − ω2)A− ia1γB = 0 (2.2.8)

A(a2γω(1 +
τα0

Γ (α + 1)
(iω)α)) +B(Kγ2 + iω(1 +

τα0
Γ (α + 1)

(iω)α)) = 0 (2.2.9)

where, a1 = βT0
(λ+2µ)

. Here we have used the property djnj = njdj = 1.

Now, we will find the dispersion relation. For achieving non-trivial solutions, the

determinant of the coefficient matrix of the above system of equations (2.2.8) and

(2.2.9) will be 0. Hence, we find-

∣∣∣∣∣∣∣
γ2 − ω2 −ia1γ

a2γω(1 +
τα0

Γ (α+1)
(iω)α) Kγ2 + iω(1 +

τα0
Γ (α+1)

(iω)α)

∣∣∣∣∣∣∣ = 0
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After solving the above determinant, we find the dispersion relation as -

Kγ4+γ2[− τα0
Γ (α + 1)

ω1+αsin[
απ

2
](1+a1a2)+iω(1+

τα0
Γ (α + 1)

ωαcos[
απ

2
])(1+a1a2)−Kω2]

+[
τα0

Γ (α + 1)
ω3+αsin[

απ

2
]− iω3(1 +

τα0
Γ (α + 1)

ωαcos[
απ

2
])] = 0 (2.2.10)

We write equation (2.2.10) in the following form-

Kγ4 + (−P + iQ)γ2 + (S + iT ) = 0 (2.2.11)

where, P = Kω2 + ε
τα0

Γ (α+1)
ω(1+α)sin[απ

2
] + ω(1+α) τα0

G(a+1)sin[απ
2

]

Q = ω(1 +
τα0

G(a+1)ω
αcos[απ

2
]) + εω(1 +

τα0
Γ (α+1)

ωαcos[απ
2

])

S =
τα0

Γ (α+1)
sin[απ

2
]ω(3+α)

T = −ω3(1 +
τα0

Γ (α+1)
ωαcos[απ

2
])

where, ε = a1a2.

Equation (2.2.11) represents the dispersion relation of plane harmonic wave under

fractional order thermoelasticity theory and clearly it shows the influence of frac-

tional order parameter α.

Now the roots of equation (2.2.11) can be obtained in the following manner

γ21,2 =
P − iQ±

√
D(ω)

2K
(2.2.12)

where D(ω) = (−P + iQ)2 − 4K(S + iT )

Re[D(ω)] = P 2 −Q2 − 4KS (2.2.13)

Im[D(ω)] = −2i(PQ+ 2KT ) (2.2.14)
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Here, we will take only two of the four roots of γ given by the equation (2.2.12)

which have the negative imaginary parts, because due to these roots we find the

negative value of the decay coefficient.

For finding the values of γ, a theorem (Ponnusamy (2001)) on complex analysis has

been used that can be explained in the following way:

2.2.4 Theorem

If Z = x + iy and Y 2 = Z , where Y is a complex quantity then values of Y are

given by

Y = ±[
√
|Z|+x

2
+ isign(y)

√
|Z|−x

2
]

where sign(y) = +1, y ≥ 0

sign(y) = −1, y < 0

By using above mentioned theorem, we find the desired values of γ, i.e the values

of γ with negative imaginary parts.

Hence, we find the two different modes of longitudinal wave corresponding to

these two values of γ. One is pre-dominantly elastic mode wave and the other

is predominantly thermal mode wave. We denote the former one by γ1 and the

other one by γ2. We will investigate both of these modes in details in the context

of fractional order heat conduction and compare the results with the same under

classical model and generalized model.

2.2.5 Analytical results

From equation (2.2.11), it is very difficult to analyze the behavior of waves. Hence

in our analysis, we have considered two different cases, namely the case of high

frequency and the case of low frequency values. In both the cases, we find several

quantities which contain a great importance during the analysis of plane wave; like
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’phase velocity’, ’specific loss’ and ’penetration depth’ of the wave. These quantities

are used to characterize the behaviour of such harmonic plane waves over space and

time and they are determined by the following formulas:

Phase Velocity-

Ve,,t =
ω

Re[γ1,2]
(2.2.15)

Specific Loss-

(
∆W

W
)e,t = 4π|Im[γ1,2]

Re[γ1,2]
| (2.2.16)

Penetration Depth-

De,t =
1

|Im[γ1,2]|
(2.2.17)

In above formulae we used the subscripted notations e and t to denote the wave

components for the elastic mode longitudinal wave and the thermal mode longitu-

dinal wave, respectively. Now, we analyze the behavior of plane wave based on the

desired roots of γ (in which the imaginary parts of the roots are negative). For

both the cases, we investigate the wave of high frequency as well as the wave of low

frequency.

2.2.5.1 Analytical expressions of results in high frequency
case

In this case we consider ω >> 1 and after detailed lengthy manipulations, we

find the expressions of γ from equation (2.2.12) as-

γ1 ∼ [ω[1 +
a

ω1−α ] + i
B1

2
ωα[1 +

a′

ω2(1−α) ]], (ω →∞) (2.2.18)
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γ2 ∼ [cω
1+α
2 [1 +

d

ω1−α ] + ic′ω
1+α
2 [1− d′

ω1−α ]], (ω →∞) (2.2.19)

where,

a = 1
8
(

τα0
Γ (α+1)

sin[πα
2

])(1− ε)

B1 = 1
2K

( n1

2K
− τα0

Γ (α+1)
εcos[πα

2
]), B2 = 1

2K
( n1

2K
− (1 + ε))

n1 = 2K
τα0

Γ (α+1)
(2− ε)cos[πα

2
], n2 = 2K(2− ε)

a′ =
B2

2

B2
1
, a6 = (

τα0
Γ (α+1)

sin[πα
2

])2(ε− 1)2 + 1
4
(−a3
â1

+ a5
2

)2

â1 = K2, a3 = −(
τα0

Γ (α+1)
)2(1 + ε)2cos[πα], a5 = 2â1a3+â2

2

â1
2

4K2(
τα0

Γ (α+1)
)2(1+ε)2cos[πα

2
]2

â1
2

a7 = 1
4
(a3
â1

+ a5
2

), d = 1

√
g

√
(
√
g+

τα0
Γ (α+1)

(1+ε)sin[πα2 ]

2
)

c′ =

√
(
√
g −

τα0
Γ (α+1)

(1+ε)sin[πα
2
]

2
), d′ = âK

(
√
g−

τα0
Γ (α+1)

(1+ε)sin[πα2 ]

2
)(

τα0
G(a+1) (1+ε)sin[

πα
2
])

c =

√
(

τα0
Γ (α+1)

(1+ε)sin[πα2 ]

2
+
√
g)

4K
, g = (

τα0
Γ (α+1)

)2(1+ε)2(sin[πα
2

])2+( â
2
−(1+ε)

τα0
Γ (α+1)

sin[πα
2

])2]

â=
(1+ε)2(

τα0
Γ (α+1)

)2sin[πα
2
]+(

τα0
Γ (α+1)

)2(3+ε)2cos[πα
2
]2+(

τα0
Γ (α+1)

)2(1+ε)2cos[πα]

2
, â2 = −4K

τα0
Γ (α+1)

sin[πα
2

]

2.2.5.2 Analytical results for low frequency asymptotes

Here, we have taken ω << 1. In this case the roots of equation (2.2.11) can be

expressed as:

γ1 ∼ a0[Dω[1 + ĉωα] + iEω1+α[1 + ĉ′ωα]], (ω → 0) (2.2.20)

γ2 ∼ a0[Fω
1
2 [1 + d̂ωα] + iGω

1
2 [1 + d̂′ωα]], (ω → 0) (2.2.21)

where, a0 = 1√
2K

, D =
√

b4+b8
2

, b8 =
√

(b24 + b26)

b4 = (1 + ε)
τα0

Γ (α+1)

√
1− cos[πα

2
](1 + (1 + ε)

τα0
Γ (α+1)

sin[πα
2

]), b6 = 1
2
(1 + ε)

τα0
Γ (α+1)

cos[πα
2

]

ĉ = b8b9
2(b4+b8)

, b9 =
b7b26

(b24+b
2
6)
, b7 = b4

b3−
τα0

Γ (α+1)
cos[πα

2
]]
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E =
√
−b4+b8

2
, ĉ′ = b8b9

2(−b4+b8)

a0 = 1√
2K

, F = (1 + ε)
1
2 , d̂ = c1

4(1+ε)
, c1 = b1 +

τα0
Γ (α+1)

(1 + ε)sin[πα
2

]

b1 = (1 + ε)
τα0

Γ (α+1)

√
1− cos[πα

2
], G = (1 + ε)

1
2 , d̂′ = −1

4
(b1 +

τα0
Γ (α+1)

(1 + ε)sin[πα
2

])

2.2.6 Analytical expressions of various components
of plane waves

With the help of equations (2.2.18)-(2.2.21) and by using the formulae (2.2.15)-

(2.2.17), we evaluate the asymptotic expressions of phase velocity, specific loss, pen-

etration depth for both the elastic and thermal mode waves in both cases (high and

low frequency cases).

2.2.6.1 High frequency case (For 0 < α < 1)

With the help of equation (2.2.18) and (2.2.19 ) and using the formula of phase

velocity given by (2.2.15) in case of large values of frequency, ω, we get the desired

expressions for both the elastic and thermal mode waves as follows:

Phase velocity for elastic wave:

Ve ∼ [1− a

ω1−α ], (ω →∞) (2.2.22)

Phase velocity for thermal wave:

Vt ∼
1

c
ω

1−α
2 [1− d

ω1−α ], (ω →∞) (2.2.23)

In the similar way, using equations (2.2.18), (2.2.19), and with the help of formula

of specific loss we find its asymptotic expressions for both the modes of wave (for

large value of ω) as given below:

9



Specific loss for elastic wave:

Se =
1

4π
(
∆W

W
)e ∼

B1

2ω1−α [1 +
−a
ω1−α ], (ω →∞) (2.2.24)

Specific loss for thermal wave:

St =
1

4π
(
∆W

W
)t ∼

c′

c
[1− d+ d′

ω1−α ], (ω →∞) (2.2.25)

Now, we find expressions of penetration depth for both elastic and thermal mode

wave with the help of equations (2.2.18), (2.2.19) and formula (2.2.17) respectively

(for large values of ω).

Penetration depth for elastic wave:

De ∼
2

B1ωα
[1− a′

ω2(1−α) ], (ω →∞) (2.2.26)

Penetration depth for thermal wave:

Dt ∼
1

c′ω
1+α
2

[1 +
d′

ω1−α ], (ω →∞) (2.2.27)

2.2.6.2 Special case α = 1

Expressions of thermal mode wave and elastic mode wave are separately presented

for the case α = 1.

Thermal mode wave

Vt = 1
f̃
(1− h̃

ω2 ), (ω →∞)

St = m̃
f̃ω

(1 + h̃−ñ
ω2 ), (ω →∞)

Dt = 1
m̃

(1− ñ
ω2 ), (ω →∞)

where, we have used the following notations:

f̃ = (ã−K − τ0(1 + ε)2)2, h̃ = 1
4
(c̃2d̃2(c̃− (1 + ε))2) + ãb̃

ã−K−τ0(1+ε)

ã =
√

(K4 + 2Kτ0(ε− 1) + τ 20 (1 + ε)2) (2K(1+ε)+τ0(1+ε)2+4K)
2

10



b̃ = 1
8
[(2K(1 + ε) + τ0(1 + ε)2 + 4K)2 − 4 (1+ε)2

K4+2Kτ0(ε−1)+τ20 ε2
]

c̃ = 1
2
(2K(1 + ε) + τ0(1 + ε)2 + 4K)

√
(K4 + 2Kτ0(ε− 1) + τ 20 (1 + ε)2)

d̃ = (1+ε)4

2(2K(1+ε)+τ0(1+ε)2+4K)(K4+2Kτ0(ε−1)+τ20 (1+ε)2)

m̃ =
√

((ã−K − τ0(1 + ε)2))

√
(c̃2d̃2(c̃−(1+ε))2)

2
, ñ = k̃

j̃

k̃ =
2(c̃−(1+ε))2c̃2d̃2+

˜
a2

˜
b2

(ã−K−τ0(1+ε)2)2

4
, j̃ = (c̃−(1+ε))2c̃2d̃2

2

Elastic mode wave

Ve = 1

p
1
4
1

(1− 3q21
32p21ω

2 ), (ω →∞)

Se = 1

16q1p
7
4
1 ω

(1− 5q21
16p21ω

2 ), (ω →∞)

De = 16q1p
3
2
1 (1− 7q21

32p21ω
2 ), (ω →∞)

where,

p1 = (ε2 + 2τ0ε+ (K − τ)2 + 2Kτ0ε), q1 = 4K − 2(K + τ0(1 + ε))(1 + ε)

2.2.6.3 Low frequency case

Similarly, with the help of equations (2.2.20) and (2.2.21) and assuming frequency

ω to be very small, we get the asymptotic expressions for different wave components

of elastic and thermal mode waves as follows:

Phase velocity for elastic wave:

Ve ∼
1

A3

[1− cωα], (ω → 0) (2.2.28)

where A3 = a0D

Phase velocity for thermal wave:

Vt ∼
1

A4

ω
1
2 [1− dωα], (ω → 0) (2.2.29)

where A4 = a0F
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Specific loss for elastic wave:

Se ∼
E

D
ωα[1 + (c′ − c)ωα], (ω → 0) (2.2.30)

Specific loss for thermal wave:

St ∼
G

F
[1 + (d′ − d)ωα], (ω → 0) (2.2.31)

Penetration depth for elastic wave:

De ∼
1

a0Eω1+α
[1− c′ωα], (ω → 0) (2.2.32)

Penetration depth for thermal wave:

Dt ∼
1

a0Gω
1
2

[1− d′ωα], (ω → 0) (2.2.32)

2.2.7 Numerical results

In the previous section, we have derived the asymptotic results which determine

the limiting nature of longitudinal plane wave. We derived the asymptotic expres-

sions of various components of wave like, phase velocity, specific loss and penetration

depth for the thermal mode and elastic mode wave for very low and very high fre-

quency values in the context of fractional order heat conduction model. The limiting

behaviour of the wave components for different values of fractional order parameter

can be observed from these analytical results. In order to compare the results under

fractional order theory with the generalized thermoelasticity theory that includes

one thermal relaxation parameter, we also derive the expressions for the special case

α = 1. In the present section, we make an attempt to find the numerical values of

different wave characterizations for the intermediate values of wave frequency and

also we verify the analytical results in order to better understand the influence of

fractional order theory. For this motive, we assume following non-dimensional val-

ues:

K = 1
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ε = 0.0168

τ0 = 0.01

We have used the software Mathematica (version 6) and solve the dispersion rela-

tion given by (2.2.11). Then, with the help of the formulae of various components

of plane wave, we compute the numerical values of components of both types of

wave for the different values of the frequency ω and for the different values of α.

The values of the wave characterizations for the case τ0 = 0 are also obtained. The

results are plotted in different figures (Figures 2.2.1-2.2.12). The cases of plots for

low frequency and high frequency are shown in different figures. In all the Figures,

the dot-dashed lines represent the case: τ0 = 0; the thin solid lines are used for the

case: α=0.25; thick solid lines represent the case: α= 0.5; thick dashed lines are

used for the case: α=0.75; thin dotted lines represent the case: α = 0.9 and the

thick dotted lines represent the case: α=1.

2.2.8 Analysis of analytical results and numerical
results

2.2.8.1 Analysis of phase velocity

Figures 2.2.1 and 2.2.2 show the variations of phase velocity of thermal mode

wave for low and high frequency, respectively. Figure 2.2.1 represents that the

phase velocity of thermal mode wave is initially an increasing function of frequency

ω. Figure 2.2.2 exhibits the relation between phase velocity and frequency ω for

higher frequency values. Here, we can examine the significant role of α. We further

note that the differences of predictions by fractional order thermoelastic model,

the classical model and the generalized model by Lord and Shulman is significant.

Specially, there is a significant change in the phase velocity profiles for the cases

when α ≤ 0.5 and the cases when α > 0.5. This fact is in good agreement with
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our analytical results (see equation (2.2.23)) which indicate that in the case when

0 < α < 1, Vt is an increasing function of frequency, where as Vt tends to a constant

limiting value as ω → ∞ in the case when α = 1. Hence, Figure 2.2.2 shows that

for the cases when 0.5 < α < 1, the profile is slowly increasing with the increment

of ω . However, when α is very close to 1 for example say 0.9, its nature is very

close with the nature of plot when α = 1. At α = 1, profile achieves a constant

limiting value as frequency reaches nearer to 300 and the constant limiting value is

nearer to 10. This fact is also very clear from the analytical result of special case.

This implies that the effect of α is more prominent on Vt when α ≤ 0.5. For α > 0.5

profiles are very close together. The values of Vt for various cases are also shown in

Table 1. We also note the above mentioned facts from this table. When frequency

is very high, say nearer to 1000, the phase velocity of thermal mode wave for the

cases when α > 0.5 reaches to an almost constant limiting value which is dependent

on the fractional order parameter. In the case when α = 0.9, the speed is nearer to

9.1 which is less than the speed in case of generalized thermoelastic model. Hence,

we can conclude that when α is nearer to 1 then the fractional order theory predicts

more realistic results as compared to the case when α ≤ 0.5.

Figures 2.2.3 and 2.2.4 depict the variations of phase velocity of elastic mode wave

for low and high frequency, respectively for different values of α. It is evident from

Figure 2.2.3 that the phase velocity for elastic mode wave is initially a decreasing

function of frequency ω(for low frequency). There is no significant change in the

phase velocity profiles of elastic mode wave as the value of α changes. The case of

τ0 = 0 also shows a similar trend. Figure 2.2.4 represents the trend of phase velocity

of this mode when frequency tends to very high values. It is noted that the trend

of variation of the profiles for all values of α is almost similar. We further observe

that as ω increases, the phase velocity Ve reaches to a constant limiting value after
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showing a local minimum value and that limiting value is very nearer to 1 with a

slight difference depending on fractional parameter. This is also verified from the

analytical expression of phase velocity for elastic mode wave for high frequency case

(see Eq. (2.2.22)).

The variation of phase velocity of thermal wave is more clearly understandable
from the following table -

Vt ω = 100 ω = 300 ω = 500 ω = 700 ω = 900
τ0 = 0 14.1 24.2 31.6 37.4 42.4
α = 0.25 6.6 10.3 12.6 14.3 15.8
α = 0.50 5.4 7.3 8.3 9.1 9.7
α = 0.75 6.0 7.1 7.7 8.0 8.3
α = 0.9 7.5 8.3 8.6 8.8 8.9
α = 1 9.1 9.9 9.9 10.0 10.0

Table 2.2.1 The variation of phase velocity of thermal wave

2.2.8.2 Analysis of specific loss

Figures 2.2.5 and 2.2.6 reveal the behavior of specific loss for thermal mode wave

for values of low and high frequencies, respectively. In Figure 2.2.5, we can observe

that specific loss for thermal mode wave profile is a decreasing function of ω for all

values of α but it is constant for the case of classical coupled theory, i.e., when τ0 = 0.

For this wave field, α has a prominent role, although the specific loss of thermal mode

wave tends to a constant value which is 4π as ω → 0 for all α. From this Figure, we

can conclude that the maximum value of specific loss is 4π for each α. This result is

also in good agreement from analytical expression found out in previous section (see

Eq. 2.2.25). Figure 2.2.6 shows the behavior of specific loss with the frequency ω for

thermal mode wave for higher values of frequency. Here specific loss profile is still

decreasing function of frequency ω. Significant variation occurs among the profiles

15



of specific loss for the cases τ0 = 0 and 0 < α ≤ 1 but there is significant effect of

α and when it increases, a significant variation occurs among the profiles of specific

loss. It exhibits the lesser value of specific loss for higher values of α. However, for

all values of the fractional parameter, the specific loss tends to a constant limiting

value depending on α as ω → ∞. For α = 1 the limiting value is zero, whereas in

all other cases it is a non-zero constant value. Here we can understand that like the

generalized theory, the fractional order heat conduction model gives better result as

compared to the classical theory of thermoelasticity. Figure 2.2.7 and Figure 2.2.8

display the specific loss of elastic mode wave. The numerical results indicated by

these Figures are in complete agreement with our analytical asymptotic results (see

Eqs. (2.2.24), and (2.2.30) ) and as well as the results for the case when α = 1. We

note that in all cases, specific loss of elastic mode wave tends to zero when ω →∞

and also when ω → 0. Moreover, Figures 2.2.7 and 2.2.8 reveal that this specific

loss profile increases rapidly with the increase of frequency and after achieving an

extreme value, it starts decreasing and again tends to zero value as ω → ∞. This

extreme value is different for different profiles and it decreases as the value of α

increases. For τ0 = 0 it is nearer to 0.004. For α > 0.5, the effect of α is not

prominent. However, the trend of variation is almost similar for all the profiles.

This result also matches with our analytical results.

2.2.8.3 Analysis of penetration depth

Figure 2.2.9 and Figure 2.2.10 depict the behavior of penetration depth for ther-

mal mode wave for low and high frequency, respectively. From Figures 2.2.9 and

2.2.10, it is evident that penetration depth profile of thermal mode wave is a de-

creasing function of ω and it approaches to constant limiting value which is nearer

to 0 as ω →∞ for every α (0 < α < 1) but in the case when α = 1, the penetration

16



depth shows a constant limiting value as frequency reaches a high value and this

value is near about 0.2. This fact is also evident from the analytical result obtained

in special case when α = 1and Eq. (2.2.27).

The behavior of penetration depth for elastic mode wave can be observed from

Figures 2.2.11 and 2.2.12 and the asymptotic results given by Eqs. (2.2.26) and

(2.12.32). For this profile, we note that like the penetration depth of thermal mode

wave, the penetration depth of elastic mode wave also decreases rapidly as frequency

increases but in Fig. 12, the penetration depth shows constant value for the case

τ0 = 0 and α = 1 and this value is near about 120. The effect of fractional order

parameter is prominent on this profile. For the cases when 0 < α < 1, it slowly

decreases to zero values as ω → ∞. This fact is also in good agreement with the

analytical results given by eq. (2.2.26).
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Figure 2.2.1 Variation of phase velocity of thermal mode wave with
frequency (low frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25,
Thick line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted
line: α = 1

Figure 2.2.2 Variation of phase velocity of thermal mode wave with
frequency (high frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25,
Thick line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted
line: α = 1
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Figure 2.2.3 Variation of phase velocity of elastic mode wave with fre-
quency (low frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25, Thick
line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted line:
α = 1

Figure 2.2.4 Variation of phase velocity of elastic mode wave with fre-
quency (high frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25, Thick
line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted line:
α = 1
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Figure 2.2.5 Variation of specific loss of thermal mode wave with fre-
quency (low frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25, Thick
line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted line:
α = 1

Figure 2.2.6 Variation of specific loss of thermal mode wave with fre-
quency (high frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25, Thick
line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted line:
α = 1
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Figure 2.2.7 Variation of specific loss of elastic mode wave with fre-
quency (low frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25, Thick
line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted line:
α = 1

Figure 2.2.8 Variation of specific loss of elastic mode wave with fre-
quency (high frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25, Thick
line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted line:
α = 1
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Figure 2.2.9 Variation of penetration depth of thermal mode wave with
frequency (low frequency): Black Thick Dot Dashed = τ0= 0, Black Thin α =
0.25, Black Thick α = 0.5, Black Thin Dashed α = 0.75, Black Thick Dashed α =
0.9, Black Thick Dotted α = 1

Figure 2.2.10 Variation of penetration depth of thermal mode wave
with frequency (high frequency): Black Thick Dot Dashed = τ0= 0, Black
Thin α = 0.25, Black Thick α = 0.5, Black Thin Dashed α = 0.75, Black Thick
Dashed α = 0.9, Black Thick Dotted α = 1
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Figure 2.2.11 Variation of penetration depth of elastic mode wave with
frequency (low frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25, Thick
line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted line:
α = 1

Figure 2.2.12 Variation of penetration depth of elastic mode wave with
frequency (high frequency): Thick dot dashed line: τ0= 0, Thin line: α = 0.25,
Thick line: α = 0.5, Thin dashed line: α = 0.75, Thick dashed line: α = 0.9, Thick dotted
line: α = 1

2.2.9 Conclusions

In the present work, dispersion relation solutions for the plane wave propagating

in a thermoelastic media have been determined by employing fractional order ther-
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moelasticity theory. From the derived dispersion relation solution, the components

of longitudinal plane wave have been derived and the effects of the fractional order

parameter α on the wave components have been analyzed in order to understand

the differences in predictions of the present theory as compared to the classical

theory and generalized theory of thermoelasticity. Asymptotic expressions of the

wave components in two limiting cases of frequency values and also their numerical

values for intermediate values of frequency have been obtained. Subsequently, a

comparative study of analytical and numerical results has been made to analyze the

effect of fractional order parameter in details. While doing analysis of analytical

and numerical results, we have found following highlighted results:

1. There are two different modes of longitudinal waves: one is predominantly

elastic and the other one is predominantly thermal in nature.

2. We have considered two special cases: α = 1, τ0 = 0 which correspond to

generalized theory of thermoelasticity and classical theory of thermoelasticity,

respectively and we have attempted to compare the predictions of fractional

order theory with these two theories. Our numerical results for the cases when

τ0 = 0 and α = 1 match with the corresponding results as reported by Puri

and Jordan (2004) and Kumar et al. (2015), respectively.

3. It is observed that when we employ the fractional order heat conduction theory,

significant changes occurs on the behavior of the both the modes of longitudinal

wave (elastic and thermal) when α goes beyond 0.5.

4. The effect of α is more prominent on thermal mode wave.
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When we compare the fractional order heat conduction model with the classical

model, we achieve that the fractional order heat conduction model is the better one

and it predicts better results in comparison to the classical theory of thermoelasticity

only when α goes beyond 0.5. Moreover, the fractional order theory indicates almost

similar realistic results like generalized theory of thermoelasticity proposed by Lord

and Shulman, specially in the case when α is very close to 1. For all other cases

when α goes nearer to 0.5 or less than that, the theory predicts significantly different

results and suffers from the similar drawback like classical theory of thermoelasticity.

This fact is believed to be very useful for further research in this direction.
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