
Chapter-1

Introduction and Literature review

1.1 Thermoelasticity

A deformable solid body, when it is subjected to the action of external loads

through heat sources and/or non-uniform heating and body forces, it gets deformed.

This deformation produces strain and stress in the body. Even in absence of any

external mechanical forces, the deformation and consequent stresses can develop in

the body. An extensive research work has been carried out in this area due to its

importance in various applications related to engineering and technology. In the

initial period, the investigations in this area have been devoted to the “uncoupled

theory of thermoelasticity” with the simplifying assumption that the effect of strain

on the temperature field may be neglected. However, the experimental evidence

indicates that deformation of a body is associated with a change of its heat content.

This implies that the time varying external loading of a body causes in it not only

displacements but also temperature distribution changing with time. Conversely,

the heating of a body leads to deformation as well as a change in temperature. In

such circumstances, the motion of a body is controlled by mutual interactions be-

tween deformation and temperature fields. Hence, the classical “uncoupled theory of

thermoelasticity” is influenced with the drawback that the temperature field is inde-

pendent from the elastic changes and vice-versa. The domain of science that deals

with the mutual interaction of these two different fields is called coupled thermoelas-

ticity, consequent of two combined theories, namely ’theory of heat conduction’ and
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’theory of elasticity’. In this case, the internal energy of the body is a function of the

deformation and temperature. As a result of the coupling between these two fields,

the temperature term appears in the displacement equations of motion, and the

deformation is included in the equation of heat conduction. It must be mentioned

that the coupling between deformation and temperature fields was first postulated

by Duhamel (1837,1838) who advocated first the theory of thermal stresses and

introduced the dilatation term in the equation of thermal conductivity. Neumann

(1841) also formulated stress-strain-temperature relations, similar to the relations

given by Duhamel. Hence, these approaches are now known as ‘Duhamel-Neumann’

relations. An extensive research has made a considerable progress in this area during

last few decades.

1.2 Classical coupled theory of thermoelasticity

In nineteenth century, Biot (1956) worked on the field of thermoelasticity based on

irreversible thermodynamics and successfully derived the constitutive relations and

basic governing equations of thermoelasticity by taking into account the coupling

between thermal and strain fields on the basis of Duhamel-Neumann relations. He

also presented the fundamental methods for solving the thermoelasticity equations

and established variational theorem. The following fundamental equations represent

the system of linear equations of the theory of coupled dynamical thermoelasticity

for anisotropic materials as given by Biot (1956):

Strain-displacement relation:

eij =
1

2
(ui,j + uj,i) (1.1)

where, i, j varies from 1 to 3.
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Equations of compatibility:

eij,kl + ekl,ij − eik,jl − ejl,ik = 0 (1.2)

where, i, j, k, l = 1, 2, 3

Equation of motion:

σij,j + Fi = ρüi (1.3)

Equation of heat conduction:

qi,i = ρ(R− Ṡθ0) (1.4)

Constitutive relations:

σij = cijklekl − γijθ (1.5)

ρS =
ρce
θ0

θ + γijeij (1.6)

qi = −Kijθ,j (1.7)

where R is the strength of the internal heat source, S denotes the entropy, cijkl is the

elasticity tensor, γij is the thermoelasticity tensor, Kij is the thermal conductivity

tensor and ce is the specific heat per unit mass, in the isothermal state.

From equations (1.3) and (1.5), we obtain

cijkluk,lj − γijθ,j + ρFi = ρüi (1.8)
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Further, from equations (1.6) and (1.7), we obtain heat conduction equation in

the following form:

Kijθ,ij + ρR = ρcθ̇ + θ0γiju̇i,j (1.9)

When the material is considered to be isotropic, then equations (1.5)-(1.7) reduce

to

σij = 2µeij + (λekk − γθ)δij (1.10)

ρS =
ρc

θ0

θ + γekk (1.11)

qi = −Kθ,i (1.12)

We observe that equation (1.12) is identical to the Fourier law of heat conduction.

In this case, equations (1.8) and (1.9) take the forms as

µ∇2ui + (λ+ µ)uk,ki − γθ,i + ρFi = ρüi (1.13)

K∇2θ + ρR = ρcθ̇ + θ0γu̇k,k (1.14)

Biot’s thermoelasticity theory as represented by above system of equations is the

first coupled dynamical thermoelasticity theory that describes a broad range of phe-

nomena. It is the generalization of the classical theory of elasticity and of the theory

of thermal conductivity. Biot’s theory has been considered as an elegant model of

thermoelasticity. Several eminent researchers including Boley and Weiner (1960),

Chadwick (1960), Nowacki (1962, 1975), Parkus (1976), Nowinski (1978), Dhaliwal

and Singh (1980), Chandrasekharaiah (1986) have contributed significantly provid-
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ing the wide and detailed discussions along with interesting applications and the-

orems based on it. However, subsequently it has been realized through theoretical

as well as experimental research work that although the theory proposed by Biot

(1956), removes the drawback of uncoupled theory of thermoelasticity but it suffers

from the deficiency of admitting thermal signals propagating with infinite speed.

This is considered as a paradox inherent in this theory. In addition to this para-

dox, this theory also exhibits unsatisfactory description of a solid’s response to fast

transient heating, like short laser pulses. Due to the shortcomings of this theory in

several cases, researchers have put their efforts in recent years to modify the con-

cept of this theory. Basically, this shortcoming arose from the inherent limitation in

Fourier law of heat conduction which has been discussed in the next section.

1.3 Drawbacks of Fourier law and its generalization

Fourier law implies that heat flux is the instantaneous result of a temperature

gradient established at a point of a body. Mathematically, for isotropic material it

is of the form

−→q (−→r , t) = −K
−→
∇θ(−→r , t) (1.15)

where
−→
∇θ is the temperature gradient vector, −→r is the position vector, t is the

time. Correspondingly, the heat conduction equation is given by

K∇2θ = ρCeθ̇ −Q (1.16)

It has been realized that this law is successfully applicable to the problems that

involve large spatial dimension and long time response. However, it is physically un-

realistic for the transient behavior of heat conduction, specially at extremely short
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time, e.g., on the order of a fraction of second (10−12s to 10−15s). In fact, it yields

unacceptable results in the situations that involve extreme thermal gradients, high

heat flux condition and short time behavior (such as laser-material interactions).

Moreover, heat conduction of many nano-scale devices demonstrates several distinct

phenomena, which are not captured by the conventional Fourier law. It must be

mentioned here that in 1867, Maxwell postulated the occurrence of a wave-type heat

flow and suggested that the thermal disturbance is a wave like phenomenon rather

than diffusion phenomenon. Accordingly, he suggested the modification of Fourier

law for the first time. The wave-type heat flow is now called as ’second sound effect’

(see Chandrasekharaiah (1986)). Possibility of ’second sound effect’ was also spec-

ulated by Nernst (1917), Landau (1941), Tisza (1947). Landau described ‘second

sound’ as the propagation of phonon density disturbance for super-fluid helium and

predicted that its speed should be equal to vp√
3
at 0 K temperature. The second

sound was first detected in liquid helium by Peshkov (1944) and experimentally, its

speed was found to be equal to 19 m/s at 1.4 K. Later on, Tisza’s and Landau’s

predictions were verified experimentally by Maurer and Herlin (1949), Pellam and

Scott (1949), and Atkins and Osborne (1950). Lifshitz (1958) observed that in fluid

helium second sound occurs at low temperatures. Subsequently, second sound had

also been detected by several workers including Ackerman et al. (1966), Ackerman

and Overton (1969) and Bertman and Standiford (1970), McNelly et al. (1970),

Jackson et al. (1970), Jackson and Walker (1971), Rogers (1971). We refer the

review article by Chandrasekharaiah (1986) for details in this respect. Parallel to

experimental research work to account for the inadequacy of Fourier law, several

theoretical work have also been carried out. Several non-Fourier heat conduction

theories have accordingly been established. A brief discussion for some of the well

established models is given below.
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1.4 Non-Fourier heat conduction models

1.4.1 Cattaneo-Vernotte model

Cattaneo (1958) and Vernotte (1958, 1961) recommended independently a model

(CV model) of heat conduction for the first time by including the flux rate term into

Fourier law. They proposed the heat conduction law in the following manner:

−→q (−→r , t) + τ
∂−→q (−→r , t)

∂t
= −K

−→
∇θ(−→r , t) (1.17)

Here τ ≥ 0 is referred to as thermal relaxation time which is defined as the finite

built-up time (phase-lag), for the onset of heat flow at −→r after a temperature gra-

dient is imposed there. Equation (1.17) yields the following hyperbolic type heat

conduction equation:

K∇2θ = (1 + τ
∂

∂t
)(ρCeθ̇ −Q) (1.18)

Above equation represents the combined diffusion and wave-like behavior of heat

transport and predicts a wave-like thermal signal propagating with the finite speed,√
K

ρCeτ
when τ > 0. This modified heat conduction law is also called as Maxwell-

Cattaneo law. It yields successful results in the cases that involve a localized moving

heat source with high intensity, a rapidly propagating crack tip, shock wave prop-

agation, thermal resonance, interfacial effects between dissimilar materials, laser

material processing, laser surgery which involve short time intervals and high heat

fluxes. Mengi and Turhan (1978) carried out experiment where they determined the

actual value of τ for a given material and observed that the values of τ for gases

range from 10−10s , for metals to 10−14s for liquids and insulators falling within this

range. Francis (1972) provided a table of values of τ for some materials. Laser pen-

etration and welding, explosive bonding, melting and nuclear bonding possess the
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transient process of heat conduction at extremely short time of very high heat flux

and this modified law is applicable in such circumstances. The review articles by

Chandrasekharaiah (1986, 1998a), Hetnarski and Ignaczak (1999) and the books by

Straughan (2011), Ignaczak and Starzewski (2010), Wang et al. (2008) etc. report

this aspect in details.

1.4.2 Dual phase-lag heat conduction model

It has now been obvious that the advancement of short-pulse laser technology

and their huge applications to modern micro-fabrication technology are attracting

attention of the researchers towards the issues of high rate heating on thin films

(Tzou (1995a)). It has been noticed that laser pulses can be made shorter to the

range of femtoseconds (10−15s ). As the response time is shorter, the non-equilibrium

thermodynamic transition and the microscopic effects in the energy exchange during

heat transport procedure become prominent. In view of recent experiments, the heat

conduction theory of Cattaneo and Vernotte also fails in some cases, specially during

heating of thin films. Hence, to surmount the drawbacks of the classical heat con-

duction model as well as of the Cattaneo-Vernotte model, Tzou ((1995 a,b) proposed

the dual phase-lag (DPL) theory of heat conduction. This model establishes that

either the temperature gradient may dominate the heat flux or the heat flux may

dominate the temperature gradient. It must be mentioned that the dual phase-lag

model of Tzou was motivated by some prior established models. It may be pointed

out that in order to capture the microscopic effects in heat transport mechanism,

phonon-scattering model was put forward by Joseph and Preziosi (1989, 1990) and

Guyer and Krumhansl (1966). The phonon-electron interaction model developed by

Brorson et al. (1987), Anisimov et al. (1974) and Fujimoto et al. (1984), micro-

scopic two-step model by Qiu and Tien (1992, 1993). In 1995, Tzou (1995a) has
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pronounced the effect of micro-structural interactions in the fast transient process

of heat transport phenomenon and developed a more generalized and accurate law

of heat conduction, known as dual-phase lag model, in the form,

−→q (−→r , t+ τq) = −K
−→
∇T (−→r , t+ τt) (1.19)

Here τq, τt are two delay times, where τq represents the phase-lag of the heat flux

vector and it captures the thermal wave behavior, a small-scale response in time

for heat flux and τt is the phase lag of the temperature gradient and it captures

the effect of phonon-electron interactions, a micro scale response in space. Thus,

the dual phase lag concept is capable of predicting the small-scale response in both

space and time. The phase-lags τq and τt are assumed to be positive and they are

the intrinsic properties of the medium (Tzou (1997)).

Equation (1.19) represents a universal model which is a good explanation of

all fundamental behaviors in diffusion, thermal wave, phonon-electron scattering

associated with the shortening of the response time. Many workers such as Tzou

(1997), Al-Nimr and Al-Huniti (2000), Chen et al. (2002), Lee and Tsai (2008) and

Abdallah (2009), Kothari (2013), Quintanilla (2002) carried out various applications

of this model. Some of its silent features are described below:

(a) Using Taylor series expansion of (1.19) by retaining only the terms up to the

first order for τq and τt, we obtain the Jeffery-type heat flux equation (Joseph and

Preziosi (1989, 1990))

−→q + τq
∂−→q
∂t

= −K[
−→
∇θ + τt

∂
−→
∇θ
∂t

] (1.20)
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The corresponding heat conduction equation is

(1 + τt
∂

∂t
)∇2θ =

ρCe
K

(1 + τq
∂

∂t
)
∂θ

∂t
− 1

K
(1 + τq

∂

∂t
)
∂Q

∂t
(1.21)

(b) The heat conduction model (1.19) reduces to

(i) Classical Fourier law of heat conduction equation when τq = τt = 0.

(ii) Hyperbolic heat conduction when τt = 0 and τq > 0.

(iii) the energy equation in phonon-scattering model (Joseph and Preziosi (1989),

Guyer and Krumhansl (1966)) when K
ρCe

= τRc
2

3
, τt = 9τN

5
and τq = τR,

where τR is the relaxation time for Umklapp process in which momentum is lost

from the phonon system and τN denotes the relaxation time for normal processes in

which momentum is conserved for the phonon system (Tzou (1995a)).

(c) Now applying Taylor series expansion of (1.19) by retaining terms up to the

second order in τq but only up to the first order in τt (Tzou (1995b)), we obtain

−→q + τq
∂−→q
∂t

+
τ 2
q

2

∂2−→q
∂t2

= −K[
−→
∇θ + τt

∂
−→
∇θ
∂t

] (1.22)

Corresponding heat conduction equation is

(1 + τt
∂

∂t
)∇2θ =

ρCe
K

(1 + τq
∂

∂t
+
τ 2
q

2

∂2

∂t2
)
∂θ

∂t
+

1

K
(1 + τq

∂

∂t
+
τ 2
q

2

∂2

∂t2
)
∂Q

∂t
(1.23)

Equation (1.23) is hyperbolic type heat conduction equation admitting the ther-

mal wave to propagate with a finite speed, VT = 1
τq

√
2Kτt
ρCe

(Tzou (1995b)).

1.5 Generalized thermoelasticity theories

Parallel research activities have been carried out in the field of thermoelastic-

ity for providing the major growth of the area of thermoelasticity accounting for

non-Fourier heat conduction in elastic materials. Accordingly, several models have
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been proposed which are capable of removing the drawbacks of Fourier law of heat

conduction. Such theories are called as generalized theory of thermoelasticity or

hyperbolic thermoelasticity. A brief description of such models are given below:

1.5.1 Extended thermoelasticity theory (ETE)

Lord and Shulman (1967) proposed one generalized thermoelastic model which

includes one thermal relaxation parameter for isotropic and thermoelastic body. In

this model of thermoelasticity, the flux rate term was incorporated into the Fourier

law of heat conduction. Basically this theory is based on Cattaneo-Vernotte law

(1.17) and as a result the heat conduction equation in this theory exhibits wave-type

heat phenomenon i.e. the propagation speed for both elastic and thermal waves is

finite. This thermoelasticity theory is renamed as ’Extended thermoelasticity theory

(ETE)’ or ’Lord and Shulman theory (LS theory)’. The present theory is considered

as the first generalization to the coupled thermoelasticity theory. This theory was

subsequently extended by Dhaliwal and Sherief (1980) to general anisotropic media

in the presence of heat sources.

1.5.2 Temperature-rate-dependent thermoelasticity theory
(TRDTE)

The second generalization to the coupled thermoelasticity is known as the the-

ory of thermoelasticity with two relaxation times or the theory of temperature-rate

dependent thermoelasticity that admits the “second sound effect”. This theory is

advocated by Green and Lindsay (1972). It must be recalled that prior to this,

Muller (1971), in a review of thermodynamics of thermoelastic solids, proposed an

entropy production inequality with some restrictions on a class of constitutive equa-

tions. A generalization to this inequality was proposed by Green and Laws (1972).

Subsequently, Green and Lindsay (1972) obtained an explicit version of the con-
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stitutive equations. These equations were also obtained independently by Suhubi

(1975). This theory contains two non negative constants that act as thermal relax-

ation times or temperature-rate and modify the constitutive relations of the coupled

thermoelasticity theory. However, the classical Fourier law of heat conduction is not

violated in this theory if the medium under consideration has a center of symmetry.

Temperature rate dependent thermoelasticity theory (TRDTE) has also been inves-

tigated by researchers like ETE. The review/survey articles by Chandrasekharaiah

(1986, 1998) and Hetnarski and Ignaczak (1999) provide detailed discussion about

ETE and TRDTE generalized thermoelasticity theories.

1.5.3 Theory of thermoelasticity of type I, II and III (Green
and Naghdi)

Next generalization to the coupled thermoelasticity has been made by Green and

Naghdi (1991, 1992, 1993, 1995) who have introduced their theory as an alternative

one. The propagation of heat has been modeled in a very elegant way to produce

a fully consistent theory of thermoelasticity. This theory is capable of organizing

the thermal wave transmission in a reasonable manner and is based on the firm

ground of thermodynamic principles. Moreover, to account for the finite speed for

thermal wave, Green and Naghdi (1993) speculated a new concept in generalized

thermoelasticity which is known as the thermoelasticity with no energy dissipation.

The paramount characteristic of this theory is that it is completely in contrast

to the classical thermoelasticity associated with Fourier law of heat conduction.

Furthermore, the potential function which is used to derive the stress tensor is used

to determine the constitutive equation for the entropy flux vector. Basically, Green-

Naghdi (GN) theory depends on entropy balance law rather than the usual entropy

inequality. The theory proposed by Green and Naghdi (1991, 1992, 1993, 1995)

has been categorized into three parts which have been labeled as thermoelasticity
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of type-I, II and III. Linearized version of type-I theory is similar to the classical

theory of thermoelasticity predicting an infinite speed of thermal wave propagation.

Type-II model describes the finite speed of heat propagation wave as a special case

of type III, i.e. in the heat equation of type III, the heat flux is the combination of

type-I and type-II theories. For isotropic medium, the heat conduction equation in

the theories proposed by Green and Naghdi can be expressed in the following way:

Green and Naghdi type-I (GN-I) theory of thermoelasticity:

K∇2θ̇ = ρCvθ̈ + γT0üi,i (1.24)

Green and Naghdi type-II (GN-II) theory of thermoelasticity:

K?∇2θ = ρCvθ̈ + γT0üi,i (1.25)

Green and Naghdi type-III (GN-III) theory of thermoelasticity:

K?∇2θ +K∇2θ̇ = ρCvθ̈ + γT0üi,i (1.26)

1.5.4 Thermoelasticity with dual phase-lags (DPLTE)

This theory of thermoelasticity has been developed in the frame of ETE theory

by introducing the dual phase-lag heat conduction law in place of Fourier law. This

theory has been introduced by Tzou (1997) and subsequently, it has been formulated

and discussed by Chandrasekharaiah (1998a).

1.5.5 Thermoelasticity with three phase lags

(TPLTE)

Roychoudhuri (2007a) proposed a model of thermoelasticity in which Fourier law
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of heat conduction is modified by introducing three different phase-lags for the heat

flux vector, the temperature gradient and the thermal displacement gradient vectors.

Hence, this model is known as the three-phase lag thermoelasticity theory (TPLTE).

In the present model, the generalized heat conduction model is proposed as

−→q (−→r , t+ τq) = −[K
−→
∇T (−→r , t+ τt) +K?−→∇ν(−→r , t+ τν)] (1.27)

Here τν denotes the phase-lag in thermal displacement gradient and
−→
∇ν is the

gradient of thermal displacement such that ν̇ = T . Therefore, TPLTE is considered

as the generalization of GN-III thermoelasticity theory.

1.5.6 Fractional order thermoelasticity

In recent years, fractional calculus is playing a crucial role in developing several

models and it has been verified that the use of fractional order derivatives/integrals

lead to the formulation of certain physical problems which are more economical and

appropriate as compared to the classical one. Fractional calculus is a natural ex-

tension of classical mathematics and since the inception of the theory of differential

and integral calculus, mathematicians such as Euler and Liouville developed their

ideas about the calculation of non-integer order derivatives and integrals. The sub-

ject is therefore more aptly called as “integration and differentiation of arbitrary

order. Nowadays, it has been realized that fractional calculus can be very useful in

the areas of diffusion, heat conduction, viscoelasticity, continuum mechanics, electro-

magnetism etc. It must be mentioned here that the first use of a fractional operation

is due to Abel (1823) and Liouville (1832). Abel applied fractional calculus in the

solution of an integral equation that arises in the formulation of tautochrone prob-

lem. After him, Liouville made the first major study of fractional calculus. Caputo

(1967), Caputo and Mainardi (1971a 1971b) and Caputo (1974) employed the frac-
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tional order derivatives for the purpose of analyzing the elastic-energy dissipation

based on a memory mechanism in viscoelastic materials, established the connection

between fractional derivatives and the theory of linear viscoelasticity and achieved

a wider agreement with experimental results (Oldham and Spanier (1974)). One

can see various alternative definitions of fractional derivatives in the articles by Old-

ham and Spanier (1974), Samko et al. (1993), Miller and Ross (1993), Gorenflo and

Mainardi (1997) and Hilfer (2000) etc. Caputo and Mainardi (1971), Caputo (1974),

Bagley and Torvik (1983), Koeller (1984) and Rossikhin and Shitikova (1997). The

book by Podlubny (1999) can be reffered for a survey of applications of fractional

calculus. At present, fractional calculus has been employed in the area of thermoelas-

ticity theory. Povstenko (2005) has developed a quasi-static uncoupled thermoelastic

model based on the heat conduction equation with fractional order time derivatives.

He used the Caputo fractional derivative (Caputo (1967)) and obtained the stress

components corresponding to the fundamental solution of a Cauchy problem for

the fractional order heat conduction equation in both the one-dimensional and two-

dimensional cases. In 2010, a new theory of thermoelasticity in the frame of a new

consideration of the heat conduction equation with fractional order time derivatives

has been proposed by Youssef (2010). The uniqueness of the solution has been es-

tablished (see also Youssef (2012)). Youssef and Al-Lehaibi (2010) have investigated

a problem on an elastic half-space using this theory. The uniqueness of the solu-

tion has been proved in the same work. Sherief et al. (2010) has independently

constructed another model in generalized thermoelasticity by using fractional order

time-derivatives in which the fractional order derivative is introduced in Fourier law

of heat conduction a
−→q + τ0

∂α−→q
∂tα

= −Kθ,i (1.28)
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Here τ0 is the thermal relaxation parameter andα is a real constant such that 0 <

α ≤ 1.

It has been considered here

∂α

∂tα
f(x, t) = f(x, t)− f(x, 0); α→ 0.

∂α

∂tα
f(x, t) = Iα−1∂f(x, t)

∂t
; 0 < α < 1.

∂α

∂tα
f(x, t) =

∂f(x, t)

∂t
; α→ 1.

Above cases represent the limiting cases of heat conduction equation (1.28). This

theory is derived by using the Caputo definition of fractional derivatives of order

α that belongs to (0,1] of the absolutely continuous function f(t) and is given by

dα

dtα
f(x, t) = Iα−1f ′(t), where Iβ is the fractional integral of the function f(t) of

order β defined by Miller and Ross (1993) as

Iβf(t) =
´ t

0
(t−s)β−1

Γ (β)
f(s)ds.

Here, f(t) is a Lebesgue integrable function and β > 0.

Youssef (2010) constructed his model of thermoelasticity by considering the heat

conduction law with fractional order as follows:

qi + τ0q̇i = −KIα−1θ,i (1.29)

where αε(0, 2].

Subsequently, Ezzat and El-Karamany (2011), Ezzat (2012), Ezzat et al. (2012)

derive fractional dual and three-phase lag thermoelasticity model by using fractional

Taylor series. Ezzat and Fayik (2011) introduced the theory of fractional order
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theory of thermoelastic diffusion. Later on Yu et al. (2013a, 2013b) investigated

the unified fractional order generalized thermoelasticity with electro-magnetic effect

and micro-modeling by introducing fractional calculus into LS, GL, GN and DPL

models. Abbas (2014) studied fractional thermoelasticity theory based on Green-

Naghdi model.

1.5.7 Thermoelasticity using memory dependent derivatives

This is a new concept and it has come after some generalization of fractional

order derivative theory. Diethelm (2010) analyzed fractional differential equations

by applying the concept of Caputo fractional derivative (1967) defined as

Dα
a f(t) =

tˆ

a

Kα(t− ξ)fm(ξ)dξ (1.30)

where Kα(t− ξ) is denoted as kernel of function and it is defined as Kα(t− ξ) =
(t−ξ)m−α−1

Γ(m−α)
.

In above equation, the kernel Kα(t− ξ) is fixed, where a is a fixed integer and m

is an integer such that m− 1 < α < m.

From the above definition it is clear that α−order fractional derivative at time

t is not defined locally at time t, but it depends on the total effects of m−order

integer derivative on the interval [a, t]. Hence, this concept of fractional derivative

can be used to describe the variation of a system in which the instantaneous change

rate depends on the past state which is known as ’memory effect’ (Diethelm (2010)).

However, we know that the memory effect of real process basically arises in a

segment of time [t− τ , t], where τ denotes the time delay and it is always positive.

In spite of several applications of fractional calculus, it has some demerits. Due to

this, the concept of fractional order derivative has been modified and a new concept

of derivative has been established by Wang and Li (2011) which has been named as
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’memory dependent derivative’ and can be written mathematically as

Dm
τ,Kf(t) =

1

τ

tˆ

t−τ

K(t− s)fm(s)ds (1.31)

This concept has some specific properties which is not applicable in fractional

order derivative. Here the kernel K(t − s) and time delay parameter, τ can be

chosen freely as per the necessity of problem. For physical point of view, generally

we take 0 < K(t− s) ≤ 1 and τ should be smaller than an upper bound determined

by the kernel function to ensure the uniqueness and existence of the solution (Wang

and Li (2011)). Several examples like, weather forecast, population model etc. need

the data of recent past and this is possible in memory dependent derivative because

it will fail if the lower terminal has a very less value in fractional order derivative.

In recent years, the concept of memory dependent derivatives has drawn attention

of the researchers. Yu et al . (2014) introduced memory-dependent derivative into

the generalized theory of thermoelasticity provided by Lord and Shulman (1967).

Furthermore, Ezzat et al., (2015) developed a new generalized thermo-viscoelasticity

theory using memory-dependent derivatives.

1.6 Magneto-thermoelasticity

An elastic body, when it is placed in a primary uniform magnetic field, is sub-

jected to non-uniform temperature distribution, will give rise to the interactions

among the elastic, magnetic and thermal fields. The theory of coupled magneto-

thermoelasticity deals with the mutual interactions among strain, temperature and

electromagnetic fields. Electric current gives rise to magnetic field and vice-versa.

The combined effect is therefore sometimes called as thermo-magneto-electro-elasticity.

The governing equations in this theory includes Maxwell equations with modified
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Ohm’s law which contains temperature gradient term and also modified Hooke-

Duhamel-Newman law of stress-strain-temperature relations. The stress equation

of motion also includes an additional body force term, called as Lorentz ponderomo-

tive force and the total stress in the combined field consists of the Hooke’s mechanical

stress due to thermoelastic deformation and the Maxwell’s electro-magnetic stress.

Efforts are being devoted to understand the interaction between magnetic field in a

thermoelastic solid due to its useful applications in the field of geophysics, optics,

acoustics, damping of acoustic wave in magnetic fields and other related topics in-

volving sensing and actuation. At the early stage, the field of magneto-elasticity was

addressed notably by Knopoff (1955), Kaliski (1963), Nowacki (1975) etc. Kaliski

(1965) provided a symmetric treatment of the magneto-thermo-elastic field equations

and those of wave equations of thermo-electro-magnetoelasticity. The dynamic prob-

lems concerning such interactions were studied by several workers including Paria

(1962), Wilson (1963), Purushotama (1965), Massalas and Dalamangas (1983a,b),

Chatterjee and Roychoudhuri (1985), Roychoudhuri and Chatterjee (1990b), Sax-

ena, Dhaliwal and Rokne (1991). Purushotama (1965) have used the classical theory

of thermoelasticity (Biot (1956)) along with the electromagnetic theory to charac-

terize harmonically time dependent plane waves of assigned frequency in a homo-

geneous, isotropic and unbounded solid. Furthermore, Nayfeh and Nemat-Nesser

(1972) and later on, Agarwal (1979) reported a detailed study on electro-magneto-

thermoelastic plane waves in solids in the context of generalized thermoelasticity

theory with the effects of thermal relaxation parameters. Roychoudhuri (1984) and

Roychoudhuri and Debnath (1983) studied propagation of magneto-thermoelastic

plane waves in rotating thermoelastic media permeated by a primary uniform mag-

netic field using generalized heat conduction equation of Lord and Shulman (1967).

A systematic presentation of the subject of magneto-thermoelasticity is available in
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the books by Parkus (1972, 1979), Moon (1984), Dhaliwal and Singh (1980), Eringen

and Maugin (1990).

1.7 Literature review

Theory of thermoelasticity has aroused much interest among researchers in last

few decades due to its wide applications in science, engineering and technology. This

theory has been applied by several researchers to solve various problems relevant to

the thermoelastic interactions in different types of media. Chandrasekharaiah (1986,

1998a) mentioned extensive research work that has been carried out on the various

theories of thermoelasticity till 1998 in his two review articles. The recent books by

Hetnarski and Eslami (2010) and Ignaczak and Ostoja-Starzewski (2010) as well as

the Ph.D. thesis of Roushan Kumar (2010), Rajesh Prasad (2012) and Sweta Kothari

(2014) may be referred in this regard. We state below some of the important works

in the relevance of the present study:

Danilovskaya (1950) was the first one who studied a half space problem under the

theory of classical thermoelasticity by neglecting the coupling term. This problem

has been named as Danilovskaya’s problem. Several authors like, Paria (1959), Het-

narski (1961, 1964a) and Boley and Tolins (1962) investigated half space problems

under different conditions. After that Hetnarski (1964b) achieved the fundamental

solutions under classical thermoelasticity (CTE) theory for small values of time.

It has been already mentioned above that the theory of classical thermoelasticity

is not capable of providing accurate results for physical point of view. Several efforts

have therefore been made to remove this paradox of heat conduction. Several authors

such as Achenbach (1968), Lord and Lopez (1970), Ramamurthy (1978, 1979), Popov

(1967), Norwood and Warren (1969), Sherief and Dhaliwal (1981), Chattopadhyay

et al. (1982), Sharma (1987a), Dhaliwal and Rokne (1988), Bioko (1986), Bykovtsev
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and Shatalov (1987), Anwar and Sherief (1988), Anwar (1991), Balla (1991), Rama-

murthy and Sharma (1991) investigated half space problems having different types

of boundary conditions in the context of Lord and Shulman (LS) theory of thermoe-

lasticity. Wadhawan (1972, 1973), Sharma (1987b), Furukawa et al. (1990), Sharma

and Chand (1991, 1996), Roychoudhuri and Bhatta (1983) have investigated various

other problems concerning thermoelastic interactions in elastic medium under LS

theory. Distinct problems on viscoelastic medium based on LS- theory have been in-

vestigated by Misra et al. (1987), Mukhopadhyay and Bera (1989), Mukhopadhyay

et al. (1991) and Banerjee and Roychoudhuri (1995). The boundary initiated ax-

isymmetric waves in an annular cylinder under different boundary conditions have

been discussed by Sherief and Anwar (1988, 1989). Sherief (1986) has obtained

the fundamental solutions for spherically symmetric space. Chattopadhyay et al.

(1985) studied a problem of an infinite allotropic medium having a cylindrical hole.

Problems of thermoelastic interactions due to heat sources in an unbounded elastic

medium have been investigated by many researchers including Roychoudhuri and

Bhatta (1981), Roychoudhuri and Sain (1982), Sherief and Anwar (1986), Sharma

(1986), Mishra et al. (1987), Chandrasekharaiah (1988), Sherief and Anwar (1992),

Das et al. (1997) and Chakravorty and Chakravorty (1998). El-Maghraby (2005),

Kulkarni and Deshmukh (2008) and Deshmukh et al. (2009) have reported their

work concerning thermoelastic interactions in thick plate subjected to different ther-

moelastic loading.

Thermoelasticity theory proposed by Green and Naghdi is very famous among

the researchers due to its efficiency for providing accurate results of problems. This

theory has been originated by Green and Naghdi (1991, 1992, 1993, 1995). Li

and Dhaliwal (1996) studied Danilovskaya problem under different conditions de-

pending on GN-III theory of thermoelasticity. Chandrasekharaiah (1996a) reported
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one-dimensional wave propagation in an elastic medium under Green and Naghdi-II

(GN-II) theory of thermoelasticity. After that Chandrasekharaiah (1996b) inves-

tigated free plane harmonic wave in an unbounded medium in context of GN-II

theory of thermoelasticity. Further Chandsekharaiah and Srinath (1997a) extended

the same problem for rotating body. After that Chandrasekharaiah and Srinath

(1997b, 1998a, 1998b) investigated a problem of cylindrical and spherical cavity in

an unbounded medium subjected to some loads on boundary and due to heat source

in an unbounded medium under GN-II theory of thermoelasticity. Chandrasekhara-

iah (1998b) proposed a Biot type variational and reciprocal relation under the linear

theory of GN-II. Mishra et al. (2000) investigated a half space problem of thermoe-

lastic wave propagation in the context of GN theory. Some qualitative research

based on Green and Naghdi theory have been published by Quintanilla (2001a),

Quintanilla (2001b), Quintanilla (2003a) and Quintanilla and Straughan (2004).

In the context of GN-II model, Roychoudhuri and Datta (2005) investigated ther-

moelastic interactions in an isotropic, homogeneous thermoelastic solid containing

periodically varying time dependent distributed heat source. Mukhopadhyay (2002)

studied a thermal shock related problem with spherical cavity in an unbounded

medium under GN-II model. Puri and Jordan (2004) presented a detailed study on

harmonic plane wave propagation in thermoelastic medium in the context of GN-III

theory of thermoelasticity. Several problems under GN-III model have also been

investigated by Taheri et al. (2005), Malik and Kanoria (2006, 2007a), Roychoud-

hari and Bandyopadhyay (2007), Banik et al. (2007), Kar and Kanoria (2007b).

Quintanilla (2007) studied a problem related to the Green and Naghdi theory of

thermoelasticity. Mallik and Kanoria (2008) reported two dimensional problem of

transversely isotropic problem based on GN-II and GN-III models. Later on Ko-

valev and Radayev (2010) investigated plane harmonic waves under GN-III model.
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Mukhopadhyay and Kumar (2008a, 2008b) studied problems in context of GN-III

model. Further Chirita and Ciarletta (2010) and Mukhopadhyay and Prasad (2011)

studied the convolution type variational and reciprocity theorems in the context of

linear theory of GN-II and GN-III. Prasad et al. (2013) studied a two dimensional

crack problem in GN-III thermoelastic medium. Further Swantje and Bargmann

(2013) presented some remarks on Green and Naghdi theory of heat conduction.

Recently Othman and Sarhan (2015) investigated a two dimensional problem of

generalized thermo-microstretch elastic solid under GN theory. Further Ahmed El-

Karamany and Ezzat (2016) reported phase lag GN thermoelasticity theory.

The theory of magneto-thermoelasticity is highly useful in understanding the

effect of earth’s magnetic field on seismic waves, emissions of electromagnetic radia-

tions from nuclear devices, development of highly sensitive superconducting magne-

tometer and electrical power engineering. The phenomenon of wave reflection and

refraction is a elemental topic in various fields e.g., seismology, physics, geophysics,

earthquake engineering, non-destructive evaluation, etc. Jeffreys (1930) and Guten-

berg (1944) assumed the reflection of elastic plane waves at a solid half space. The

reflection of plane waves from a plane stress-free boundary has been investigated by

Deresiewicz (1960) in the coupled theory of thermoelasticity. Knott (1899) studied

the general equations for reflection and refraction of waves at plane boundaries. Wu

et al. (1990) studied the reflection and transmission of elastic waves from the bound-

ary of a fluid-saturated porous solid. Lin et al. (2005) investigated the reflection of

plane waves in a poroelastic half-space saturated with inviscid fluid. Knopoff (1955),

Chadwick (1957), Kaliski (1963) and Nowacki (1975) have given a significant contri-

bution in the field of magneto-thermoelasticity. Kaliski (1965c) developed the wave

equations of thermo-electro-magneto-elasticity. Purushothama (1965), Massalas and

Dalamangas (1983a, 1983b), Chatterjee (Roy) and Roychoudhuri (1985) studied sev-
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eral dynamic problems concening such interactions. It should be indicated here that

Parkus (1972, 1979), Eringen and Maugin (1990) and Moon (1984) provided a sys-

tematic representation of the subject of magneto thermoelasticity in their books.

Propagation of electromagnetic waves in thermoelastic materials is a very famous

topic among researchers. A number of articles have been published regarding the

propagation of electromagnetic plane waves. Paria (1962) and Wilson (1963) ap-

plied the heat conduction equation predicted by Fourier law along with the electro-

magnetic theory to explain harmonically time dependent plane waves of assigned

frequency in a homogeneous, isotropic and unbounded solid. Neyfeh and Nemat-

Nessar (1972) and Agrawal (1979) studied electromagnetic plane waves in solids

in the context of generalized thermoelasticity theory. Roychoudhuri and Debnath

(1983) and Roychoudhuri (1984) investigated propagation of magneto-thermoelastic

plane waves in rotating thermoelastic media permeated by a primary uniform mag-

netic field using generalized thermoelasticity of Lord and Shulman. Roychoudhuri

and Banerjee (2005) reported magneto-elastic plane waves in rotating media under

thermoelasticity of type-II model. Das and Kanoria (2009) also studied magneto-

thermo-elastic waves in a medium with perfect conductivity in the context of Green

and Naghdi-III theory. Yu et al. (2013) studied fractional order generalized electro-

magneto thermoelasticity. Atwa and Sarhan (2011) have made a significant contri-

bution in this area. Reccently, Abd-Alla et al. (2016) studied a problem of wave

propagation for half space. The theory of fractional order thermoelasticity is also

investigated by several researchers. Further, Povstenko (2008-2011) reported some

problems under fractional order thermoelasticity in the framework of quasi-static

uncoupled theory of thermoelasticity and discussed the effects of fractional order

parameter. Youssef (2010) has proved a uniqueness and a reciprocity theorem as

well as a variational principle. Furthermore, Youssef and Al-Lehaibi (2010, 2011),
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Youssef (2012) studied some problems on thermoelastic interactions in the context

of Youssef (2010) model. Kothari and Mukhopadhyay (2011), Abouelregal (2011),

Sarkar and Lahiri (2012), Ezzat et al. (2013), Deswal and Kalkal (2013), Sheoran

et al. (2016) also worked in the field of fractional order thermoelasticity. Povstenko

(2012a,b) developed theories of thermal stresses for the generalized telegraph equa-

tions considering time and space fractional derivatives. Youssef (2013) studied frac-

tional order two temperature generalized thermoelasticity subjected to moving heat

source. Later on, Youssef and Abbas (2014) studied fractional order generalized

thermoelasticity with variable thermal conductivity. Recently, several researchers

such as Sherief and Abd-El Latief (2013), Ezzat and El-Bary (2016), Abbas (2016)

solved dynamic problems using the approach of fractional order thermoelasticity. A

new theory of generalized micropolar thermoelasticity with two temperatures using

fractional calculus has been derived by Shaw and Mukhopadhyay (2011). Ezzat et

al. (2012) formulated the field equations of three-phase lag heat conduction model

of linear theory of thermoelasticity with time-fractional order derivatives and proved

uniqueness and reciprocity theorems. Hamza et al. (2014) established the theory

of thermoelasticity associated with two relaxation times using the methodology of

fractional calculus and derived uniqueness and reciprocity theorems. Wang et al.

(2015) constructed fractional order theory of generalized thermoelasticity for elastic

media with variable properties.

1.8 Objective of the present thesis

Thermoelasticity theory has become very relevant in various fields of engineering

sciences. It comprises of the heat conduction and corresponding stress and strain

arising out due to the flow of heat. Various non-Fourier heat conduction models have

been developed with the purpose to eliminate the inherent drawback in classical
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coupled thermoelasticity theory.

The main objective of the present thesis is to discuss some important aspects

of thermoelasticity and magneto-thermoelatsicity by employing the recently devel-

oped non-Fourier heat conduction models. We concentrate on various problems

of real homogeneous continuous medium in which deformation occurs within the

range of elasticity. Since the deformation as well as temperature increase is very

small, the linearized theories connecting temperature and strain have been con-

sidered. In the generalized theory of magneto-thermoelasticity, a large number of

unknowns are involved and due to that it becomes very difficult to solve even simple

one or two dimensional problems. In order to achieve solutions, certain assump-

tions are considered to linearize the governing equations. Solutions of some physical

problems associated with the thermoelastic and magneto-thermoelastic interactions

based on these theories are derived. We pay attention to Green-Naghdi theory, dual

phase-lag theory, fractional order theory and memory dependent derivative theory

of thermoelasticity and investigate the effects of employing these models in vari-

ous cases of mutual interactions. Detailed aspects on the propagation of harmonic

plane wave are discussed by implementing various models. The results predicted by

concerned models are analyzed and are compared with the corresponding results of

other models of thermoelasticity. Significant points have been highlighted to display

the characteristic features of the models.
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