Index

Content	Pages
Certificate	i
Declaration by the Candidate & Certificate by the Supervisor	ii
Copyright Transfer Certificate	iii
Acknowledgement	iv-vi
Contents	vii-xi
List of Figures	xii-xvii
List of Tables	xviii
List of Abbreviation	xix-xx
Preface	xxi-xxvi

CHAPTER 1: Introduction

1.1	Overview	01
1.2	Biological Applications of Multifunctional Nanoparticles	02
1.3	Essential properties for multimodal contrast agents	03
1.4	Origin of optical study	05
	1.4.1 Fundamental theory of optical behavior	06
	1.4.2 Optical behavior of electron rich elements (gold and silver)	06
	1.4.3 Effect of optically active shell material coating on dielectric core	09
1.5	Magnetism	10

1-35

	1.5.1 Origin and basic theory of magnetism	10
1.6	Domain formation and superparamagnetism	14
	1.6.1 Multidomain	16
	1.6.2 Single-domain	16
	1.6.3 Pseudo single domain	17
	1.6.4 Superparamagnetism	17
1.7	Magnetic anisotropy	18
1.8	Characteristics of superparamagnetic materials	19
	1.8.1 DC magnetization measurements	19
	1.8.2 AC susceptibility measurements	25
1.9	Magnetic relaxation in nanoparticles	29
1.10	Different models of relaxation	30
1.11	Thesis Aims	35
СНА	PTER 2: Synthesis of magnetite, magnetite- silver core- shell nanostructure and their structure	36-65
CHA 2.1	PTER 2: Synthesis of magnetite, magnetite- silver core- shell nanostructure and their structure Introduction	36-65 36
CHA 2.1 2.2	PTER 2: Synthesis of magnetite, magnetite- silver core- shell nanostructure and their structure Introduction Iron oxide nanoparticles and their properties	36-65 36 37
CHA2.12.22.3	PTER 2: Synthesis of magnetite, magnetite- silver core- shell nanostructure and their structure Introduction Iron oxide nanoparticles and their properties Structure and magnetic properties of magnetite	36-65 36 37 37
 CHA 2.1 2.2 2.3 2.4 	PTER 2: Synthesis of magnetite, magnetite- silver coreshell nanostructure and their structure Introduction Iron oxide nanoparticles and their properties Structure and magnetic properties of magnetite Synthesis of magnetite nanoparticles Synthesis of magnetite nanoparticles using various	36-65 36 37 37 39
 CHA 2.1 2.2 2.3 2.4 	PTER 2: Synthesis of magnetite, magnetite- silver coreshell nanostructure and their structure Introduction Iron oxide nanoparticles and their properties Structure and magnetic properties of magnetite Synthesis of magnetite nanoparticles using various techniques 2.4.1 Magnetite synthesis via microemulsion technique	36-65 36 37 37 39 41
 CHA 2.1 2.2 2.3 2.4 	PTER 2: Synthesis of magnetite, magnetite- silver core- shell nanostructure and their structure Introduction Iron oxide nanoparticles and their properties Structure and magnetic properties of magnetite Synthesis of magnetite nanoparticles using various techniques 2.4.1 Magnetite synthesis via microemulsion technique Characterization techniques	36-65 36 37 37 39 41 47
 CHA 2.1 2.2 2.3 2.4 2.5 	PTER 2: Synthesis of magnetite, magnetite- silver coreshell nanostructure and their structure Introduction Iron oxide nanoparticles and their properties Structure and magnetic properties of magnetite Synthesis of magnetite nanoparticles using various techniques 2.4.1 Magnetite synthesis via microemulsion technique Characterization techniques 2.5.1 Powder X-ray diffraction	36-65 36 37 37 39 41 47 47
 CHA 2.1 2.2 2.3 2.4 	PTER 2: Synthesis of magnetite, magnetite- silver core- Shell nanostructure and their structure Introduction Iron oxide nanoparticles and their properties Structure and magnetic properties of magnetite Synthesis of magnetite nanoparticles using various techniques 2.4.1 Magnetite synthesis via microemulsion technique Characterization techniques 2.5.1 Powder X-ray diffraction 2.5.2 Transmission electron microscopy	36-65 36 37 37 39 41 47 47 48

	2.5.4 UV-Visible spectroscopy	50
	2.5.5 Photoluminescence spectroscopy	51
	2.5.6 Particle size analysis	52
	2.5.7 Hyperthermia measurement	52
	2.5.8 ICP-MS	53
2.6	Synthesis protocols for magnetite nanoparticles	53
2.7	Effect of synthesis parameters on size and shape of nanoparticles	55
	2.7.1 Effect of drying medium	55
	2.7.2 Role of surfactant	56
	2.7.3 Role of surfactant molarity	58
	2.7.4 Concentration of iron salts	59
	2.7.5 Synthesis temperature	61
2.8	Synthesis of magnetite-silver core-shell nanostructures	62
2.9	Synthesis of Janus shaped silver-magnetite nanoparticles	64
2.10	Conclusion	64
СНА	PTER 3: Theoretical Calculations for appropriate size range of silver and gold coated Fe ₃ O ₄ Nanoparticles	66-86
3.1	Introduction	66
3.2	Theoretical calculation methods	68
	3.2.1 Theory of obtaining absorption spectra for gold/silver coated magnetite core-shell nanoparticles	69
3.3	Theoretical calculation of absorption spectra	71
	3.3.1 Gold and silver nanoparticles	71
	3.3.2 Gold and silver nanoshells with monodispersed	73

magnetite core

	3.3.3 Effect of polydispersity on the optical properties of coated nanoparticles	80
3.4	Conclusions	85
CHA	APTER 4: Structural investigation of Fe ₃ O ₄ and Ag@Fe ₃ O ₄ core-shell nanoparticles	87-102
4.1	Introduction	87
4.2	Structural characterization of uncoated and silver coated magnetite core-shell nanoparticles	88
4.3	Structural characterization of uncoated and Janus shaped silver-magnetite nanoparticles	99
4.4	Conclusions	102
CHA	APTER 5: Study of optical characteristics of Ag@Fe ₃ O ₄ core-shell nanoparticles	103-115
5.1	Introduction	103
5.2	SPR properties of the Fe ₃ O ₄ and Ag@Fe ₃ O ₄ nanoparticles	104
5.3	Photoluminescence properties and energy level diagram of Fe_3O_4 and $Ag@Fe_3O_4$ nanoparticles	106
5.4	SPR and PL response of the Janus shaped silver-magnetite nanoparticles	112
5.5	Conclusions	114

CHAPTER 6: Magnetic Characteristics of Fe₃O₄ and Ag@Fe₃O₄ 116-131 nanoparticles

6.1	Introduction	116
6.2	Temperature dependent magnetization studies	117
6.3	Field dependent magnetization studies	122
6.4	Contribution of superparamagnetic and paramagnetic behavior in uncoated and Ag coated Fe_3O_4 nanoparticles	127
6.5	Conclusions	130
CHA	APTER 7: Magnetic spin dynamics in magnetite-silver core-	132-147
	shell nanoparticles	
7.1	Introduction	132
7.2	Evidence of spin-glass behavior in coated nanoparticles	133
7.3	Magnetic spin dynamics in electron-rich metal coated on magnetite nanoparticles using thermo remnant magnetization studies	137
7.4	Conclusions	147
CHA Futu	APTER 8: Hyperthermia applications, Conclusions and ire Scope	148-153
Refe	rences	154-165
List	of Publications	166-167
Арр	endix	168-172

List of Figur	<u>es</u>
----------------------	-----------

Fig. No.	Figure Caption	Page No.
Fig. 1.1:	Schematic diagram showing various possible applications of a multimodal agent in biomedical field	02
Fig. 1.2:	Photoluminescence principle indicating radiative and non-radiative recombination	
Fig. 1.3:	Division of crystal into domains	14
Fig. 1.4:	Types of Domains in different particle size range of the nanoparticles	15
Fig. 1.5:	ZFC and FC variation of magnetization with temperature	20
Fig. 1.6:	Variation of magnetization with applied field depicting coercive field and remanence magnetization	22
Fig. 1.7:	Spherical coordinate system	29
Fig. 1.8:	Magnetic relaxation measurement at 2 K and 10 K in presence of 2T applied magnetic field for CoPt nanoparticles indicating superparamagnetic relaxation	31
Fig. 1.9:	Relaxation curves of m^{TRM} vs t after FC in $\mu_0 H = 0.46$ mT from T=400 K toT _m =294 K after different waiting times t _w for polycrystalline Ru-Copper oxide	32
Fig. 1.10:	Temperature dependence of real part of magnetic ac susceptibility at different frequencies and out-of-phase component as inset (a); relaxation time as function of inverse of maximum temperature (b); the fitting line corresponds to Neel-Arrhenius fit	33
Fig. 1.11:	Frequency dependence of χ " at different temperatures and thermo-magnetic relaxation of SrSn ₂ Fe ₄ O ₁₁ single crystal at T=25 K	34
Fig. 2.1:	Structure of magnetite unit cell	38
Fig. 2.2:	Schematic phase diagram that displays the existence regions of a variety of morphologically different self-assembled surfactant phases together with their multi-phase equilibria that can principally form in a ternary system of water, oil and a medium- or long-chain surfactant around its balanced state	42

Fig. 2.3:	Different stages of the formation of nanoparticles	43
Fig. 2.4:	XRD patterns of Fe ₃ O ₄ dried in presence of air and vacuum	56
Fig. 2.5:	XRD and TEM images of magnetite nanoparticles synthesized using surfactants Triton X-100 and CTAB	57
Fig. 2.6:	XRD and TEM images of Fe_3O_4 nanoparticles under different molar concentration of surfactant CTAB	59
Fig. 2.7:	XRD and TEM images of Fe ₃ O ₄ nanoparticles under different molar concentration of ferrous-ferric salts	60
Fig. 2.8:	XRD pattern of Fe ₃ O ₄ nanoparticles synthesized at different reaction temperatures	61
Fig. 2.9:	Process for obtaining silver coated magnetite nanoparticles	63
Fig. 3.1:	Calculated spectra of absorption efficiency Q_{abs} for nanoshells with vanishing magnetite core of D= 0.002 nm with nanoshells of varying thickness (a) 1, 2, 4 nm thick gold nanoshells (effective particle size=2, 4 and 8 nm respectively), (b) D = 1, 2, 4 nm thick silver nanoshells (effective particle size=2, 4 and 8 nm respectively) (c) D = 2, 4, 8 nm gold nanoparticles with no core (d) D = 2, 4, 8 nm silver nanoparticles with no core	72
Fig. 3.2:	Absorption spectra of gold nanoshells of thickness 1 and 2 nm with magnetite core of size (a) $D = 1$ nm, (b) $D = 2$ nm, (c) $D = 4$ nm, (d) $D = 8$ nm, (e) $D = 12$ nm, (f) $D = 16$ nm	74
Fig. 3.3:	Absorption spectra of gold nanoshells of thickness 1 and 2 nm with magnetite core of size (a) $D = 20$ nm, (b) $D = 24$ nm, (c) $D = 30$ nm, (d) $D = 32$ nm, (e) $D = 40$ nm, (f) $D = 50$ nm	75
Fig. 3.4:	Optical absorption Spectra calculated for particles of core sizes 63 nm, 80 nm and 95 nm coated with gold nanolayers of thickness 14nm, 30nm and 45 nm, respectively	76
Fig. 3.5:	Optical Absorption Spectra of silver nanoshells of thickness 1 and 2 nm with varying magnetite cores of diameter (a) $D = 1$ nm, (b) $D = 2$ nm, (c) $D = 4$ nm, (d) $D = 8$ nm, (e) $D = 12$ nm, (f) $D = 16$ nm	78
Fig 3.6	Optical Absorption Spectra of silver nanoshells of thickness 1 and 2 nm with varying magnetite cores of diameter (a) $D = 20 \text{ nm}$, (b) $D = 24 \text{ nm}$, (c) $D = 30 \text{ nm}$, (d) $D = 32 \text{ nm}$, (e) $D = 40 \text{ nm}$, (f) $D = 50 \text{ nm}$	79

- **Fig. 3.7:** Calculated Absorption Spectra for polydispersed nanoparticles 82 with average magnetite core size of 10±4 nm with gold coating of 2.5 nm thickness
- **Fig. 3.8:** Absorption Spectra as a function of core-shell ratio for gold and 83 silver shells
- **Fig. 3.9:** Plot of SPR peak values against the diameter of the magnetite 84 core with gold and silver nanoshells of thickness 1 and 2 nm
- **Fig. 4.1:** XRD pattern of uncoated and silver coated nanoparticles with 88 shell thickness < 2 nm and ~2 nm
- **Fig. 4.2:** XRD pattern of uncoated and silver coated nanoparticles with 89 shell thickness ~3, ~4 and ~9 nm
- **Fig. 4.3:** TEM images for (a) uncoated Fe_3O_4 nanoparticles; Ag@ Fe_3O_4 90 nanoparticles with shell thickness (b) < 2 nm and (c) ~2 nm (Inset- high-resolution TEM images for the nanoparticle system). The dotted and dashed lines highlight the contrast prevailing at core and shell boundaries, respectively. The adjacent histograms represent particle size distribution for respective nanoparticle system
- **Fig. 4.4:** TEM images for (a) uncoated Fe₃O₄ nanoparticles; Ag@ Fe₃O₄ 91 nanoparticles with shell thickness (b) ~3 nm, (c) ~4 nm and (d) ~9 nm (Inset- high-resolution TEM images for the nanoparticle system). The dotted and dashed lines highlight the contrast prevailing at core and shell boundaries, respectively. The adjacent histograms represent particle size distribution for respective nanoparticle system
- **Fig. 4.5:** EDX spectrum obtained for silver coated magnetite 93 nanoparticles with different shell thickness indicating increasing atomic percent of silver for thicker shells
- **Fig 4.6** Pie chart showing elemental composition of 9 nm, 4 nm and 3 94 nm thick silver shell (in sequence) obtained using ICP-MS system
- **Fig. 4.7:** Hydrodynamic size and Correlation function of uncoated and 95 coated samples measured using Dynamic Light Scattering method. Graphs a-d shows plot of percentage frequency of particles against their diameter in nanometer range for uncoated, ~3 nm shell, ~4 nm shell and ~9 nm shell coated magnetite nanoparticles, respectively. Graphs e-h depicts autocorrelation function vs decay time for uncoated, ~3 nm shell, ~4 nm shell and ~9 nm shell coated Fe₃O₄ nanoparticles

- Fig. 4.8: X-Ray diffraction patterns of (a) 6 nm uncoated magnetite; 96 magnetite nanoparticles coated with varying thickness of silver shell (b) thinner than 2 nm (c) ~2 nm, and (d) ~8 nm. * indicates the reflections corresponding to magnetite phase in silver coated NPs
- **Fig. 4.9:** XRD pattern for (a) uncoated ~ 8 nm magnetite nanoparticles (b) 99 Janus shaped silver-magnetite nanoparticles
- **Fig. 4.10:** Transmission Electron Micrographs of (a) bare magnetite 100 nanoparticles; (b) Janus silver-magnetite nanoparticles. The inset in figures represents particle size distribution and their log normal fit with average particle size (D_{avg}) and standard deviation (σ). (Note- The size distribution histogram has been obtained using multiple TEM images)
- Fig. 4.11: The particle size distribution chart obtained using dynamic light 101 scattering method to calculate coated magnetite nanoparticles. The insets in figure show variation of correlation function with delay time. Hydrodynamic size (D_h) (a) uncoated ~8 nm magnetite nanoparticles; (b) silver coated magnetite nanoparticles. The insets in figure show variation of correlation
- Fig. 5.1:UV-Vis absorbance spectra of uncoated and silver coated105magnetite nanoparticles105
- **Fig. 5.2:** Photoluminescence (a) excitation spectra (b) emission spectra for 106 uncoated (UC) Fe₃O₄ and silver coated Fe₃O₄ nanoparticles with different shell thickness
- **Fig. 5.3:** Photoluminescence emission spectrum for (a) uncoated and 4 nm 107 Ag coated magnetite nanoparticles, (b) coated nanoparticles with varying shell thickness
- **Fig. 5.4:** Proposed Energy Level diagram for (a) magnetite, and (b) silver 108 coated magnetite nanoparticles
- **Fig. 5.5:** Different properties studied using PL spectrum for uncoated and 110 silver coated iron oxide nanoparticles (a) Integrated area ratio curve and highest intensity variation with silver shell thickness;(b) Linear dependence of Luminescence Enhancement Factor on shell thickness; (c) Chromaticity diagram for uncoated and silver coated nanoparticles

Fig. 5.6:	PL emission spectrum for ~3, ~4 and ~9 nm Ag coated ~8 nm magnetite core nanoparticles for λ_{ex} =306 nm	112
Fig. 5.7:	UV-Vis spectra for synthesized nanoparticles (a) pure phase Fe_3O_4 nanoparticles; (b) Janus shaped Ag-Fe ₃ O ₄ nanoparticles. The inset in figure show tauc plots for the system to obtain their energy band gap	113
Fig. 5.8:	Photoluminescence spectra for uncoated and Janus shaped silver- magnetite nanoparticles	114
Fig. 6.1:	Temperature dependent Zero Field Cooled (ZFC) and Field cooled (FC) magnetization curve for (a) uncoated and (b) thinner than 2 nm (c) ~2 nm thick silver shell coated Iron Oxide nanoparticles. The table shows variation of blocking temperature with silver coating.	118
Fig. 6.2:	Temperature dependent magnetization curve under an applied magnetic field of 1 kOe for (a) uncoated magnetite nanoparticles, and (b) ~2 nm thick silver shell coated magnetite nanoparticles	120
Fig. 6.3:	Field-cooled magnetization plots under an external magnetic field of magnitude 10 kOe for (a) uncoated magnetite nanoparticles, and (b) ~2 nm thick silver shell coated magnetite nanoparticles. The red line indicates Bloch equation fit for the corresponding data	121
Fig. 6.4:	Field dependent magnetization curve at 5 K and 300 K for (a) uncoated and (b) thinner than 2 nm, (c) ~2 nm silver coated magnetite nanoparticles, (d) Variation of saturation magnetization with respect to shell thickness	124
Fig. 6.5:	Field dependent magnetization curves at five different temperatures in field range of \pm 7 kOe for (a) uncoated Fe ₃ O ₄ nanoparticles (b) ~2 nm thick silver shell coated Fe ₃ O ₄ nanoparticles. The inset shows magnified curve in range \pm 1 kOe with perfect superparamagnetic behavior at 100 K for both the samples	125
Fig. 6.6:	Variation of Magnetically Dead layer thickness as a function of silver shell thickness	126
Fig. 6.7:	M-H curves at room temperature for coated and uncoated magnetite fitted to equation 4 (red); the blue and green curves show calculated SPM and PM contributions obtained from the experimental values obtained as fitting parameters: (a) ~6 nm uncoated magnetite nanoparticles; (b) thinner than 2 nm silver shell coated nanoparticles	128

- Fig. 7.1: AC magnetic susceptibility curves in temperature range 2 K to 134 300 K at different frequencies for (a) magnetite nanoparticles, (c) ~ 2 nm thick silver shell and (e) ~ 4 nm thick silver shell. The curves (b), (d) and (f) shows Vogel-Fulcher law and power law fit of the experimental data of time vs T_{max} for (a) and (c), respectively
- **Fig. 7.2:** TRM plot against magnetic field for (a) uncoated magnetite 138 nanoparticles, and (b) ~2 nm thick silver shell, and (c) ~4 nm thick silver shell coated magnetite nanoparticles
- **Fig. 7.3:** Magnetization time-decay plots for uncoated magnetite 141 nanoparticles at temperature 2 K for different applied cooling fields (a) log scale variation of time for all fields (b) 50 Oe, (c) 100 Oe, (d) 500 Oe, (e) 1000 Oe and (f) 2000 Oe
- **Fig. 7.4:** Magnetization time-decay plots for ~2 nm thick silver shell 142 coated magnetite nanoparticles at temperature 2 K for different applied cooling fields (a) log scale variation of time for all fields (b) 50 Oe, (c) 100 Oe, (d) 500 Oe, (e) 1000 Oe and (f) 2000 Oe
- **Fig. 7.5:** Magnetization time-decay plots for ~4 nm thick silver coated 143 magnetite nanoparticles at temperature 2 K for different applied cooling fields (a) log scale variation of time for all fields (b) 50 Oe, (c) 100 Oe, (d) 500 Oe, (e) 1000 Oe and (f) 2000 Oe
- **Fig. 8.1:** Variation of temperature with time on application of 17 mT 149 magnetic field for uncoated magnetite nanoparticles
- **Fig. 8.2:** Temperature raise with elapsed time on application of 150 alternating magnetic field 25 mT with frequency 110 kHz for (a) bare magnetite nanoparticles; (b) silver coated magnetite nanoparticles

List of Tables

Table No.	Table Caption	Page No.
Table. 2.1	Summary of synthesis parameters for magnetite nanoparticles using micro-emulsion	54
Table. 4.1	Summary of reliability factors, numbers of parameters refined, and lattice parameters with error obtained for Le Bail refinement	97
Table 7.1.	Summary of fitting parameters obtained from fitting experimental TRM data for uncoated magnetite nanoparticles using different functional forms	145
Table 7.2.	Summary of fitting parameters obtained from fitting experimental TRM data for ~2 nm thick silver shell coated magnetite nanoparticles using different functional forms	145
Table 7.3.	Summary of fitting parameters obtained from fitting experimental TRM data for ~4 nm thick silver shell coated magnetite nanoparticles using combined functional forms	146

List of Abbreviations

CTB	Charge transfer band
D _{core}	Diameter of core particle
DLS	Dynamic light scattering
EDXS	Energy dispersive X-ray spectroscopy
emu/g	Electron mass unit per gram
eV	Electron volt
FC	Field cooled
FWHM	Full width at half maximum
JCPDS	Joint Committee on Powder Diffraction Standards
LEF	Luminescence enhancement factor
M-H	Magnetization versus magnetic field
MNPs	Magnetic nanoparticles
MPMS	Magnetic Property Measurement System
MRI	Magnetic resonance imaging
NPs	nanoparticles
SAR	Specific absorption rate
SPM	Superparamagnetic
SEM	Scanning electron microscope
SPR	Surface plasmon resonance
SQUID	Superconducting Quantum Interference Device
TEM	Transmission electron microscopy
TRM	Thermoremanent magnetization

UV-Vis	Ultraviolet-Visible
VB	Valence band
W/g	Watt per gram
XRD	X-ray Diffraction
ZFC	Zero field cooled