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CHAPTER 5 

ERROR ESTIMATION 

*********************************************************************** 

 Numerical methods provide approximated solution to the problem. The numerical 

solutions are affected due to errors coming from different sources such as discretization 

error, modeling error, etc. The minimization of the computational cost and obtaining high 

accuracy of global solution are achieved by adaptive meshing. In the previous chapter 3, 

guided wave simulations are computed by proposed wavelet based multiscale method. 

Subsequently, in chapter 4, nonstandard wavelet based finite element scheme is developed 

to provide computationally efficient tool for the analysis of linear and nonlinear wave 

propagation problems. We used wavelets as an error indicator on the basis of available 

literature and used it in chapter 3 and 4 for adaptive meshing. To further investigate the 

capability of wavelets as a natural error indicator and as an error estimator for some 

complex problems, we tested wavelet based a posteriori error estimation technique in the 

chapter. 

 This chapter presents a method to estimate local as well as global errors by using 

wavelet based error estimation technique which is motivated by hierarchical error 

estimation scheme. The finite element solution of engineering problems is transformed 

into the multilevel decomposition of wavelet space. The error estimations in the present 

setting do not have any problem due to complex domain of engineering structures. The 

proposed method is an efficient technique which can be applied in some small region as 

well as complete domain. 
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5.1 Introduction 

 There is no analytic theory for mesh refinement for most of the boundary value 

problems (BVP). Therefore, the adaptive mesh cannot be generated to improve the 

solution on the basis of any prior information. A posteriori error estimate is a key 

ingredient for improving the accuracy of the solution in the successive iteration. The 

adaptive mesh generation process depends on the successful application of a posteriori 

error estimation techniques which is not only a tool for grid optimization but also provide 

the estimate of the error in the current numerical solution. There exist a vast literature on 

various error estimation techniques (Babuska and Rheinboldt (1981), Verfürth (1994), 

Bornemann et al. (1996), Ainsworth and Oden (1997), Mohite and Upadhyay (2002), 

Erath et al. (2009), Gratsch and Bathe (2005), Kim (2012), Lina and Ye (2013), Moore 

(1999), Rabizadeh et al. (2016), Guo and Zhong (2017)) which are recently developed. 

Most of the estimators use local quantities such as jump of derivatives across the interface 

between two adjacent elements. The residuals due to local quantities are used for 

estimating upper and lower bounds of the global error in terms of energy norm. The 

quality of estimated error by using canonical error estimation techniques depends on the 

initial mesh which is often overestimated. 

The hierarchical approach, which is a multiscale (Yserentant (1986), Bank et al. 

(1988)) expansion of corresponding FEM, is often used for a posteriori error estimate due 

to its simplicity and effectiveness (Bank and Smith (1993), Bank (2004)). The hierarchical 

basis functions span the space of traditional basis functions of finite element method, and 

it has desirable properties for fast iterative solvers. A posteriori error in the hierarchical 

approach is represented as a convergent sequence of errors of the Hilbert space. In other 
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words, unlike the other classical error estimators which use total error within an element 

as an indicator, the higher level component is used as an indicator in this scheme. It is 

noted that such a posteriori error estimators are useful in identifying local as well as 

global error. 

 Sweldens (1998) defined hierarchical basis functions as “lazy wavelets”. The 

hierarchical scheme has been applied to various types of partial differential equations but 

wavelet based techniques are not used frequently. Classical wavelets have many desirable 

properties such as orthogonality and vanishing moments which do not exist in hierarchical 

basis. Bertoluzza (1995) used wavelet based error estimator for wavelet Galerkin method.  

A good mathematical theory for error estimation and adaptive solution of PDEs using 

wavelet basis are developed (Cohen et al. (2001), Dahlke et al. (1997)). Implementation 

of these wavelet based methods are difficult on the wide range of complex boundary value 

engineering problems. Sudarshan et al. (2006) have used wavelet based a posteriori error 

estimation for engineering structures but this method requires customized wavelets. It is 

very difficult to develop customized wavelets, which should be as efficient as FEM for 

various types of partial differential equations. 

 The present work is based on the hierarchical error estimation technique proposed 

by Bank (1993). It combines the strength of wavelet transform and hierarchical error 

estimation technique and finds the error in finite element solution. In this method, the 

solution of finite element method is transformed into the multiresolution wavelet space 

using linear transformation. For a single variable system, the detail coefficients can be 

used as a local error indicator but for multiple variable problems, the coupled detail 

coefficients of multiresolution representation will not be a good error indicator; therefore, 
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some functional of detail coefficients is to be used. The technique can also be applied to 

finite volume, finite difference and boundary element methods. 

5.2 Wavelet Based Error Estimation 

Consider a partial differential equation Lu f in   and boundary conditions 

Bu g . The problem is to find exact solution u . The variational form of the equation 

can be expressed as  

    ,a u v f v  (5.1) 

for all v , where is an appropriate Sobolev space.  .,.a  is a positive definite 

bilinear form, and  .f  is a linear functional. The energy norm associated with  .,.a can 

be defined as: 

 
 

2
,u a u u  (5.2) 

FEM is the best available option to solve Eq. 5.1 and the current solution is assumed as 

the highest resolution for the wavelet space j ju V  . This approximate solution 

process introduces numerical error   

 je u u 
 

(5.3) 

It will be a highly inefficient process to improve the accuracy of the solution of large and 

complex BVP containing some singularities using a uniform refinement of the grid in the 

whole domain. Therefore, a posteriori error technique should be used to estimate the local 

and global error in the current solution. This is essential to form a strategy of adaptive 

mesh for improvement of solution in the successive iteration. Obtaining exact error e  is 

as difficult as finding exact solution. Thus, various indicators for a posteriori error 
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estimations are developed. The problems with the most of the indicators are the incorrect 

prediction of error on coarse meshes and high computing cost. The wavelet based error 

indicator uses some functional of wavelet coefficients. 

A brief review of wavelets will be useful for this error estimation technique. The 

concept of multiscale analysis is to interpolate an unknown field at a coarse level with the 

help of so called scaling functions. Any improvement to the initial approximation is 

achieved by adding ‘details’ provided by new functions known as wavelets. A multiscale 

analysis uses multiresolution properties of wavelets (Mallet (1998)). Each subspace jV is 

spanned by a set of scaling function   , ,j k x k Z   . The complement of jV  in 1jV  is 

defined as subspace jW such that 1j j jV V W   for all j Z . The space 1jV   can be 

decomposed in a consecutive manner as:       

 1 0 0 1 2...j jV V W W W W     
 

(5.4) 

The basis functions in jW are called wavelet functions and are denoted by ,j k .  

Let  2

jV L  be a finite dimensional subspaces, and consider the approximate solution

j ju V such that    ,ja u v f v  for all jv V . Its solution  holds the approximation 

property inf
j

j
v V

u u u v


   . Similarly, for  2

1j jV V L    Galerkin  solution 

1 1j ju V  will satisfy    1,ja u v f v   for all 1jv V  . Here 0ju u  , as j  .  

Let us assume that the approximate solutions 1ju  is closer to u than ju . This is 

defined in terms of the saturation assumption  
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 1j ju u u u  
 

(5.5) 

where 1  . The characteristic length of the element 0h as j  . For higher degree 

of approximation in the  space 1jV  , Bank and Smith (1993) estimated  rO h   for 

some 0r  .  

For 1 1j jv V   the unique decomposition 1j j jv v w   , where j jv V  and  j jw W , we 

assume a strengthened Cauchy inequality for the decomposition, 

 
 ,j j j ja v w v w

 
(5.6) 

where 1 independent of .j  

Instead of Eq. 5.3, Bank and Smith (1993) used two-scale error in the multiresolution 

approach  

 1j j jr u u 
 

(5.7) 

where j jr W . It means that two level error is the projection of true error onto the wavelet 

space. It is proved (Bank and Smith (1993)) that 

 1 2j j jc u u r c u u   
 

(5.8) 

where 1 2, 0c c   are constants and independent of multiresolution level .j  

By using orthogonality relation  

 
 , 0ja u u v  jv V 

 
(5.9a) 
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 1, 0ja u u v  1jv V  

 
(5.9b) 

From Eq. (5.9a -5.9b), we get 

    1 1, , 0j j j ja u u v a u u v v V V         

 
 1 , 0j ja u u v   jv V 

 
(5.9c) 

and     1, , 0j j j ja u u w v a u u v v W        

 
 1 , 0j j j ja u u w v v W     

 
(5.9d) 

The orthogonality property (Figure 5.1) 

 

2 2 2

1 1j j j ju u u u u u     
 

(5.10) 

 

Figure 5.1. Orthogonality at two scales 

and saturation property are used to get the lower bounds   2

1 1 .c    The two scale error 

will always be less than the total error, i.e. 
j jr u u  . Therefore, two level error is a 

good estimate of the actual error. Since jw is the projection of jr hence  

u

ju

1ju  1j ju u 

ju u

1ju u 
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 1 1j j j j jw r w r u u        (5.11) 

 The two consecutive levels of FEM refinements can be used to calculate two scale 

error
1jr 

 or  
jr .  This method will be expensive to estimate error. Therefore, FE 

solution is transformed using discrete wavelets. The norm of some functional calculated 

using wavelet coefficients will show sudden jump in some areas which will indicate the 

need of mesh refinement in the zone. The cost of computing   
1jw 

 or 
jw is 

considerably less than the two scale error. 

Theorem:  Let 1j j jV V W   , strengthen Cauchy inequality and saturation property holds 

then 

 
  

2 2 2
2 21 1 j j ju u w u u       

Proof 

The proposed posteriori error estimate j jw W is the error of the solution j ju V  such 

that      , ,j ja w v f v a u v  jv W   

or   , 0j j ja u u w v v W    
 

(5.12) 

Substitution of jv w in the preceding equation gives right inequality of the theorem. Let 

1
ˆ ˆ

j j ju u w   where ˆ
j ju V and ˆ

j jw W then  

 
2 2

1
ˆ ˆ

j j j j ju u u w u      

            
2 2

ˆ ˆ ˆ ˆ2j j j j j ju u w u u w      
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              
2

ˆ ˆ ˆ ˆ2j j j j j ju u u u w w      

             
2

ˆ ˆ ˆ ˆ2j j j j ju u w w w     

             
2

ˆ ˆ ˆ
j j jw w w    

             
2

2 ˆ1 jw                (5.13) 

By using orthogonality relations  , 0ja u u v 
jv V   and  1, 0ja u u v 

1jv V   , we get  1 , 0j ja u u v  
jv V  . Substitution of ˆ

j jv u u  , gives 

 
 

2

1 1
ˆ,j j j j ju u a u u w   

 
(5.14) 

On subtracting Eq. 5.12 from the  1, 0ja u u v 
1jv V   , we get 

 1 , 0j j j ja u u w v v W      .  

With ˆ
jv w , we get 

 
   1

ˆ ˆ, ,j j j j ja u u w a w w  
 

(5.15) 

Using Eq. 5.14 and Eq. 5.15, we have  

 
 

2

1
ˆ,j j j ju u a w w    

Using Eq. 5.6 in the preceding equation, it can be shown that  
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2

1
ˆ

j j j ju u w w  
 

(5.16) 

From Eq. 5.13 and Eq. 5.16, we obtain 

 
 2 ˆ1j jw w 

 
(5.17) 

On substituting Eq.5.16 in Eq. 5.10, we get  

 

2 2

1
ˆ

j j j ju u u u w w     

Using saturation assumption, we obtain  

 

2 2
2 ˆ

j j j ju u u u w w     

Combining this with Eq.5.17, we have 

 
 

2 2
2

2

1
1

1
j ju u w  


 

□
 

Now we have to determine error in a computationally efficient way. Bank and 

Smith (1993) suggested easily computable operator instead of original operator. In this 

paper, we used functional of wavelet coefficients. A function 
2( )u L R  is approximated 

by its projection 
jP u  onto the space jV and the projection of u on jW  as

jQ u , we have 

 
1 1j j jP u P u Q u    (5.18) 

If the coefficient vector of jP u  in terms of some scaling function basis is 

,0 , ( ){ , , }T

j j j ju u u   and coefficient vector of 
jQ u in terms of some wavelet basis is 
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,0 , ( ){ , , }T

j j j jw w w   then we can write wavelet transform as  

 

1

1

[ | ]
j

j j j

j

u
u

w





 
  

  

P Q

 

(5.19) 

where
jP  is a ( ) ( 1)j j     matrix and

jQ is a ( ) ( 1)j j    matrix. ( )j and ( )j are 

dimensions of 
jV  and

jW   spaces, respectively.  

5.3. Numerical Experiments 

 We developed the wavelet based cost effective error indicator. To test the 

performance of proposed error estimators, we compare it with exact error and two scale 

error indicator for standard problems.  

Example 1: In the first example, we consider the linear initial-boundary value hyperbolic 

problem (Arney and Flaherty (1986)): 

0,
u u u

y x
t x y

  
  

  
1.2 , 1.2, 0,x y t    (5.20) 

and initial conditions 

2 2

2 2

0 if ( -0.5) 1.5 0.0625
( 0)

1 16(( 0.5) 1.5 ) otherwise

x y
u x, y,

x y

  
 

  
 

The Dirichlet boundary conditions on all four sides

(1.2 ) ( 1.2 ) ( , 1.2 ) ( ,1.2 ) 0u ,y,t u , y,t u x ,t u x ,t       are considered. The solution of this 

problem is a moving elliptical cone that rotates counter clockwise direction around the 

origin with period  . It can be written in the form 
0 if 0 

( )
if 0,

C
u x, y,t

C C


 


 

where
2 21 16[( cos sin 0.5) 1.5( cos sin ) ].C x t y t y t x t       
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The equation is solved by using finite element method for various level of uniform 

mesh. At 0 3.2t  , the Newmark time integration scheme is used with a time step t  

= 0.00625 s. Figures 5.2 shows the comparison of exact solution with FEM solution and 

wavelet based solution at 1.6t  s with mesh size 40 40 . Figure 5.3 shows the errors

ju u , 
jr and the proposed estimator 

jw with the increasing degrees of freedom. 

Initially at 1j  , a uniform grid of 20 20 is used. The grid is doubled at every successive 

level j for multiscale wavelets. The figure shows the convergence of exact error as the 

degrees of freedom increases. It can be observed that the two level indicator and the 

proposed indicator show the similar trend of convergence of global error with the level of 

refinement. This ensures the reliability of the proposed wavelet based estimator. 

 

(a) Exact solution 
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(b) FEM Solution 

 
(c) Wavelet based solution 

Figure 5.2. The solution  at 1.6t   with mesh size 40 40  
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Figure 5.3. Comparison of exact, two scale, and proposed error estimators 

Example 2. The problem is similar to Example 1 except new initial conditions (Arney 

and Flaherty (1986)):  

 

2 2 2 2

2 2 2 2

1 16(( 0.5) 1.5 ) if ( -0.5) 1.5 0.0625

( 0) 1 16(( 0.5) 1.5 ) if ( 0.5) 1.5 0.0625

0 otherwise

x y x y

u x, y, x y x y

     


      



 (5.21) 

in this case, two symmetric cones rotating anticlockwise direction about the origin.  

 Figure. 5.4 shows the FEM and wavelet based solution of mesh size 40 40 at 

1.1t  s. Unlike the Example 1, exact solution is not available in this example. Figure 5.5 

shows the convergence of the estimators. It can be observed that proposed estimator is a 

very good error indicator. 
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(a) FEM solution 

 

(b) wavelet based solution 

Figure 5.4. The solution  at 1.1t  s with mesh size 40 40  
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Figure 5.5. Comparison of two scale, and proposed error estimators 

 

Example 3. Plate with hole 

 To demonstrate the effectiveness of two-level error indicator and proposed error 

indicator for local error estimation, both the methods are tested on a standard 2D linear 

elasticity problem. The zone of mesh refinement for a plate with a hole under longitudinal 

tensile loading is very well known. Both the error indicators are tested by considering 

one-fourth of the plate as shown in Figure 5.6. The region of interest in this problems are 

the elements in the neighborhood of the circular hole where stress concentration is very 

high. The functional used for two level error indicator is the difference of strain energy at 
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two consecutive levels of finite element solutions. The peaks in the Figure 5.7. indicates 

the elements with high local error, i.e. these elements are to be refined. For the proposed 

error indicator, the strain energy is calculated by using wavelet coefficients and shown in 

Figure 5.8. As in the previous example, we see the similar peaks at high stress 

concentration elements but the proposed error indicator is much more economical than 

the two level error indicator. Convergence of stress is used to stop the refinement process. 

 

Figure 5.6. Discretized one quarter of the rectangular plate with a hole 
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Figure 5.7. Strain energy using two scale difference 

 

Figure 5.8. Strain energy using wavelet coefficient 


