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CHAPTER 4  

MULTISCALE SIMULATION USING NONSTANDARD WAVELET 

TRANSFORM 

*********************************************************************** 

In the chapter 3, finite element equations are transformed using discrete wavelets. 

The standard form of the matrix for wave propagation and other problems are solved. To 

further reduce computational costs, nonstandard (NS) wavelet operator is employed for 

the multiresolution analysis. The remarkable feature of the nonstandard form is the 

uncoupling among scales. The wave propagation in the simple plate structures is 

discussed in the previous chapter. The modeling of waveguides with plate structures with 

damage is considered in this chapter. NS wavelet based multi-scale operator developed 

by using finite element discretization is used to represent waves. The proposed masking 

eliminates the requirement of a very large number of nodes in finite element method 

necessary for the propagation of such waves. In this work, the results of wavelet based 

dynamic adaptive grid selection technique are compared with the standard finite element 

method.  

In this chapter, necessary background on the nonstandard wavelet operator is 

discussed in section 4.1. The mathematical background and algorithm for utilization of 

NS operator for multiscale method are presented in Section 4.2. This is highly 

advantageous and computationally efficient because the computation requires only few 

vector multiplications. Numerical examples in Section 4.3 show the applicability of the 

proposed technique to various plate structures.  
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4.1 Introduction 

 Material softening leading to nonlinearity in stress-strain relations prior to crack 

initiations is a common phenomenon in the structures which are subjected to cyclic 

loadings. The material nonlinearity of the structure generates higher harmonics when 

fundamental Rayleigh surface waves or Lamb waves are used in monitoring the health. 

Measurements of higher harmonics, particularly second harmonics are often used by the 

researchers in their experiments for early detection of structure failure (Deng (1999, 

2003), Korobov and Izosimova (2006), Pruell et al. (2009), Li et al. (2012)). 

 Beylkin and Keiser (1997) used wavelet expansion for adaptively updating 

numerical solution of nonlinear PDEs, which exhibit both smooth and shock-like 

behaviour. The research in PDE simulations (Qian and Weiss (1993 A) and Amaratunga 

and Williams (1994)) was limited to simple domain and boundary conditions. Dahmen et 

al. (1999) proposed method to generate a sparse matrix by using wavelets and suggested 

accurately computing necessary coefficients and ignoring coefficients which create very 

little effects on the accuracy of the solution. Due to continuous wave propagation in the 

large domain, the location of necessary coefficients of the matrix will change 

continuously, therefore this cannot be an effective method. This method decouples coarse 

solution and refinement process for some problems but it is applicable to a specific 

problem and it could not be applied in wave propagation problems. Moreover, there is no 

need to use non-uniform grid proposed by them for such types of problems because wave 

propagation process is continuous and uniform. Nonlinear 1D advection-diffusion-

reaction equation has been used by Alves et al. (2002) to compare wavelet based adaptive 

linear differencing schemes such as first order upwind, second order upwind, downward 

differencing, third order quadratic upwind and central difference schemes. Two-
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dimensional wavelet optimized finite difference method has been used by Jameson and 

Miyama (2000) to solve oceanography problem. Yousefi et al. (2010) has used local 

Lagrange interpolation for spatial derivative and wavelets for the adaptive grid to solve 

the problem of elastic wave propagation in plates. Pei et al. (2009) has solved 2D first 

order stress-velocity acoustic wave equation by using wavelet optimized adaptive grid 

finite difference method. In the literature, some researchers have used wavelets as basis 

function to solve PDEs but most researchers have applied the wavelet based adaptive 

technique in finite difference schemes. These papers have presented the adaptive method 

for propagation of a single wave but there is a need of different algorithm for more than 

one waves propagating with different velocities. Generation of higher harmonics due to 

material nonlinearity is not addressed in these papers. 

Two observations can be made while solving some PDEs using the wavelet bases: 

(i) In theoretical terms, most of the available wavelet methods have stable Riesz basis and 

better condition number than FEM or FDM. (ii) But in practical applications wavelet 

methods are not yet ready to compete with the traditional FEM approach. One important 

reason is while the FEM can always produce a sparse matrix with more regular sparsity 

patterns, use of wavelet bases doesn't produce such sparse matrices. But the combination 

of wavelets with other methods FDM, FEM, and recently SEM (Mitra and 

Gopalakrishnan (2006)) show good results. Here we have used FEM discretization to 

derive a sparse matrix, as the FEM remains the most versatile tool to solve PDEs. First, 

the stiffness matrix for Lamb wave problem is formed then DWT based on pyramidal 

algorithms is used to modify the matrix. The method offers a purely algebraic way of 

using wavelets for wave propagation problems. This discrete approach also improves 

condition number of the matrix i.e. it can be used for preconditioning purpose also. 
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Beylkin et al. (1991) proposed a class of numerical algorithms for fast, effective 

computation of the linear operators on arbitrary vectors. This is known as theory of NS 

wavelet decomposition of linear operators. The NS form has been presented to offer a 

sparse representation for a wide class of operators by expanding the linear operator 

(matrix) and the input vector in a discrete wavelet basis. These algorithms may be applied 

to all operators whose integral (or distributional) kernels are smooth away from their main 

diagonals.  

 For the current problem, the major challenge is to develop dynamic adaptive grid 

over a long distance in a structure to propagate many short pulses which may contain 

higher harmonics also. The thesis is presenting wavelet based NS operator to improve 

finite element simulation of waves moving at different speeds in a large structure. We 

have used standard operator in previous chapter 3 but in the present analysis, we use 

nonstandard operator because it is more efficient than standard operator (Beylkin (1992)). 

This will not only be useful to the structural health monitoring but it can be used where 

waves with higher harmonics move at different group velocities. A simple description of 

the NS operator along with necessary algorithm and mathematical comments are provided 

to remove an implementation headache associated with adaptive grid techniques. The 

algorithm is applied to 2D plane strain problem, but it is general and independent of 

domain dimension. 

4.2 Mathematical Formulation 

4.2.1 Nonstandard (NS) wavelet transform 

In this section, multiresolution analysis of nonstandard wavelet operators is 

presented (Beylkin et al. (1991), Gines et al. (1998)). 
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Let us consider a multiresolution analysis of  2L . The operator T denoted the following 

form: 

    2 2:T L L  (4.1) 

The aim is to represent the operator T in the wavelet spaces. The subspaces 
jW is defined 

as orthogonal complements of 
jV in 

1jV 
 

 1j j jV V W    (4.2) 

If the number of scales is finite, we consider j n as a finest scale then 

2 1 0 ,nV V V V     and  2

nV L .The subspace nV  has a finite dimension. The 

projection of the operator in the approximation subspace jV , j Z where Z is set of 

integers, can be written as: 

  2:j jP L V  (4.3) 

and expanding operator T in a "telescopic" or multiresolution form, we obtain  

  
0

0 0j j j j j j

j

T Q TQ Q TP PTQ PTP


     (4.4) 

where  

  2:j jQ L W  (4.5) 

If the scale j=n is the finest scale, then  

  
0

0 0

1

,n j j j j j j

j n

T Q TQ Q TP PTQ PTP
 

     (4.6) 

where n n nT T PTP is a discretization of T on the finest scale. In the above equation 
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j jQ TP and j jPTQ represent interrelationship effects of subspaces jV  and  jW . 

 The NS form proposed by Bleykin (1992) is a representation of an operator T as a 

chain of tripletes as follows: 

   00
, , ,j j j j

T A B T
 

   (4.7) 

where operators , ,j j jA B   and jT  belong to either subspaces jV  or jW . These operators 

defined as: 

 j j j jA Q TQ W   (4.8a) 

 j j j jB Q TP W   (4.8b) 

 j j j jPTQ V  
 

(4.8c) 

 j j j jT PTP V 
 

 (4.8d) 

and admit the recursive definition  

 1 1 1 1j j j j jT A B T      
 

(4.9) 

The wavelet transform recursively represents operators jT as 

 

1 1

1 1

j j

j j

A B

T

 

 

 
 
 

 (4.10) 

which is mapping  

 

1 1

1 1 1 1

1 1

:
j j

j j j j

j j

A B
W V W V

T

 

   

 

 
   

 
 (4.11) 

The operators , ,j j jA B   constitute the blocks of NS form. The schematic of the NS form 
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of matrix is organized in Figure 4.1. In this Figure submatrices , ,j jA B and j  are non-

zero blocks where scale j=1,2,3. The coefficients j id   and j iu   are the detail and scale 

coefficients, respectively. The j ig  and j if  are the wavelet coefficients of load vector in 

the NS form. 

 

Figure 4.1 Organization of a NS form of the operator T 

 

4.2.2 Multiscaling using wavelets  

Here, the concept of multiscale analysis using wavelets is directly referred from 

Section 3.2 of chapter 3. Necessary formulation and finite element discretization of elastic 

wave propagation has been discussed in subsection 3.2.4 of previous chapter 3. From 

chapter 3, we know that  

 1
ˆ[ ][u] [ ][u]s sK K   (4.12) 
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If the coefficient vector of jP f  is ,0 , ( ){ , , }T

j j j v ju u u  and coefficient vector of jQ f  is 

,0 , ( ){ , , }T

j j j w jd d d  then two levels of resolution ( j and 1j  ) in spatial domain can be 

expressed using wavelet transform as: 

 
1

1 1

1

[Q | P ]
j

j j j

j

d
u

u



 



 
  

  

  (4.13) 

After transformation of fine scale 
ju , we get coarse scale 

1ju 
which is a kind of average 

and detail coefficients 
1jd 
which is a kind of difference between fine scale and average 

coefficients. The insignificant detail coefficients of the smooth region are eliminated to 

reduce the grid points. 

4.2.3 Nonstandard multi-scale decomposition of finite element matrix 

 Let us consider a continuous wave field  ,u x y  and  ,v x y  for a source of 

excitation over 2-D homogeneous medium. The approximation of the continuous wave 

field on the discrete domain is denoted by ju and jv . It represents the discrete wave field 

that is obtained with a classic time–space finite element method for a sufficiently fine 

discretization of  
2

jV  . The 2-D wavelet transform cascades projections of the discrete 

wave field over different approximation grids 1 2 3, , ,............., jV V V V  of increasing 

resolution.  

 In this multi-scale algorithm, we used NS operator proposed by Beylkin (1992). 

To the best of authors' knowledge, no researcher has used NS operator in wavelet-FEM 

coupling or wavelet-FDM coupling. It has been proved by Beylkin that NS operator is 

more efficient than the standard form of operator used by most of the researchers. In this 
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work, we used NS operator in two-dimensional wavelet finite element coupling technique. 

The finite element equations for the transient 2D problem, Eq. 4.12, can be expressed in 

the expanded form as: 

 

uu uv u

j j jj

vu vv v
j

j j j

k k fu

vk k f

                  
                   

(4.14) 

Using wavelets for forward transformation | ,j j jT Q P    the finest scale is replaced by 

multiscale as shown in the Figure 4.2. We can apply the wavelet transformation on the 

field variables of both the directions 

 
 

 

1

1

1

1

T [0] T [0]T [0]

[0] T[0] T [0] T

j

T uu uv T u

j j jj

T vu vv T v

jj j j

j

d

k k fu

ek k f

v









   
 

                                        
                                       

    

 (4.15) 

After rearranging the coefficients, the set of equations can be expressed as: 

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

dd de du dv

j j j j

ed ee eu ev

j j j j

ud ue uu uv

j j j j

vd ve vu vv

j j j j

k k k k

k k k k

k k k k

k k k k

   

   

   

   

                    
                    
                    
                    

11

11

1 1

1 1

u

jj

v

jj

u

j j

v

j j

gd

ge

u f

v f





 

 

                  
                   
                  
                  

 (4.16) 

where 
1jd 
and 

1je 
are detail coefficients corresponding to the scaling coefficients 1ju 

and 
1jv 
. The solution can be transformed back in terms of nodal displacement by inverse 

wavelet transform using Eq. (4.13). These equations are expressed in the NS form after 

application of next level of wavelet transformation as: 
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1 1 1 1

1 1 1 1

1 1

1 1

2 2 2

2 2

dd de du dv

j j j j

ed ee eu ev

j j j j

ud ue

j j

vd ve

j j

dd de du

j j j

ed ee

j j

k k k k

k k k k

k k

k k

k k k

k k

   

   

 

 

  

 

                    
                    

        
        

          
        

1

1

1

2

2 2

2 2 2 2

2 2 2 2

j

j

j

dv

j

eu ev

j j

ud ue uu uv

j j j j

vd ve vu vv

j j j j

d

e

u

k

k k

k k k k

k k k k









 

   

   

        
       
   
 
 
        
          
 

                      
                      

1

1

1

11

2 2

2 2

2 2
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u
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v

j

u

j

v
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u

j j

v

j j
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g

g

f

fv
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u f

v f









 

 

 

 

        
       
            
               
              
              
 
            
           

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   

  

 (4.17) 

The wavelet transform can be continued until a desired low and high frequency 

component representation is achieved. The well-known standard operator (Eq. (4.15)) can 

be easily represented in the form of NS operator as shown in Figure 4.1 (Beylkin et al., 

1991). The organization of NS form of a matrix for three-level transform is extended in 

Eq. (4.19), and expressed in the new notations (Gines et al. (1998)) as: 

 

 (4.18) 
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(a) Space 
jV  

 

(b) Space 
1 1j jV W   

 

(c) Space 
2 2 1j j jV W W   

 

Figure 4.2. Multi-scale decomposition 

 

where 
1 1 1 1

1 1 1 1

, ,

dd de du dv ud ue

j i j i j j j jA B C

j i j i j ied ee eu ev vd ve

j i j i j j j j

k k k k k k
K K K

k k k k k k

     

  

     

                                  
                                

 and 

uu uv

j i j i

j i vu vv

j i j i

k k
K

k k

 



 

        
        

. The coefficients j iD   and j iU   are the detail and scale 

coefficients, respectively. The j iG  and j iF  are the wavelet coefficients of load vector in 

the nonstandard form and should be converted to standard form by a proper algorithm. In 

order to solve it, Gines et al. (1998) used LU decomposition. The organization of the LU 

decomposition is expressed in Eq. ((4.20) -(4.21)) as: 
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   (4.19) 

 

        

 (4.20) 
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______________________________________________________________________ 

Algorithm 1: LU decomposition of NS operator: 

Input: NS form of matrix [A] 

Step I:  Call LU decomposition algorithm for conversion of  lower and upper 

decomposition of block matrix 
A

j nK   and j nK  from NS form of matrix [A].  Lower block 

matrix is ,A C

j n j nL L  and
C

j nL  . Upper block matrix is ,A C

j n j nU U   and j nU  . 

Step II: Computation of  elements of block matrix ( 1)

C

j nL    and ( 1)

B

j nU    using ( 1)

A

j nU    and 

( 1)

A

j nL   respectively. Where 2,3,...n j . 

 
1

( 1) ( 1) ( 1)*C C A

j n j n j nL K U


          %     ( 1) ( 1) ( 1)*A A A

j n j n j nL U K       

 
1

( 1) ( 1) ( 1)*B A B

j n j n j nU L K


       

Step III: Convert  [ ( 1) ( 1),C B

j n j nL U    ] in standard wavelet transform matrix, which is 

divided into 2 2 2, ,A B C and 2T . 

Step IV: For last scale (final resolution j), call LU decomposition algorithm for 

conversion of  lower and upper decomposition of block matrix [
( 1) 2

A

j nK A   ]   and [

( 1) 2j nK T   ].  After decomposition lower block matrix is
A

jL , 
T

jL  and upper block matrix 

is ,A T

j jU U respectively. 

Step V: Computation of elements of block matrix
C

jL  and 
B

jU .  

   
1

2 *C C A

j j jL K C U


        %    
2*C A C

j j jL U K C   
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   
1

2*B A B

j j jU L K B


        %     2 *B B A

j j jK B U L   

Step VI: Find
T

jL  and 
T

jU using LU decomposition of   [  2 *j C B

j jK T L U  ] 

Output: Complete LU decomposition of matrix [A] 

 

 The computation of the coefficients is simple and efficient due to LU 

decomposition of NS form. In this algorithm, submatrices 1 1

C B

j jL U   , 2 2

C B

j jL U   are 

transformed to next lower scale, therefore, it is necessary to use the algorithm as proposed 

by Gines et al. (1998) to calculate unknown vector. 

 In this case of wave propagation, it is observed that wherever dynamic force is 

smaller than a threshold value { }i s ff  , the detail coefficients are also smaller than some 

threshold value 1{ }ji s dd   . Therefore, instead of using 1{ }ji sd  for the mask as proposed 

by other researchers (Vasilyev and Bowman (2000), Bertoluzza (1996)) for their 

problems, we used dynamic force in the structure { }i sf  to mask jV . Here { }i sf is an 

accurate and cost effective option to locate wave when multiple waves move at different 

velocities. Let 
0 ( )j

j    is a set of grid points for the space 0 0 1 1... jV W W W    . The 

grid points associated with { }i s ff   create sets 
j

j M  then the field variable can be 

expressed as: 

 
0

0 0

0 j

j j j

i i i i

j Ji i M

u u d 
  

      (4.21) 

The process to create mask and LU decomposition of NS operator is explained in 

Algorithm 2 (Cormen et al. 2009). 
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______________________________________________________________________ 

Algorithm 2: LU decomposition with mask 

1.  n            rows[A] 

2. for k         1 to n 

3.       do rru    kka      The compressed matrix index r corresponds to index k of initial matrix  

     and   0j

jr M          

4.          for   i          k+1 to n 

5.             do  prl          ik rra u         The compressed matrix index p corresponds to index 

i of initial matrix and   0j

jp M          

6.                       rpu          kia  

7.          for    i          k +1 to n 

8.            do for   j          k +1 to n             

9.     do ija          ij pr rqa l u    The compressed matrix index q represent 

      index j of  initial matrix and   0j

jq M    

10. Return L and U 

4.3 Results and Discussion 

 The computational cost of simulation of waves with higher harmonics is very high. 

The objective of the method is to propagate higher harmonics of waves using least number 

of nodes. To test the wavelet based method, higher harmonics are added in the Lamb wave 

and propagation of waves is observed. The following actuation function with 400 kHz 

central frequency driven through a Hanning window is used: 

 
 

2
2 10

sin( )* sin( ) sin(10 )* sin( ) ,
( ) 10 10

0 ,

o
o

At
A t t t t

F t

otherwise

 
  



  
      




 (4.22) 
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Figure 4.3. Excitation signal for Lamb wave with higher harmonics 

 

Figure 4.4. Plate geometry, boundary conditions, forcing function and micro crack/ material 

softening 

The excitation signal on a plate with a higher harmonics is shown in Figure 4.3. 

To provide a limited cycle sinusoidal tone burst, ten cycles Hanning-window excitation 

signal is applied. An Al plate of 200 mm length and 2 mm thickness is considered in the 
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(a) Elements per wavelength 

 

(b) Time steps 

Figure 4.5. Convergence of Lamb wave response at healthy plate 
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analysis. Figure 4.4 shows plate geometry, boundary conditions, displacement u  in the 

direction of wave propagation (x-direction) and v through the thickness (y-direction).The 

material properties are assumed as Poisson's ratio=0.3, density=2700 Kg/m3, and Young's 

modulus E=69 GPa. The Lamb wave in this material has longitudinal velocity CL = 5299 

m/s and transverse velocity CT= 3135 m/s. The waves are actuated by employing pin 

forces applied to the left boundary of the plate. The excitation forces are parallel to the 

longitudinal (propagating) direction. In-phase pin forces are applied to the top and bottom 

edge nodes of the plate for excitation of fundamental symmetric (S0) modes, and the anti-

symmetric modes are propagated by imposing out-of-phase pin forces. In this thesis, we 

considered the cases in which the pure S0 mode is excited.  

 

Figure 4.6. Comparison of response of plate for elements per wavelength for higher harmonics 
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The convergence of elements per wavelength and time steps of linear Lamb wave 

response at the healthy plate is shown in Figure 4.5(a, b), respectively. It can be seen that 

20 elements per wavelength are appropriate for the further simulation of linear Lamb 

wave (see, Figure 4.5(a)). For time steps, 1/25f is considered for the analysis as shown in 

Figure 4.5(b). Figure 4.6 depicts the measured nodal displacement response of time-

domain signals obtained using FEM simulation of the plate with 40, 80 and 120 elements 

per wavelength for higher harmonics. It can be observed that higher harmonics are not 

properly visible in the response of the plate with 40 elements per wavelet. On the other 

hand, as shown in the same Figure, higher harmonics are visible for 80 elements per 

wavelength. In this analysis, B-spline and D4 wavelets are used for NS operator. 

 

Figure 4.7. Comparison of plate response of higher harmonics at wavelet transform level 3 
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Nodal displacement response of plate received from B-spline and D4 wavelet Transform 

at level-3 along with FEM results is demonstrated in Figure 4.7. Wavelet transform at 

level-3 is utilizing approximately one-eighth of the initial size of FEM matrix. It 

establishes a good agreement between the conventional finite element and proposed 

wavelet based method. It can be observed that B-spline wavelet produces response close 

to FEM results, while there is some deviation in the results of D4 wavelet. These results 

show some attenuation but wavelets are not eliminating higher frequency components of 

waves which may be useful in some analysis. Wavelet transform level-4 is also sufficient 

to propagate higher harmonics but we observed high attenuation. A comparison of B-

spline, Haar and Daubechies wavelets of order 4, 6, 8 and 12 is presented at various levels 

of transforms in Figure 4.8.   

 

Figure 4.8. Comparison of  non-dimentional L2 norm value for the higher harmonics signal with 

various wavelet 
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The difference between the wavelet based methods and FEM solution is measured and 

showed by the non-dimensional L2  norm (Shen (2014)). 

 

 
2

2

1 1

n n

fem wt fem wt wtu u u u u   

 

(4.23) 

where n is the length of the time domain signal, and ufem and uwt  are the solutions from the 

FEM method and wavelet based analysis, respectively. It is observed that B-spline is the 

most suitable wavelet in the present analysis.  

For the analysis of plate, fundamental symmetric (So) mode centered with 

excitation frequency 400 kHz of Lamb wave (without higher harmonics) is propagated 

and the response of healthy plate is shown in Figure 4.9. Figure 4.10 shows FE simulation 

of reflected wave due to 0.2 mm wide and 0.5 mm deep square notch crack in the plate. 

The same response can be observed in Figure 4.11 after 3rd level of wavelet transform. At 

this level, the required number of elements per wavelength is as low as 10 which is the 

half of the minimum requirement of the element per wavelength in conventional FEM. A 

comparison of various wavelets response at different levels of the transform for the 

defective plate is shown in Figure 4.12. It can be observed that for Lamb wave 

propagation and the same level of compression, B-spline based NS operator is the best. 

Prior to the development of cracks due to cyclic loading, nonlinearity due 

initiation of material softening generate higher harmonics of Lamb wave. Figure 4.13 

shows higher harmonics when a soft material (0.1 mm wide and 0.291 mm long) is 

introduced into the plate in place of the crack. The frequency response of this signal is 

shown in Figure 4.14. It can be noticed that generation of second harmonics is a good 

indication of material softening defect.  
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Figure 4.9. Nodal displacement (mm) vs time (microsecond) at sensing location for a healthy plate 

 

Figure 4.10. Nodal displacement for a plate with crack 
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Figure 4.11. Comparison of damage plate response at wavelet transform level 3 

 

Figure 4.12. Comparison of non-dimentional L2 norm for various wavelet in damage plate 
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Figure 4.13. The waveform of higher harmonics Lamb waves at the center frequency of 400 kHz 

 

Figure 4.14. The spectrum of higher harmonics Lamb waves at the center frequency of 400 kHz 
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Table 4.1. Comparison of computational time for the simulation of Lamb wave 

Mesh grid 

 

 

FEM 

(Time (sec)) 

 

Proposed 

Standard wavelet 

based method 

(Time (sec)) 

Proposed NS 

wavelet based 

method 

(Time (sec)) 

400 5  97.2589 51.2911 39.8273 

800 5  365.4685 180.5208 153.825 

1200 5  725.3911 425.3841 385.324 

1600 5  1229.361 814.287 765.582 

2000 5  2068.4209 1328.326 1216.7 

2400 5  3128.3812 2251.755 2097.53 

2800 5  out of memory 4987.8338 4713.49 

 

Table 4.1 shows the comparison of execution time (second) for above mentioned 

Lamb wave problem from all the three methods, namely, FEM, proposed standard wavelet 

based method and NS wavelet based method. It can be noticed that NS wavelet based 

technique is significantly reducing the computational time for all the mesh grids and 

shows the effectiveness of the method. From the table, we can bring into notice of readers 

that the both proposed methods are very efficient and require lesser execution time 

compared to conventional FEM.  
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