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CHAPTER 2 

LITERATURE REVIEW 

*********************************************************************** 

The analysis of elastic wave propagation in thin wall structure gained the attention 

of researchers in late 1910s. The wave propagation and scattering analysis in structures 

are the major concern for performance evaluation of civil, mechanical and aerospace 

engineering structures subjected to aerodynamic and mechanical loadings. The excellent 

literature surveys by Su et al. (2006), Raghavan and Cesnik (2007), Willberg et al. (2015), 

and Mitra and Gopalakrishnan (2016) present a deep insight into the history and 

development of the analytical, numerical and experimental techniques for the guided 

wave based SHM and NDT&E applications.  

The chapter presents, the state of art review of literature available on the elastic 

wave, Lamb wave and Rayleigh wave propagation in various structure geometries 

subjected to various types of loading and boundary conditions. In this chapter, care has 

been taken to include all the literature available while some of the early work remains 

unlisted due to unavailability and can be found in the aforementioned references. The 

review is divided into four sections. The first part presents early developments and 

fundamentals background of guided waves. Analysis and simulation of elastic waves in 

the plate and shell structure (analytical, numerical and multiscale analysis) are presented 

in next part. The third part consists of signal processing and data analysis of Lamb wave 

(time domain, frequency domain and integrated time and frequency domain analysis). The 

fourth section describes the error estimation techniques for wave propagation and 
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practical engineering problems. At the end of the chapter, the observations based on the 

literature review and objectives of the present work are presented. 

2.1 Early Developments and Fundamentals 

A Large amount of work related to the analysis of elastic wave in the plate and 

shell-like structures is available in the literature. There are many application areas for 

elastic waves such as materials inspection, material characterization, seismology etc., and 

therefore they have been a subject of study (Graff (1975), Achenbach (1984), and Auld 

(1990)). The first work addressing elastic wave, Rayleigh wave equations, was developed 

by Lord Rayleigh (1887). Based on this study, Horace Lamb predicted mathematically 

and described the existence of plate waves now known as Lamb wave. The difference 

between Rayleigh waves and Lamb waves are their propagation characteristic because of 

the boundary conditions. Rayleigh waves propagate and transmit close to the free surface 

of elastic solids; whereas Lamb waves propagate between two free surfaces of a thin-

walled structure. The development of Rayleigh and Lamb waves was motivated 

essentially by its applications in medical industry during World War II. Further, this study 

was extended by Love (1926), Stoneley (1924), Scholte (1942) and observed various 

types of waves which are now called as Love, Stoneley and Scholte waves. A 

comprehensive theory for the guided elastic wave was established by Mindlin (1951). The 

experimental work for such waves was demonstrated by Frederick (1962). Gazis (1958, 

1959) developed and demonstrated the dispersion equations for elastic waves in cylinders. 

Worlton (1961) was the first person who recognize potential of Lamb waves for NDT and 

introduced guided Lamb waves as a means of flaw detection. All these fundamental 

studies established the basics for utilization of the elastic waves for damage identification.  
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2.1.1 Parameters of Lamb waves for damage detection 

Propagation characteristics of guided waves in thin-walled structures are well 

defined in the literature from Mindlin (1960), Viktorov (1967), and Rose (1999). As 

mentioned in chapter 1, Lamb waves have various complications which come up in the 

received signals because of the existence of multimode vibration (symmetric and anti-

symmetric) and dispersive behavior of waves. Complications may also be due to the mode 

conversions that happen if a propagating wave mode interacts with several discontinuities 

and boundaries (Alleyne (1991), Rose et al. (1994), Cawley and Alleyne (1996), 

Benmeddour et al. (2008), and Soleimanpour and Ng (2016)). Very frequently, following 

parameters of Lamb waves are considered for damage identification:  

2.1.1.1 Amplitudes of the waves 

The measured response of time domain signals from the healthy structure is used 

as baseline or reference signal and Lamb wave signal received from unhealthy structure 

compared with baseline signal for damage detection. To identify damage, many Lamb 

wave based inspection method employ wave attenuation, dispersion and/or mode 

conversion (Toyama et al. (2003), Benmeddour et al. (2008), and Staszewski et al. 

(2009)). Generally, the amplitude of guided Lamb waves is utilized to investigate their 

interactions with discontinuities (Toyama et al. (2003). Reflection and transmission 

power coefficients for the anti-symmetric and symmetric mode of Lamb wave have been 

computed by researchers (Cawley et al. (2003), Benmeddour et al. (2008)). Several 

researchers have calculated attenuation coefficient of Lamb waves experimentally in 

composite materials to detect damage and delamination. They identified delamination in 

Carbon Fiber-Reinforced Polymer (CFRP) laminates and sandwich composites on the 
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basis of attenuation of the transmitted Lamb wave and established that this technique is a 

reliable and simple to detect damage (Tan et al. (1995), Birt (1998), Kessler et al. (2002), 

Prasad et al. (2004)). A linear relationship between the attenuation of the fundamental 

symmetric wave mode and the degree of the impact damage has also been obtained by 

Birt (1998). It has been observed that antisymmetric Lamb modes have relatively high 

attenuation property compared with symmetric wave modes (Wilcox et al. (2005), 

Konstantinidis et al. (2006), and Kim and Sohn (2007)). In general, it is very complicated 

to quantitatively evaluate the delamination size (Toyama and Takatsubo (2004)). 

 2.1.1.2 Phase velocity and group velocity 

Lamb waves are dispersive, and their velocities are dependent on plate thickness 

and wave frequency. This phenomenon is known as dispersion. The plot of phase and 

group velocities with respect to excitation frequency is referred as dispersion curve and 

used to predict the relationship among frequency, thickness, phase velocity and group 

velocity. The basic method to express the propagation of a guided wave in a particular 

material is with their dispersion curves (Kessler (2002)). Tang and Henneke (1989), and 

Cawley (1990) might be the initial researchers who have employed the velocimetric 

method to identify damage. The variation in wave velocities due to change in material 

properties or geometry is tracked to estimate the flaws and discontinuities. Nayfeh and 

Chimenti (1989) presented dispersion relations of Lamb waves in a composite lamina. 

Yuan and Hsieh (1998) found the exact solutions of dispersion of guided waves in 

composite shells. Mazeika et al. (2010) have presented the comparison of modeling and 

experimental results of the phase velocity measurement of Lamb wave in the isotropic 

plate. Neau (2003) employed both group velocity dispersions and wave curves in a 

composite lamina and compared them with experiments. Many researchers utilized 



35 

 

guided Lamb wave for the characterization of materials and their usage to reveal 

mechanical properties of plate like structures (Vollmann et al. (1998), and Bermes 

(2007)). Most of the guided wave based damage identification methods calculate arrival 

time (or time-of-flight) of scattering waves from discontinuities, then by recognizing the 

group velocity, the position of damage can be determined. 

2.2 Analysis and Simulation of Lamb Wave 

Modeling of wave damage interaction can provide an efficient and cost-effective 

approach to assist the Lamb wave analysis and the development of damage detection 

algorithms before conducting time-consuming experiments (Rose (1999), Staszewski et 

al. (2004), Giurgiutiu (2008), and Boller et al. (2009)). Simulation is also helpful in 

investigating complex strategies that are difficult to set up experimentally. Fundamental 

and vital features of Lamb waves such as dispersions and wave mode shapes can be 

acquired using modeling and simulation. Furthermore, wave propagations and scattering 

in realistic structures with complicated geometries and characterization of different types 

of damage can be easily simulated.  

This section reviews the state-of-the-art in numerical analysis of guided wave 

propagation and scattering. A concise introduction to wave mechanics problem is 

presented. A detailed assessment of capability for simulating elastic wave phenomena of 

the following methods are compiled: (i) analytical analysis, (ii) numerical analysis 

(wavelet analysis, miscellaneous methods such as Local Interaction Simulation Approach 

(LISA), Mass-Spring Lattice Models (MSLMs), Spectral Cell Method (SCM), fictitious 

domain methods and Boundary Element Methods (BEMs)).  
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2.2.1 Analytical analysis 

The application of analytical scheme is very suitable when simulating guided 

Lamb waves. Their evaluation is less expensive than numerical techniques. Analytical 

techniques provide the wave response of the structure without using any type of domain 

discretization. The analytical methods are based on closed-form solutions of Lamb wave 

characteristic equations. They are most convenient to solve the dispersion relations for 

simple geometry structures, such as thin plates and cylinders. The characteristic equations 

and solutions for simple geometry have been fully developed as given in many articles 

(Viktorov (1967), Graff (1975), Lowe (1995), Rose (1999), and Giurgiutiu (2008)). 

The early development of the analytical studies concerning Lamb waves date back 

to 1911, when Love extended the work of Lord Rayleigh (1987) and first modeled the 

horizontally polarized waves, i.e., shear-horizontal waves. Later on, Horace Lamb studied 

waves in an elastic plate in 1917. The main motivation behind his pioneering work was 

associated to seismic problems. Lamb established the theoretical fundamental principles 

to model elastic waves. In the abovementioned works, only a single frequency was studied 

to present the dispersion relations between the wave number and the excitation frequency. 

Onoe (1955) has analyzed the qualitative behavior of the Lamb wave dispersion curves 

with propagating Lamb modes. Thereafter, Mindlin (1960) presented a comprehensive 

analysis for the dispersion equation for each Lamb wave mode. Viktorov (1967) and 

Achenbach (1984) solved the problem of forced motion in the two-dimensional case and 

also calculated dispersion relation very accurately. All these analyses are for two-

dimensional and plane strain problem. Graff (1975) presented a three-dimensional 

analysis of circular crested waves. 
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Later on, the Fourier transform and the Cauchy’s theorem have been employed for 

analysis of wave response in general three-dimensional plates with different load 

distributions (Gomilko et al. (1991), Shi et al. (2003), Raghavan and Cesnik (2005), 

Giurgiutiu (2005, 2008), Von et al. (2007), and Von and Lammering (2007, 2009)). 

Modal analysis has also been employed to present analytical solution (Jin (2003)). Higher 

order plate theories have also been utilized in order to compute a good approximation of 

the dispersion equation (Yang and Yuan (2005)).  

Major analytical tools for the purpose of dispersion relation for composite 

laminate are transfer matrix method (Thomson–Haskell method), global matrix approach 

(Lowe (1995)), and some other more specific methods, such as effective elastic constant 

method which is based on homogenization (Habeger et al. (1979)). Nayfeh (1991, 1995) 

has given dispersion relations for generally anisotropic layered composites. During the 

last few years, global matrix method is widely used and this technique remains 

numerically robust for any range of frequency-thickness values but has a relatively slow 

convergence. Many other specific analytical techniques for the propagation 

characteristics of guided Lamb waves in the composite structure are comprehensively 

reported by Chien et al. (1994), and Ghoshal (2002). 

The modeling of elastic waves in shell structures such as pipes, cylinder, curved 

geometry have been studied. Wave propagation in plates with curved geometry have been 

studied by Towfighi et al. (2002), Demma (2005), Gridin and Craster (2004), Ratassepp 

and Klauson (2006), and Vivar-Perez et al. (2014). Different boundary conditions and 

body forces have been considered in shell structures (Harris (2002), Gridin and Craster 

(2004), and Vivar-Perez (2012)). Barshinger and Rose (2004) explored the Lamb wave 

propagation in an elastic hollow cylinder coated with a viscoelastic material. The Wiener-



38 

 

Hopf technique and other analytical methods have been employed for some specific 

scattering problems (Rokhlin (1981), McKeon and Hinders (1999), and Diligent et al. 

(2002)). 

These analytical methods have many advantages such as (i) the influence of each 

wave mode can be analyzed individually, (ii) the qualitative performance of guided wave 

propagation can be expressed easily by analytical expressions, and (iii) infinite wave 

numbers for a given frequency can be calculated. However, the major limitation of this 

method is that it is applicable for simple geometries and specific distributions of load 

only. There have been several attempts to explain the propagation of Lamb waves in 

complex geometries using analytical methods (Harris (2002), Towfighi et al. (2002), 

Gridin and Craster (2004), and Ratassepp and Klauson (2006)). However, analytical 

methods are still incompetent to simulate arbitrary complex domain. Therefore, to 

overcome the intrinsic limitation of analytical methods, several techniques have been 

developed and applied to simulate specific aspects of elastic waves propagation with the 

variety of problems. The development of semi analytical approaches for analysis of the 

wave field moves toward hybrid formulation, which is based on the coupling of analytical 

and numerical technique. Another approach to solve this problem is a numerical method. 

The main advantage of this method is that the difficulties associated with complicated 

geometries and interactions of damage are easy to handle.  

2.2.2 Numerical analysis 

The elastic, acoustic and electromagnetic waves equations, which express the 

propagation and scattering, are hyperbolic Partial Differential Equations (PDEs). The 

Finite difference (Delsanto (1992), boundary element (Tadeu et al. (2007)), and finite 
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element (Kuhlemeyer (1973), Jianga (1995), and Bathe (1996)) based methods have been 

used for the simulation of guided Lamb waves. Majority of the past research, which was 

conducted during the 90's was based on transient analysis in the time domain and was 

dedicated to the study of the basic physics associated with the excitation and propagation 

of guided waves in plate like structures (Alleyne and Cawley (1992), Verdict et al. (1992), 

Balasubramanyam et al. (1996), Zgonc and Achenbach (1996), and Alleyne et al. (1998)). 

More recently, numerical simulations have been used for (1) handling complicated guided 

wave propagation and interaction problems, (2) the characterization of different types of 

damage, (3) nonlinear guided wave propagation, and (4) study of the behavior of 

piezoelectric transducers. 

A popular numerical method used to simulate wave propagation problem is the 

Finite Element Method (FEM) (Reddy (1985), Burnett (1987), Zienkiewicz and Taylor 

(1989), and Cook et al. (2001)). The FEM is employed in the time or frequency domain 

and the method is being continuously improved. Fromme (2001) has investigated 

numerically and experimentally the scattering of the fundamental antisymmetric wave 

mode at a circular hole in isotropic plates. Lowe and Diligent (2002) presented the 

interaction between the fundamental Lamb modes with defects in an isotropic 

homogenous plate using two-dimensional FE models. Gresil et al. (2012) studied the 

influence of corrosion using Lamb waves. Greve et al. (2008) presented the transition 

from Lamb waves to longitudinal waves in thick panels, numerically and experimentally. 

Bijudas et al. (2013) explored numerical and experimental studies of damage detection in 

a stiffened plate by time-reversed Lamb waves. 

Nowadays, FEM-based modelling and simulation are the most cost effective with 

commercial software such as ABAQUS, ANSYS, COMSOL, and PATRAN. The 
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commercial softwares have many advantages, such as (i) user graphics interface, (ii) 

several element types in the element library, (iii) meshing tools with mesh size control, 

(iv) computationally efficient matrix solvers, and (v) effective post-processing and 

analysis tools, etc.  Guo and Cawley (1992), Alleyne and Cawley (1992), Guo and Cawley 

(1993), Percival and Birt (1997), Birt (1998), Luo (2000), Olson et al. (2007), Diamanti 

et al. (2007), Chang et al. (2007), Soni et al. (2009), Song et al. (2009), Ahmad et al. 

(2009) Pistone et al. (2013), and Liu et al. (2013) used the FEA software for the Lamb 

wave simulation. They were able to obtain detailed waveforms, and visualize Lamb waves 

using post-processing tools. For the quality of the simulation, at least 15–20 nodes per 

wavelength are usually recommended for the proper solution accuracy (Gresil et al. 

(2012)). Vanli and Jung (2013) explored h-version FEs in conjunction with statistical 

updating techniques to enhance the damage prediction capability. 

FEM has also been extensively employed to study wave propagation in laminated 

composites because the analytical solution of such problems is not possible due to the 

anisotropy, layered structure, etc (Yang et al. (2006)). More recently, research in SHM 

and NDT&E field is more focused on 3-D modeling and simulation of composite and 

sandwich structures (Mustapha et al. (2011), Hosseini et al. (2013), Hosseini and Gabbert 

(2013)). Luchinsky et al. (2013) investigated impact damage in sandwich panels using 

Lamb wave scattering. Maio et al. (2015) presented the comparative study of Lamb wave 

modeling of the laminated composite by means of classical plate theory using explicit 

FEA code and software ABAQUS, and simulation was validated with experimental study. 

Sause et al. (2013) presented the FEM model for guided wave propagation in cylindrical 

composite pressure vessels.  Zhao et al. (2014) applied a new third-order shear 
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deformation theory for dispersion curves of the guided wave in the laminated composite. 

Similar dispersion curves were also computed by using ABAQUS (Zhao, (2013)). 

Another promising numerical technique is the Semi-Analytical Finite Element 

(SAFE) method that has also been cited as spectral or waveguide FEM (Bartoli et al. 

(2006), Maess et al. (2007), Predoi et al. (2007), and Fan (2010)). SAFE is suitable for 

handling the variation of the material properties in the thickness direction of a thin 

structure. It holds the merits known from analytical approaches. For the structure with a 

uniform arbitrary domain, the SAFE method simply needs the finite element 

discretization of the domain and takes harmonic motion along the wave propagation 

direction. Thus, the problem can be changed into an eigenvalue problem which can be 

easily solved. Fan and Lowe (2009) employed SAFE to study the guided wave dispersion 

problem of a welded joint structure. Explicit time-integration has been employed by 

Bartoli et al. (2005) to solve dispersion relation and simulate the propagation of Lamb 

waves in railroad tracks. The SAFE method has also been considered to study the 

dispersion relation for 1-D and 2-D periodical structures that have varying cross sections 

(Ruzzene et al. (2003), Maess et al. (2007)). 

The Finite Difference Method (FDM) has also been used for the study of wave 

simulation and damage interaction by several researchers (Delsanto (1992), Delsanto 

(1994), Moulin (2006)). FDM is generally based on Taylor expansions and its direct 

substitution into the governing differential equations of wave motion. In this numerical 

approach, the field variables are defined at the nodal intersections of the structured grid. 

FDM uses second or higher order approximations to space derivatives. FDM based 

techniques are computationally expensive for large models and complex domain. An 

overview of FDM based techniques for wave propagation is presented by Bond (1990). 
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The major limitation of the FD schemes is that stiffness jumps due to continuously 

changing physical properties which causes stability problems (Yu (2013)). Furthermore, 

boundaries as well as discontinuities between different types of media lead to inaccurate 

solutions and generate severe errors (Delsanto (1992)). With this in mind, more recently, 

Delsanto has proposed the LISA in combination with the Sharp Interface Model (SIM) 

(Delsanto (1992), Delsanto (1994), Moulin (2006)). While the approach is formally 

similar to the FDM scheme, it does not utilize directly any finite difference equations but 

the associated iteration equations are acquired directly from heuristic considerations. The 

LISA is extremely efficient from a numerical point of view and precise to model complex 

wave phenomena and diffusion problems in complex media (Delsanto (1997), Lee and 

Staszewski (2002)). The algorithm was next extended to simulate Lamb wave interaction 

with a rectangular silt in an isotropic plate and identify discontinuities in the orthotropic 

plate (Lee and Staszewski (2007) Sundararaman and Adams (2008), Obenchain and 

Cesnik (2014)). Packo et al. (2012) has utilized the parallelizability of the LISA for Lamb 

wave simulation in complex structures and significantly reduced computational time 

using a graphical processing unit and a computer unified device architecture. Kluska et 

al. (2012) have employed cellular automata to enhance the precision of the geometrical 

description. LISA has also been employed as an authentication tool to verify several 

experimental techniques and their finding (Mallet et al. (2004), Staszewski et al. (2004)).   

Other established numerical methods have also been utilized by several 

researchers to model the complex propagation behavior of Lamb wave and their 

interaction with damage such as the Elastodynamic Finite Integration Technique (EFIT) 

(Schubert et al. (1998), Schubert (2004)), Boundary Element Method (BEM) (Cho and 

Rose (1996), Pérez-Gavilán and Aliabadi (2000), Rose et al. (2000) Fedelinski (2004)), 
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combination of FEM and BEM (Galán and Abascal (2005, 2005)), Scaled Boundary 

Finite Element Method (SBFEM) (Chen et al. (2012)), SCM (Joulaian (2014)), Finite Cell 

Method (FCM) (Vivar-Perez et al. (2014)) and enriched FEM (Han and Bathe (2012)). 

Adamou and Craster (2004), Selezov et al. (2018) have used spectral methods due 

to the high accuracy and less computational cost for the simulation of wave propagation 

in elastic media. Mitra and Gopalakrishnan proposed wavelet-based spectral method for 

simulation of elastic wave propagation in one dimensional and two dimensional (Mitra 

and Gopalakrishnan (2006)). They utilized the compact support and orthogonal property 

of wavelets in the Galerkin method for the simulation of waves. However, discretization 

of the domain is necessary for complex geometry. Application of wavelets in such 

problems will be a challenging task but it will be very useful. 

In recent years, wavelet-based numerical methods gained attention for solving 

partial differential equations. The major advantage of this approach is that it allows one 

to examine a problem in multiscale. In addition, wavelet based schemes are efficient in a 

problem comprising singularities and sharp transitions in solutions in limited zones of a 

computational domain. The detail descriptions of this approach will be presented in detail 

in Chapter 3 of the thesis.  

2.3 Processing of Lamb Wave Signal 

Guided wave-based damage identification process is dependent on signals 

captured by a sensor or sensor network. The Lamb wave responses obtained from the 

sensors are often contaminated due to the presence of random noise, multiple reflections 

from the damage as well as boundaries and interference from natural structural vibration. 
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The accuracy and precision of guided wave based damage detection technique are 

essentially subject to the processing and interpretation of the captured signals. Therefore, 

a signal processing technique should be able to extract the signal feature from the 

measured response to distinguish between the healthy and damaged structure. Several 

time domain analysis, frequency analysis, and integrated time-frequency analysis have 

been introduced for Lamb wave based SHM and NDT&E. 

2.3.1 Time domain analysis 

The direct time domain analysis of a signal has been used by many researchers to 

identify damage both globally as well as locally. The responses of the structure received 

from sensors have been analyzed using different time series modeling approaches. The 

time series method could be but not limited to Moving Average (MA), Regression, 

Autoregressive Integrated Moving Average (ARIMA) and Autoregressive (AR). Valdes 

and Soutis (2001) have investigated the delamination in a composite beam by computing 

the Time of Flight (ToF) in the received guided wave signal.  Sohn et al. (2000) have 

presented the use of control charts to locate the damage on a concrete column by means 

of AR model as a feature extraction method. Variations in the AR coefficients were 

analyzed to predict whether the signals are coming from the defective or healthy structure. 

Kullaa (2003) has investigated the working bridges to monitor the integrity of the 

structure based on the modal parameters.  

Zang et al. (2004) have demonstrated a hybrid approach to capture the essential 

features from measured vibration signals. Their damage detection approach was based on 

the coupling independent component analysis in the time domain and artificial neural 

networks. Omenzetter et al. (2006) have investigated damage using changes in the 
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coefficients of ARIMA based on time series analysis. Wang et al. (2009) have 

demonstrated weighted moving average control charts based on time series approach to 

detect damage from numerically simulated case study data. Except for a small number of 

successful applications in identifying damage, time-series analysis is normally 

incompetent of properly separating defect-scattered information from noise. In addition, 

a reference signal is compulsory for comparison. 

2.3.2 Frequency domain 

To reveal discontinuities induced by structural damage, which may not be clearly 

observed in the time domain, the Lamb wave signal is often transformed into frequency 

domain via Fourier Transform (FT). It gives the information regarding the frequency of 

the waves and their corresponding strengths.  Fast Fourier transform (FFT) and its 2D 

form (2D-FFT) are generally used for guided wave signal analysis (Heller (2000), Veidt 

et al. (2002), Koh et al. (2002), and Youbi et al. (2004)). Some researchers (Alleyne and 

Cawley (1991), Gao et al. (2003)) have successfully implemented this approach for 

separating multi-mode Lamb waves. Since both 2D-FT and 2D-FFT require a 

considerable volume of signals received from various locations, a large number of sensors 

must be ascertained to scan the whole structural surface. This technique does not deliver 

information associating the location of that frequency. 

2.3.3 Integrated time frequency domain analysis 

To overcome the shortcoming of either time or frequency domain analysis of the 

guided wave signal, the combination of time and frequency domains is introduced to avoid 

any potential loss of information contained in a Lamb wave signal. The integrated time-

frequency domain analysis is illustrated by the Short Time Fourier Transform (STFT), 
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Wigner-Ville Distribution (WVD), Hilbert Transform (HT), Hilbert-Huang Transforms 

(HHT) and wavelet transform.  

In 1946, Dennis Gabor presented STFT, which is the simplest form of time-

frequency analysis. STFT has been used to obtain the frequency and spatial information 

of a wave. With its facility to simultaneously unveil features of the time and frequency of 

a signal, it is well suited for analyzing non-stationary signals, such as guided wave signals 

(Ihn and Chang (2004, 2004), Kim and Kim (2001), Sung et al. (2000), and Chang et al. 

(2007)). Kim and Kim (2001) have implemented this approach to detect damage in a 

structural beam. However, the major drawback of STFT is that the time window is same 

for all frequencies therefore satisfactory precision cannot be received at the time- and 

frequency-axes simultaneously. Hence STFT may not be the optimal choice for analyzing 

Lamb signals. This deficiency can be overcome by using other transforms such as HT, 

HHT, and wavelet transform. 

With a flexible choice of window size, the WVD transform can provide a superior 

resolution (Wang and McFadden (1993), Prosser et al. (1999), Niethammer et al. (2001), 

Kim and Kim (2001), Ge et al. (2002)). The effectiveness of WVD in the processing of 

guided waves was reviewed and discussed with other time-frequency representations, 

namely, the reassigned spectrogram, the smoothed WVD, Hilbert spectrum and HHT 

(Niethammer et al. (2001), Oseguda et al. (2003), Quek et al. (2003), Salvino et al. 

(2005), Wang et al. (2011), Chun et al. (2014), Pai et al. (2015)). Although each method 

was found to have its strengths and weaknesses, it was concluded that reassigned 

spectrogram emerged as the superior technique for analyzing Lamb wave mode. In 

general, a WVD transform requires a high computational cost. For avoiding mathematical 

aliasing, very high sampling rate, at least four times as high as the number of the sampling 
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points of the signal is required (Wang (2001)). Additionally, WVD may lose sensitivity 

when applied directly to noisy wave signals. Furthermore, alterations of a short duration 

or low magnitude in a wave signal may not be observed properly.  

In the last two decades, the wavelet transform has emerged as a signal-processing 

tool for denoising, filtering, data compression, feature extraction and feature selection. In 

general, CWT is mainly efficient for analysis and visualization of Lamb wave signal, 

while discrete wavelet transform is more effective for signal denoising and data 

compression. The descriptions of this approach and limitations will be discussed in detail 

in Chapter 6 of this thesis. Other signal processing techniques that can be employed for 

studying Lamb wave signals are Matching Pursuit (MP) algorithms (Mallet and Zhang 

(1993)), Monte-Carlo based MP decomposition (Das et al. (2009)), blind deconvolution 

(Zheng (2001)), cyclostationary processes (Rubini and Sidahmed (1997)), or statistical 

modelling (Martin et al. (1990)) and probability analysis (Achenbach et al. (1997)). 

However, there is a lack of suitable filter for processing of low SNR signal and 

suppression of coherent noise in Lamb wave propagation problems.  

2.4 Error Estimation 

This section gives a brief review of a posteriori error estimators. Computational 

approximations of numerical problems always contain some numerical errors. A 

mathematical theory for estimating such errors has become very important to 

computational science. The first use of error estimates and adaptive meshing approaches 

for computational solutions started some 30 years ago (Babuška and Rheinboldt (1978, 

1978, 1979, 1979)). A concise history of the subject is given in the book by Ainsworth 

and Oden (2011). Also, the books by Oden and Demkowicz (1989), Verfurth (1996), and 
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Babuška and Strouboulis (2001) present an excellent overview of the methods developed 

in the late nineties. 

Most of the a posteriori error estimators are based on energy norms. A posteriori 

error estimates can be classified into residual type (explicit and implicit) and recovery-

type; which are presented in detail by Demkowicz et al. (1984, 1985), Bank (1985, 1986). 

Recovery based error estimations are based on so-called recovered gradient fields. 

Brauchli and Oden (1971) have proposed L2-Projection (L2-PR) technique and computed 

the recovered stress field by a global least square fitting of the stresses. A less specific 

procedure was introduced by Zienkiewicz and Zhu (1987, 1992, 1992), who proposed 

simple recovery based error estimator algorithm. Later, the accuracy of the method was 

significantly improved by modifying the recovery method known as super convergent 

patch recovery (SPR) method (Zienkiewicz and Zhu (1992, 1992)). Many researchers 

have utilized similar recovery schemes based on interpolation error estimates (Peraire et 

al. (1987), Warren et al. (1991), Castro-Diaz et al. (1997), Habashi et al. (2000)). The, 

recovery based techniques have many limitations. Ainsworth and Oden (2000) 

demonstrated a second-order ODE case where the error estimate is zero while the actual 

error can be arbitrarily large.  

Another commonly used error estimator is element residual method, which is 

computed by substituting the approximate result into the underlying partial differential 

equation. The residual methods can be classified into explicit and implicit. Explicit 

residual schemes do not involve solving any auxiliary problems. They only require direct 

computations using available data. While, implicit methods demand the solution of local 

or global problems, using the residuals indirectly. A residual method in error estimation 

has been demonstrated and applied by Demkowicz et al. (1984), Irimie and Bouillard 
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(2001) have used an explicit residual method to compute error estimates in the context of 

the Helmholtz equation. Bank (1986), and Bank and Weiser (1985) also used residual 

methods. Zhang et al. (2001) have demonstrated adaptive results using discretization error 

and residual indicators for the Euler equations. Stewart and Hughes (1996, 1997) have 

introduced residual error estimators for the classical Galerkin as well as Galerkin least-

squares finite element methods. Babuška et al. (1997) have also presented a one-

dimensional analysis of a Dirichlet element error estimator for the Helmholtz problem.  

However, both recovery and residual based error estimator have the significant 

drawback such as: (1) estimators are not adequate for two dimensions, (2) they estimate 

some global solution error over the entire domain, and (3) highly complex in the analysis. 

Hence, another class of methods based on duality techniques have been developed to 

compute error estimate in terms of quantities of interest, directly. Such algorithms are 

known as goal-oriented error estimation schemes. In output based or goal-oriented error 

estimation, practitioners specify the goal of their computations by directly identifying a 

quantity of interest, where this quantity of interest is manifested themselves as functionals 

on the solutions of boundary- and initial-value problems. Gartland (1984) has proposed 

such schemes for one-dimensional elliptic problems, but the expansion of a general setting 

with two and three-dimensional applications came later. These methods have been 

demonstrated by several authors (Becker and Rannacher (1996, 2001), Paraschivoiu 

(1997, 1998, 2000), Prudhomme and Oden (1999), Oden and Prudhomme (2001), 

Strouboulis and Babuška (2000), Suli and Houston (2003), and Rabizadeh et al. (2015, 

2016)). These methods are quite complex and often not suitable for the engineering 

problem. Simple efficient and accurate error estimator is still to be developed. 
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2.5 Observations Based on The Literature Review  

The main observations on the basis of the literature review are presented herein.  

 From the literature review on guided wave SHM, one can see that NDT&E using 

Lamb wave has a lot of potential and has several advantages such as excellent 

propagation capability, high sensitivity to damage, and excellent performance in 

providing high precision damage detection in thin walled structures. While the 

relevant guided wave theory for NDE is fairly developed, the Lamb waves are not 

in a mature stage particularly for the understanding of wave damage interaction 

and there has been only some preliminary progress regarding their use. Thus, there 

is a need for further investigation.  

 Several analytical and semi-analytical methods have been proposed mainly for the 

computation of dispersion curves and the wave propagation behavior in the 

frequency domain. Analytical models are commonly used for isotropic structures 

in simple configurations, while semi-analytical approaches are widely considered 

for laminates. Due to their inadequacy to simulate more realistic structural 

configurations, the use of these methods is limited to structures with relatively 

simple geometries. There have been some efforts directed towards the application 

of these methods in the modeling of wave propagation in the complex geometries. 

There is considerable scope for guided wave based quantitative damage detection 

for the engineering practices. 

 An immense number of numerical schemes exist for the identification and location 

of damage, which includes finite element, spectral element, finite difference, 

LISA, spectral cell, finite cell and other methods. These methods have been 
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presented in the context of wave propagation and their interaction with 

discontinuities. Depending on the intended application, each particular technique 

has its advantages and disadvantages. The major obstacle has been the high mesh 

density and small time step requirements for analyzing Lamb wave propagation. 

The primary factors that can be defining the suitability of a numerical technique 

are the computational cost along with convergence properties and efficiency to 

handle complexities. Intensive investigation and improvement are matters for 

further research. 

 Due to simplicity, linear analysis of Lamb wave for damage detection has got more 

attention than the nonlinear analysis. The nonlinear Lamb wave shows sensitivity 

to micro/nano scale damage and also has great potential for characterization of 

material nonlinearity. Nonlinear and higher harmonics Lamb wave analysis is 

required in order to assess the phenomenon associated with the characteristics of 

damage. 

 Residual type and recovery type a posteriori error estimators are reported in 

general to analyze the solution accuracy obtained from numerical scheme. The 

model uncertainty arises from the use of coarse discretization of the computational 

domain. These error estimation techniques are very complex to compute the error 

particularly for two dimensional domain. To ensure the reliability of computation, 

development of an a posteriori error estimation technique with the capability to 

deal complex geometry at involving lower computational cost will be very useful.  

 The majority of the reviewed literature shows the significant difficulties and 

challenges in signal processing of wave signals for the purpose of damage 

identification and evaluation. Several feature extraction and signal processing 

techniques have been developed such as STFT, WVD, HHT, and wavelet 
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transform. Most of them have not considered coherent noise and very low SNR 

signals. Therefore, a genuine requirement of proper filtering technique which can 

resolve the above issues, should be developed. 

2.6 Research Context 

The first task of the thesis work is to present the wavelet based framework to the 

simulation of linear and nonlinear wave propagation problems. The second task of the 

work is to present wavelet-based a posteriori error estimation scheme to estimate the error 

in the wave propagation problems and practical engineering problems. The third task of 

the work is to present wavelet matched filter method to extract signal features that can be 

correlated to the change of structural status. 

  


