	Page No.
List of Figures	Х
List of Tables	XV
List of Abbreviations	xvi
List of Symbols	xviii
Preface	XX

Chapter 1: Introduction and Theoretical Background

L
3
3
)
7
3
L
3
5
)

Chapter 2: Literature Review

2.1 Early Developments and Fundamentals	32
2.1.1 Parameters of Lamb waves for damage detection	33
2.1.1.1. Amplitudes of the waves	33
2.1.2.2. Phase velocity and group velocity	34
2.2 Analysis and Simulation of Lamb Wave	35
2.2.1 Analytical analysis	36
2.2.2 Numerical analysis	38
2.3 Processing of Lamb Wave Signal	43
2.3.1 Time domain analysis	44
2.3.2 Frequency domain	45
2.3.3 Integrated time-frequency domain analysis	45
2.4 Error Estimation	47

2.5 Observations Based on the Literature Review	
2.6 Research Context	

Chapter 3: Wavelet Transform and Multiscale Analysis

3.1 Literature Review of Wavelets	53
3.1.1 History of wavelets	53
3.1.2 Wavelets for solution of PDEs	55
3.1.3 Wavelet based multiscale methods	57
3.1.4 Wavelet based finite element method for wave propagation	58
3.2 Wavelet Overview	59
3.2.1 Continuous wavelet transform (CWT)	60
3.2.2 Discrete wavelet transform (DWT)	61
3.2.3 Multiscaling using wavelets	62
3.2.4 Multi-scale decomposition of finite element matrix using wavelets	68
3.3 Numerical Results	72
3.3.1 Transient scalar wave	73
3.3.2 Time harmonic scalar wave	74
3.3.3 Lamb waves	79

Chapter 4: Multiscale Simulation Using Nonstandard Wavelet Transform

4.1 Introduction	
4.2 Mathematical Formulation	
4.2.1 Nonstandard wavelet transform	
4.2.2 Multiscaling using wavelets	
4.2.3 Nonstandard multi-scale decomposition of finite element matrix	
4.3 Results and Discussion	103

Chapter 5: Wavelets for A Posteriori Error Estimation

5.1 Introduction	116
5.2 Wavelet Based Error Estimation	118
5.3 Numerical experiments	125

Chapter 6: Lamb Wave Signal Processing

6.1 Diagnosis of Structural Cracks in the Plate-Like Structures	. 134
6.1.1 Introduction	134

6.1.2 Mathematical formulation	. 137
6.1.2.1. Wavelet transform for denoising of signal	137
6.1.2.2. Matched filter and wavelet matched filter methods	. 140
6.1.2.2. Criteria for selecting the optimal wavelet using Shannon's entropy	142
6.1.3 Results and discussion	. 143
6.1.3.1. Single wave mode excitation	144
6.1.3.2. Multi wave mode excitation	. 161
6.2 Modeling of Lamb Wave for Cylindrical Structures	173

Chapter 7 Conclusions and Future Work

2.1 Conclusions	187
2.2 Future Research Directions	1 89

References	191
List of Publications	222

LIST OF FIGURES

Figure 1.1. The perceptible advantages of SHM over NDT&E5
Figure 1.2. Outline of SHM system
Figure 1.3. Guided wave based SHM system7
Figure 1.4. Surface displacement pattern in Rayleigh wave (Cheeke (2002))9
Figure 1.5. A thin plate of 2 <i>t</i> thickness
Figure 1.6. Particle motion of Lamb waves in x and y-direction
Figure 1.7. Sketch diagram of particles motion in the symmetric and anti-symmetric wave
modes
Figure 1.8. Sketch diagram of Lamb wave propagating modes in isotropic plate 17
Figure 1.9. Dispersion curves for Lamb modes in Al plate with 1 mm thickness 19
Figure 1.10. Dispersion curves of Lamb modes in Al plate with 2 mm thickness 20
Figure 3.1. Haar scaling and wavelet function
Figure 3.2. D4 scaling function and D4 wavelets
Figure 3.3. B-spline scaling function and B-spline wavelets
Figure 3.4. Multi-scale decomposition
Figure 3.5. Snapshots of displacements at $t = 0.95$ s with various mesh number
Figure 3.6. Snapshots of displacements at different time instants with 100×100 mesh
number
Figure 3.7. Displacement variations along the x-axis at $t = 0.95$ s
Figure 3.8. Displacement variations along the x-axis
Figure 3.9. Displacement response <i>u</i> for time harmonic scalar wave
Figure 3.10. Contour plots of the displacement in the x-direction at four different time
frame for isotropic plate by wavelet-based multiscale method
Figure 3.11. Excitation signal 81

Figure 3.12. Wave propagation for 400 kHz center frequency in plate at different nodes
Figure 3.13. Response of plate with no. of elements per wavelength
Figure 3.14. Comparison of plate response at wavelet transform level 1
Figure 3.15. Comparison of plate response at wavelet transform level 2
Figure 3.16. Comparison of plate response at wavelet transform level 3
Figure 3.17. Comparison of plate response at wavelet transform level 4
Figure 4.1. Organization of a nonstandard form of the operator <i>T</i>
Figure 4.2. Multi-scale decomposition
Figure 4.3. Excitation signal for Lamb wave with higher harmonics
Figure 4.4. Plate geometry, boundary conditions, forcing function and micro crack.
material softening 104
Figure 4.5. Convergence of Lamb wave response at healthy plate 105
Figure 4.6. Comparison of response of plate for 40, 80 and 120 elements per wavelength
for higher harmonics 106
Figure 4.7. Comparison of higher harmonic Lamb waves plates response at wavele
transform level
Figure 4.8. Comparison of non-dimentional L_2 norm value for the higher harmonic signal
with various wavelet
Figure 4.9. Nodal displacement (mm) vs time (microsecond) at sensing location for a
healthy plate
Figure 4.10. Nodal displacement for a plate with crack
Figure 4.11. Comparison of damage plate response at wavelet transform level 3 111
Figure 4.12. Comparison of non-dimentional L ₂ norm for various wavelet in damage
plate111

Figure 4.13. The waveform of higher harmonics Lamb waves at the center frequency of
400 kHz
Figure 4.14. The spectrum of higher harmonics Lamb waves at the center frequency of
400 kHz
Figure 5.1. Orthogonality121
Figure 5.2. The solution at $t = 1.6$ with mesh size 40×40
Figure 5.3. Comparison of exact, two scale, and proposed error estimators
Figure 5.4. The solution at $t = 1.1$ s with mesh size 40×40
Figure 5.5. Comparison of two scale, and proposed error estimators
Figure 5.6. Discretized one quarter of the rectangular plate with a hole
Figure 5.7. Strain energy using two scale difference
Figure 5.8. Strain energy using wavelet coefficient
Figure 6.1. Two level filter bank for DWT analysis
Figure 6.2. Proposed WMFM for damage identification
Figure 6.3. Schematic of FE model
Figure 6.4. Sensor output for S_0 mode excitation for the healthy and damage plate 146
Figure 6.5. FE simulation of Lamb wave146
Figure 6.6. Shannon's entropy curves of the DWT from Lamb wave signal
Figure 6.7. Shannon's entropy curves of the CWT from Lamb wave signal
Figure 6.8. RMSE in various SNR level computed from wavelet transform
Figure 6.9. A contaminated signal with SNR 0 dB for damage plate 153
Figure 6.10. Wavelet transform for the contaminated signal with SNR (0 dB) for damaged
plate
Figure 6.11. Contaminated signal with SNR (0 dB) convoluted with healthy plate signal.

Figure 6.12. The response of WMFM for the signal with SNR (0 dB) 154
Figure 6.13. A contaminated signal with SNR (10 dB) and coherent noise 156
Figure 6.14. Wavelet transform for the contaminated signal with SNR (10 dB) and
coherent noise
Figure 6.15. MFT response for the contaminated signal with SNR (10 dB) and coherent
noise
Figure 6.16. WMFM response for the contaminated signal with SNR (10 dB) and
coherent noise
Figure 6.17. FE model
Figure 6.18. Sensor output for S_0 mode excitation for the healthy and damaged plate.
Figure 6.19. Shannon's entropy curves of the DWT from Lamb wave signal 163
Figure 6.20. Shannon's entropy curves of the CWT from Lamb wave signal164
Figure 6.21. RMSE in various SNR level computed from wavelet transform
Figure 6.22. A contaminated signal with SNR level 0 dB for damaged plate 167
Figure 6.23. Response of wavelet transform for the noisy damaged plate signal with SNR
(0 dB) 167
Figure 6.24. MFT response for the noisy signal with SNR (0 dB) convoluted with healthy
signal
Figure 6.25. The response of WMFM for the noisy damaged plate signal with SNR (0
dB) 168
Figure 6.26. A contaminated damaged plate signal with SNR (5 dB) and coherent noise.
Figure 6.27. Wavelet Transform for the contaminated signal with SNR (5 dB) and
coherent noise

Figure 6.28. MFT response for the contaminated signal with SNR (5 dB) and coherent
noise170
Figure 6.29. The response of WMFM for the contaminated signal with SNR 5 dB 170
Figure 6.30. The configuration of a hollow cylinder with circumferential notch 174
Figure 6.31. Snapshots of FE Simulation of Lamb wave propagation in brass pipe and
scattering
Figure 6.32. Sensor output for the L (0, 2) mode excitation for healthy and damaged
cylinder
Figure 6.33. Shannon's entropy curves of the DWT from Lamb wave signal
Figure 6.34. Shannon's entropy curves of the CWT from Lamb wave signal
Figure 6.35. RMSE in various SNR level computed from wavelet transform
Figure 6.36. A contaminated signal with SNR (0 dB) for damaged cylinder 180
Figure 6.37. Response of wavelet transform for the noisy damaged cylinder signal with
SNR (0 dB)
Figure 6.38. MFT response for the noisy signal with SNR (0 dB) convoluted with healthy
signal
Figure 6.39. The response of WMFM for the noisy damaged cylinder signal with SNR (0
dB) 181
Figure 6.40. A contaminated damaged cylinder signal with SNR (5 dB) and coherent
noise
Figure 6.41. Wavelet Transform for the contaminated signal with SNR (5 dB) and
coherent noise
Figure 6.42. MFT response for the contaminated signal with SNR (5 dB) and coherent
noise
Figure 6.43. The response of WMFM for the contaminated signal with SNR 5 dB 183

LIST OF TABLES

Table 1.1. An overview of the most commonly employed NDT&E techniques. 2
Table 1.2. Comparison of Lamb wave transducers with other NDE transducers
Table 4.1. Comparison of computational time for the simulation of Lamb wave 113
Table 6.1. Comparison of RMSE, correlation coefficient and post improved SNR of the
wavelet denoising 159
Table 6.2. Comparison of RMSE, correlation coefficient and post improved SNR of the
MFT
Table 6.3. Comparison of RMSE, correlation coefficient and post improved SNR of the
WMFM
Table 6.4. Comparison of RMSE, correlation coefficient and post improved SNR of the
wavelet based denoising using bior4.4 wavelet function
Table 6.5. Comparison of RMSE, correlation coefficient and post improved SNR of the
MFT
Table 6.6. Comparison of RMSE, correlation coefficient and post improved SNR of the
WMFM using bior4.4 wavelet function 172
Table 6.7. Comparison of RMSE, correlation coefficient and post improved SNR of the
wavelet based denoising using bior4.4 wavelet function
Table 6.8. Comparison of RMSE, correlation coefficient and post improved SNR of the
MFT
Table 6.9. Comparison of RMSE, correlation coefficient and post improved SNR of the
WMFM using bior4.4 wavelet function 184

LIST OF ABBREVIATIONS

Al	Aluminium	
AR	Autoregressive	
ARIMA	Autoregressive Integrated Moving Average	
AWGN	Additive White Gaussian Noise	
BEM	Boundary Element Method	
CWT	Continuous Wavelet Transform	
D4	Daubechies order 4	
DOF	Degree of Freedom	
DWT	Discrete Wavelet Transform	
EFIT	Elastodynamic Finite Integration Technique	
FCM	Finite Cell Method	
FDM	Finite Difference Method	
FEM	Finite Element Method	
FFT	Fast Fourier Transform	
FT	Fourier Transform	
FVM	Finite Volume Method	
HHT	Hilbert-Huang transforms	
HP	High Pass	
HT	Hilbert Transform	
IDWT	Inverse Discrete Wavelet Transform	
LISA	Local Interaction Simulation Approach	
LP	Low Pass	
MA	Moving Average	
MFT	Matched Filter Technique	
MP	Matching Pursuit	
NDT&E	Non-Destructive Testing & Evolution	
NS	Non-Standard	
PDEs	Partial Differential Equations	
PVDF	Polyvinylidene Fluoride	
PZT	Piezoelectric lead Zirconate Titanate	
RHP	Reverse High Pass	
RLP	Reverse Low Pass	

RMSE	Root Mean Square Error
SBFEM	Scaled Boundary Finite Element Method
SCM	Spectral Cell Method
SEM	Spectral Element Method
SHM	Structural Health Monitoring
SIM	Sharp Interface Model
SNR	Signal-to-Noise Ratio
STFT	Short Time Fourier Transform
ToF	Time of Flight
WMFM	Wavelet Matched Filter Method
WT	Wavelet Transform
WVD	Wigner-Ville Distribution

A_0	Fundamental anti-symmetric Lamb modes		
(c_p)	Phase velocity		
(c_g)	Group velocity		
${\cal C}_{j,k}$	Scaling coefficients		
C_L and C_T	Longitudinal and shear velocity		
$d_{_{j,k}}$	Wavelet coefficients		
Ε	Young's Modulus		
f_x and f_y	Body forces		
h	Mesh size		
k	Circular wave number		
$\begin{bmatrix} K \end{bmatrix}$	Stiffness matrix		
[M]	Mass matrix		
P_{j}	Projection onto the space V_j		
Q_{j}	Projection onto the space W_j		
r	Correlation coefficent		
S_{0}	Fundamental symmetric Lamb modes		
$\begin{bmatrix} T_j \end{bmatrix}$	Wavelet transformation matrix		
<i>u</i> _x	Velocity in X-direction		
<i>u</i> _y	Velocity in Y-direction		
[<i>u</i>]	Unknown coefficient vectors		
[ü]	Unknown coefficient vectors		
V_i	Space spanned by a set of scaling function		
W_i	Space spanned by a set of wavelet function		
$\frac{1}{x}$	Mean of original signal		
Δx	Element size		
\overline{y}	Mean of denoised signal		

V	Poisson ratio
σ_{xx} and σ_{yy}	Normal stresses
$ au_{xy}$	Shear stress
λ and μ	Lamé constants
$\lambda_{_{wave}}$	Wavelength
ϕ	Scaling function
Ψ	Wavelet function
ω	Circular frequency