It is certified that the work contained in the thesis titled "SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF METAL OXIDE AND MIXED METAL OXIDE NANOPARTICLES" by "Ravi Kant Sharma" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA.

Signature: Supervisor (Department of Chemistry)

DECLARATION BY THE CANDIDATE

I, "Ravi Kant Sharma", certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of "Prof. K. D. Mandal" from "2012" to "2016", at the "Department of Chemistry", Indian Institute of Technology, Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports dissertations, theses, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place:

Signature of the Student

("Ravi Kant Sharma")

CERTIFICATE BY THE SUPERVISOR(S)

It is certified that the above statement made by the student is correct to the best of my knowledge.

Supervisor (Department of Chemistry)

> Signature of Head of Department/Coordinator of School(s) "SEAL OF THE DEPARTMENT/SCHOOL"

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF METAL OXIDE AND MIXED METAL OXIDE NANOPARTICLES

Name of the Student: Ravi Kant Sharma

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *"Doctor of Philosophy"*.

Date:

Place:

Signature of the Student (*Ravi Kant Sharma*)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

I wish to express my deepest gratitude and sincere thanks to my supervisor Late Prof. Ranjana Ghose and present supervisor Prof. K. D. Mandal, Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi under whose valuable guidance, support and motivation to complete my doctorate research work. The valuable hours of discussion and suggestions that I had with him have undoubtedly helped in supplementing my thoughts in the right direction for attaining the desired objectives. I consider myself extremely fortunate for having the opportunity to learn and work under his valuable supervision over the entire period of my association with him.

I wish to express my sincere thanks to Dr. R. B. Rastogi, Professor and Head, Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi for providing good infrastructure facilities and motivational support.

I further express my thanks to all faculty members of the Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi for their cooperation, technical support and suggestions.

I would like to express my sincere regards to Prof. Rajeev Prakash, External Subject Expert, School of Material Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi for his useful discussion during my research work.

I am grateful to Prof. U.P Singh, Department of Chemistry, IIT, Roorkee for helping in carrying out the research work.

My sincere thanks to my lab mates and seniors for their cooperation and ever ready help. I am also thankful to all the supportive staffs of the Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi for helping academic and nonacademic levels during my Ph. D research. Next, I would like to acknowledge all my former teachers, who guided me towards the right direction to reach the current stage.

My sincere thanks to all my family members and friends for their moral support and encouragement to complete my research work.

Finally, I would like to express my sincere thanks to the funding source, Ministry of Human Resources and Development (MHRD), Government of India, for providing me financial support during Ph. D.

(Ravi Kant Sharma)

CHAPTER - 1	
Introduction	1 - 34
1.1. Materials science	1
1.2. Classifications of nanostructured materials (low dimensional systems)	2
1.3. Nanoparticles	3
1.4. Metal oxides and mixed metal oxides nanoparticles	3
1.5. Applications of metal oxides and mixed metal oxides nanoparticles	8
1.6. Important properties of nanostructured materials	11
1.6.1. Magnetic properties	12
(a) Origin of magnetism	12
(b) Classification of magnetic materials	14
1.6.2. Optical properties	21
1.6.3. Catalytic properties	23
1.6.4. Structural properties	24
1.6.5. Electronic properties	25
1.6.6. Antimicrobial properties	25
1.7. Oxide based materials related to the present work	26
1.7.1. Copper oxide (CuO)	26
1.7.2. Zinc oxide (ZnO)	27
1.7.3. Nickel oxide (NiO)	28
1.7.4. Cobalt oxide (Co_3O_4)	29
1.7.5. Zinc aluminate (ZnAl ₂ O ₄)	30
1.7.6. Zinc ferrite (ZnFe ₂ O ₄)	31

1.8. Objective of the present research work	32
CHAPTER - 2	
Synthesis methods and characterization techniques	35 - 57
2.1. Introduction	35
2.2. Methods of synthesis	35
2.2.1. Liquid-solid transformations (chemical methods)	39
2.2.2. Gas-solid transformations	48
2.3. Classification of the characterization techniques	50
2.4. No microscopic techniques	51
2.4.1. Powder X-ray diffraction (XRD)	51
2.4.2. Fourier transform infrared (FT-IR) spectroscopy	54
2.4.3. UV-visible diffuse reflectance spectroscopy	54
2.4.4. X-ray photoelectron spectroscopy (XPS)	54
2.4.5. Thermal gravimetric analysis (TGA)	55
2.4.6. Surface area measurement (BET)	55
2.4.7. Superconducting quantum interference device (SQUID)	56
2.5. Microscopic techniques	56
2.5.1. Field emission scanning electron microscopy (FE-SEM)	56
2.5.2. Transmission electron microscopy (TEM)	57
CHAPTER - 3	
Metal oxide nanoparticles	58 - 104
3.1. Nanocrystalline copper oxide (CuO)	58
3.1.1. Introduction	58
3.1.2. Experimental	60
(i) Materials	60

(ii) Synthesis	61
(iii) Catalytic activity test	61
3.1.3. Results and discussion	61
3.2. Zinc oxide nanoparticles (ZnO)	71
3.2.1. Introduction	71
3.2.2. Experimental	73
(i) Materials	73
(ii) Synthesis	74
(iii) Testing of antifungal activity	74
3.2.3. Results and discussion	75
3.3. Nickel oxide nanoparticles (NiO)	86
3.3.1. Introduction	86
3.3.2. Experimental	88
(i) Materials	88
(ii) Synthesis	88
(iii) Catalytic reactivity test	89
3.3.3. Results and discussion	89
3.4. Conclusions	102
CHAPTER – 4	
Mixed metal oxide nanoparticles	105 - 156
4.1. CuO–ZnO mixed metal oxide nanoparticles	105
4.1.1. Introduction	105
4.1.2. Experimental	107
(i) Materials	107
(ii) Synthesis	107

(iii) Catalytic activity test	108
4.1.3. Results and discussion	108
4.2. ZnO–NiO mixed metal oxide nanoparticles	120
4.2.1. Introduction	120
4.2.2. Experimental	123
(i) Materials	123
(ii) Synthesis	123
(iii) Catalytic activity test	124
4.2.3. Results and discussion	124
4.3. Co ₃ O ₄ –ZnO mixed metal oxide nanoparticles	137
4.3.1. Introduction	137
4.3.2. Experimental	140
(i) Materials	140
(ii) Synthesis	140
4.3.3. Results and discussion	141
4.4. Conclusions	155
CHAPTER – 5	
Spinel metal oxide nanoparticles	157 - 183
5.1. Zinc aluminate (ZnAl ₂ O ₄) spinel nanoparticles	157
5.1.1. Introduction	157
5.1.2. Experimental	158
5.1.3. Results and Discussion	159
5.2. Zinc ferrite (ZnFe ₂ O ₄) spinel nanoparticles	168
5.2.1. Introduction	168
5.2.2. Experimental	171

References		184 -	217
5.3. Conclusions		182	
5.2.3. Results and	ldiscussion	172	
(iii) Antifu	ngal activity test	171	
(ii) Synthes	sis	171	
(i) Material	S	171	

List of Publications

LIST OF FIGURES

Figure 1.1. Schematic presentation of reduced-dimensional systems	3
Figure 1.2. SEM image of the Ce_2O_3 -TiO ₂ composite nanofibers	6
Figure 1.3. SEM image of ZnO nanorings	6
Figure 1.4. SEM image of NiO nanotubes	7
Figure 1.5. SEM image of flower-like CuO	7
Figure 1.6. TEM image of γ -Fe ₂ O ₃ spherical nanoparticles	8
Figure 1.7. Application of metal oxides and mixed metal oxides nanoparticles in various fields	11
Figure 1.8. Origin of magnetism	13
Figure 1.9. Diamagnetic material in an applied magnetic field	14
Figure 1.10. Paramagnetic material in an applied magnetic field	15
Figure 1.11. Paramagnetic moment in the absence and presence of an applied magnetic field	16
Figure 1.12. Ferromagnetic material	17
Figure 1.13. Antiferromagnetic material	18
Figure 1.14. Ferrimagnetic material	18
Figure 1.15. The size dependence of coercivity exhibited by magnetic particles: $H_C = 0$ below superparamagnetic (SP) particle size limit r _o , single- domain behavior (SD) between r _o and the single domain limit r _c and multidomain behavior (MD) for r > r _c	20
Figure 1.16. Comparison of magnetization curves of ferromagnetic, superparamagnetic and paramagnetic materials	21
Figure 1.17. Size dependent emission from gold nanoparticles	23
Figure 1.18. Quantization of energy levels depends on particle size	25
Figure 1.19. AB_2O_4 normal spinel structure	31
Figure 2.1. Schematic representations of top-down approach	37

Figure 2.2. Schematic representation of the principle of mechanical grinding	38
Figure 2.3. Schematic representations of bottom–up approach	38
Figure 2.4. Steps involved in sol-gel technique	42
Figure 2.5. The technique used to extract the pore fluid from a wet gel creates a dry solid with variable porosity: strong capillary forces create a xerogel, weak capillary forces create an ambigel and zero capillary force creates an aerogel	43
Figure 2.6. (a) Oil/water microemulsion (normal micelle), (b) water/oil microemulsion (reverse micelle) and (c) spontaneous self-assembly of surfactants into micelles in aqueous solution	45
Figure 2.7. Schematic diagram of solvothermal synthesis setup	46
Figure 2.8. Classification of the characterization techniques used in the present work	51
Figure 2.9. Bragg's law of diffraction	53
Figure 3.1.1. XRD patterns of nanocrystalline CuO (as-prepared and after calcination)	63
Figure 3.1.2. Thermal gravimetric analysis curve of nanocrystalline CuO	63
Figure 3.1.3. FT-IR spectra of nanocrystalline CuO (as-prepared and after calcination)	64
Figure 3.1.4. (a) Diffuse reflectance spectra of nanocrystalline CuO, and (b) The plot of $(\alpha h \upsilon)^2$ vs. h υ according to the data from (a)	65
Figure 3.1.5. FE-SEM images of nanocrystalline CuO at low magnification of (a) as-prepared, (b) calcined at 300 °C, (c) calcined at 400 °C, and (d) EDX analysis plot of nanocrystalline CuO	67
Figure 3.1.6. FE-SEM images of nanocrystalline CuO at high magnification of (a) as-prepared, (b) calcined at 300 °C, and (c) calcined at 400 °C	68
Figure 3.1.7. Schematic diagram indicating the mechanism for the reduction of 4-nitrophenol to 4-aminophenol in the presence of nanocrystalline CuO	71
Figure 3.2.1. XRD patterns of as-prepared and calcined samples at 300 $^{\circ}$ and 400 $^{\circ}$ C	76
Figure 3.2.2. Thermal gravimetric analysis curves of as-prepared sample	77

Figure 3.2.3. FT-IR spectra of as-prepared and calcined samples at 300 $^{\rm o}$ and 400 $^{\rm o}{\rm C}$	78
Figure 3.2.4. (a) Diffuse reflectance spectra of ZnO-NPs, and (b) The plot of $(\alpha h \upsilon)^2$ vs. h υ according to the data from (a)	79
Figure 3.2.5. FE-SEM images of samples at low magnification of (a) as-prepared, (b) calcined at 300 °C, (c) calcined at 400 °C, and (d) EDX analysis plot of ZnO-NPs	81
Figure 3.2.6. FE-SEM images of samples at high magnification of (a) as-prepared, (b) calcined at 300 °C, and (c) calcined at 400 °C	82
Figure 3.2.7. TEM images of ZnO-NPs (a) calcined at 300 $^{\circ}$ C and (b) 400 $^{\circ}$ C	83
 Figure 3.2.8. Antifungal activity of different concentration of ZnO nanoparticles against tested <i>Candida albicans</i> (a) control, (b) 5mg/mL, (c) 10mg/mL, (d) 15mg/mL, and (e) 20mg/ML 	85
Figure 3.3.1. XRD patterns of as-prepared and calcined samples	91
Figure 3.3.2. Thermal gravimetric analysis curve of as-prepared sample	91
Figure 3.3.3. FT-IR spectra of as-prepared and calcined samples	92
Figure 3.3.4. Diffuse reflectance spectra of nanocrystalline NiO: (a) after calcination at 350 °C, (b) after calcination at 500 °C, and the plot (c) and (d) for $(\alpha h \upsilon)^2$ versus h υ drawn from the data (a) and (b)	94
Figure 3.3.5. (a) N ₂ adsorption-desorption isotherms and (b) pore-size distribution of nanocrystalline NiO	96
 Figure 3.3.6. FE-SEM images of samples at low magnification: (a) as-prepared, (b) calcined at 350 °C, (c) calcined at 500 °C, and (d) EDX analysis plot of nanocrystalline NiO 	98
Figure 3.3.7. FE-SEM images of samples at high magnification: (a) as-prepared, (b) calcined at 350 °C, and (c) calcined at 500 °C	99
Figure 3.3.8. (a) Typical TEM image and (b) corresponding SAED pattern of nanocrystalline NiO	100
Figure 3.3.9. Schematic diagram representing the mechanism for the reduction of 4- nitrophenol to 4-aminophenol in the presence of nanocrystalline NiO	102
Figure 4.1.1. XRD patterns of as-prepared and calcined nanocrystalline CuO–ZnO mixed metal oxide	110
Figure 4.1.2. Thermal gravimetric analysis curves of as-prepared sample	111

Figure 4.1.3. FT-IR spectra of as-prepared and calcined nanocrystalline CuO–ZnO mixed metal oxide	112
Figure 4.1.4. (a) Diffuse reflectance spectra of nanocrystalline CuO–ZnO mixed metal oxide, and (b) the plot of $(\alpha h \upsilon)^2$ vs. h υ according to the data from (a)	114
Figure 4.1.5. FE-SEM images of the as-prepared sample under different magnifications (a) 2μm, (b) 1μm, (c) 500 nm, and (d) EDX analysis plot of the nanocrystalline CuO–ZnO mixed metal oxide	116
Figure 4.1.6. FE-SEM images of the calcined nanocrystalline CuO–ZnO mixed metal oxide under different magnifications (a) 2μm, (b) 1μm, and (c) 500 nm	117
Figure 4.1.7. Typical TEM images of the nanocrystalline CuO–ZnO mixed metal oxide	118
Figure 4.1.8. Schematic diagram indicating the mechanism for the reduction of 4-nitrophenol to 4-aminophenol in the presence of synthesized samples	120
Figure 4.2.1. XRD patterns of as-prepared and calcined nanocrystalline ZnO–NiO mixed metal oxide	126
Figure 4.2.2. Thermal gravimetric analysis curves of as-prepared sample	127
Figure 4.2.3. FT-IR spectra of as-prepared and calcined nanocrystalline ZnO–NiO mixed metal oxide	128
Figure 4.2.4. Diffuse reflectance spectra of nanocrystalline ZnO–NiO mixed metal oxide: (a) after calcination at 350 °C, (b) after calcination at 500 °C, and the plot (c) and (d) for $(\alpha h \upsilon)^2$ versus h υ drawn from the data (a) and (b)	130
 Figure 4.2.5. SEM images of samples (a) as-prepared, (b) calcined at 350 °C, (c) calcined at 500 °C, and (d) EDX analysis plot of nanocrystalline ZnO–NiO mixed metal oxide 	132
Figure 4.2.6. (a) TEM image and (b) corresponding SAED pattern of nanocrystalline ZnO–NiO mixed metal oxide	133
Figure 4.2.7. Field-dependent magnetization (<i>M</i> – <i>H</i>) curves recorded at 10 K and 300 K for nanocrystalline ZnO–NiO mixed metal oxide	135
Figure 4.2.8. ZFC and FC curves for nanocrystalline ZnO–NiO mixed metal oxide	136
Figure 4.3.1. XRD patterns of the as-prepared and calcined samples at 350 $^{\circ}$ and 500 $^{\circ}$ C	142

Figure 4.3.2. Thermal gravimetric analysis curves of the as-prepared sample	143
Figure 4.3.3. FT-IR spectra of the as-prepared and calcined samples at 350 $^{\circ}$ and 500 $^{\circ}$ C	144
Figure 4.3.4. XPS spectra of (a) Co ₃ O ₄ –ZnO mixed metal oxide nanoparticles, (b) Co 2p, (c) Zn 2p and (d) O 1s	146
Figure 4.3.5 . Diffuse reflectance spectra of Co_3O_4 –ZnO mixed metal oxide nanoparticles: (a) after calcination at 350 °C, (b) after calcination at 500 °C, and the plots (c) and (d) for $(\alpha h \upsilon)^2$ versus h υ drawn from the data (a) and (b)	147
Figure 4.3.6. SEM images of samples (a) as-prepared, (b) calcined at 350 °C, (c) calcined at 500 °C, and (d) EDX analysis plot of Co ₃ O ₄ –ZnO mixed metal oxide nanoparticles	149
Figure 4.3.7. (a)-(b) TEM images, (c) corresponding SAED pattern of Co ₃ O ₄ –ZnO mixed metal oxide nanoparticles and (d) schematic model of the mixed metal oxide nanoparticles	151
Figure 4.3.8. Field-dependent magnetization (M–H) curves recorded at 10 K and 300 K for Co ₃ O ₄ –ZnO mixed metal oxide nanoparticles	153
Figure 4.3.9. Schematic of the exchange bias mechanisms	153
Figure 4.3.10. ZFC and FC curves for Co ₃ O ₄ –ZnO mixed metal oxide nanoparticles	154
Figure 5.1.1. XRD patterns of nanocrystalline zinc aluminate (before and after calcination)	160
Figure 5.1.2. Thermal gravimetric analysis curves of nanocrystalline zinc aluminate	161
Figure 5.1.3. FT-IR spectra of nanocrystalline zinc aluminate (before and after calcination)	162
Figure 5.1.4. Diffuse reflectance spectra of nanocrystalline zinc aluminate (before and after calcination)	163
Figure 5.1.5. SEM images of nanocrystalline zinc aluminate (a) before calcination, (b) calcined at 500 °C and (c) 600 °C	165
Figure 5.1.6. TEM images of nanocrystalline zinc aluminate (a) calcined at 500 °C and (b) 600 °C	167
Figure 5.2.1. XRD patterns of as-prepared and calcined samples at 250 $^{\circ}$ and 350 $^{\circ}$ C	174
Figure 5.2.2. Thermal gravimetric analysis curves of as-prepared sample	175

Figure 5.2.3. FT-IR spectra of as-prepared and calcined samples at 250 $^{\circ}$ and 350 $^{\circ}$ C	176
Figure 5.2.4. (a) Diffuse reflectance spectra of nanocrystalline $ZnFe_2O_4$ spinel, and (b) the plot of $(\alpha h \upsilon)^2$ vs. h υ according to the data from (a)	177
Figure 5.2.5. FE-SEM images of samples (a) as-prepared, (b) calcined at 250 °C, (c) calcined at 350 °C, and (d) EDX analysis plot of nanocrystalline ZnFe ₂ O ₄	179
Figure 5.2.6 . (a) TEM image and (b) corresponding SAED pattern of nanocrystalline ZnFe ₂ O ₄	180
Figure 5.2.7. Antifungal activity of 10 mg/mL concentration of nanocrystalline ZnFe ₂ O ₄ tested against pathogenic <i>Candida albicans</i>	182

LIST OF TABLES

Table 3.1.1. EDXA data of as-prepared and calcined nanocrystalline CuO	69
Table 3.1.2. BET surface area and pore volume of as-prepared and calcined nanocrystalline CuO	70
Table 3.1.3. Time required for the complete reduction of 4-nitrophenol in thepresence of nanocrystalline CuO as catalyst	71
Table 3.2.1. BET surface area and pore volume of the samples before and after calcination	80
Table 3.2.2. EDXA data of the samples before and after calcination	83
Table 3.2.3. Zones of inhibition observed for different concentration of ZnO-NPs against Candida albicans during disc diffusion testing	86
Table 3.3.1. Crystallite size and band gap values of nanocrystalline NiO calcinedat 350 °C and 500 °C	95
Table 3.3.2. BET surface area and pore volume of as-prepared and calcined samples	96
Table 3.3.3. EDXA data of as-prepared and calcined samples	100
Table 3.3.4. Time required for the complete reduction of 4-nitrophenol in the presence of synthesized samples as catalyst	102
Table 4.1.1. Precipitation time and BET surface area of as-prepared sample	115
Table 4.1.2. Time required for the complete reduction of 4-nitrophenol in the presence of different metal oxide nanoparticles as catalysts	119
Table 4.2.1. Crystallite size and band gap values of ZnO and NiO in nanocrystallineZnO–NiO mixed metal oxide calcined at 350 °C and 500 °C	131
Table 4.2.2. BET surface area of the samples before and after calcination	131
Table 4.2.3. Time required for the complete reduction of 4-nitrophenol in the presence of synthesized samples as catalysts	137
Table 4.3.1. BET surface area of the samples before and after calcination	148
Table 4.3.2. EDXA data of the calcined samples at 350 $^{\circ}$ and 500 $^{\circ}$ C	150
Table 5.1.1. BET surface area and pore volume of nanocrystalline zinc aluminate before and after calcination	164

Table 5.1.2. EDX analysis data of nanocrystalline zinc aluminate before and after calcination	166
Table 5.2.1. BET surface area and pore volume of the samples before and after calcination	178
Table 5.2.2. EDXA data of as-prepared and calcined samples	180

SYMBOLS USED

Symbols	Meaning
°C	Degree centigrade
μ	Micro
Т	Temperature (K)
θ	Bragg diffraction angle (degree)
λ	Wavelength (nm)
E_g	Energy band gap (eV)
F(R)	Kubelka-Munk function
R	Reflectance
α	Optical absorption coefficient
υ	Frequency
h	Planck's constant (J s)
М	Magnetization (emu/g)
Н	Magnetic field strength (A/m, T or Oe)
M_r	Remanent magnetization (emu/g)
H_c	Coercivity (A/m, T or Oe)
H _{ex}	Exchange anisotropy
T _B	Blocking temperature (K)
Тс	Curie temperature
T_N	Neel temperature
D	Crystallite size (nm)

PREFACE

The work comprised in this thesis entitled "Synthesis, characterization and applications of metal oxide and mixed metal oxide nanoparticles" play a very important role in various areas of chemistry, physics, biology and materials science because of their interesting properties. When two or more metal oxides are mixed together either by physical or by chemical methods to fabricate mixed metal oxide nanoparticles, a novel set of physical and chemical properties may be obtained that would be completely different from that of the individual constituents. The distinct properties of nanomaterials arise from quantum size effects, quantum tunneling effects and surface effects. An extensively controlled preparation of desired shape, morphology and size depending upon its applications of the nanostructured materials with high purity is still a large challenge for the scientific community. In this context, a simple, low cost and environment friendly for the large-scale production of metal oxide and mixed metal oxide nanostructured materials and their studies on optical, magnetic, catalytic and antifungal properties have not been addressed in details in the literature. The formation of high purity samples at the nano level with high surface area and control of the size, shape, homogeneity and agglomeration of nanoparticles, which is one of the primary aims of this thesis. During my research work, I have synthesized metal oxide CuO, ZnO, NiO, Co₃O₄ and mixed metal oxide CuO–ZnO, ZnO–NiO, Co₃O₄–ZnO nanoparticles by homogeneous precipitation method and nanocrystalline zinc aluminate (ZnAl₂O₄) spinel powder by sol-gel method. Many of the present methods in use today are difficult to develop in large-scale industrial applications because they are expensive, complicated, require sophisticated apparatus, high reaction temperatures, long production time, toxic reagents and producing by-products which are harmful to the environment. The present homogeneous precipitation method offers easy control of uniform particle size, good textural properties, environmental friendly and preparing samples at low temperature in short processing time in large scale production, not employing any expensive raw materials and complicated equipments. The importance of the sol-gel process includes the ability of maintaining a high degree of purity, high homogeneity and also offers simple and low-cost. The thesis is organized in five chapters.

The first chapter contains a general introduction about nanostructured materials (low dimensional systems) and applications of these.

In the second chapter, an overview of various synthesis methods and characterization techniques used for preparing and characterizing the synthesized products.

In the third chapter, the detailed studies on the synthesis, characterization and catalytic activity of nanocrystalline copper oxide (CuO) with dandelion-like morphology are described. In this chapter, the thorough studies on the synthesis, characterization and antifungal activity of zinc oxide nanoparticles (ZnO-NPs) are discussed. The thorough studies on the synthesis, characterization and chemical activity of porous nanocrystalline NiO with hexagonal sheet-like morphology has been presented in this chapter.

In the fourth chapter, the synthesis, characterization and chemical activity nanocrystalline CuO–ZnO mixed metal oxide has been presented. In this chapter, a brief description of the synthesis, characterization, optical and magnetic properties of mixed metal oxide (ZnO–NiO and Co_3O_4 –ZnO) nanoparticles are discussed.

In the fifth chapter, the detailed studies on the synthesis and characterization of nanocrystalline zinc aluminate ($ZnAl_2O_4$) spinel powder are described. In this chapter, the thorough studies on the synthesis, characterization and antifungal activity of nanocrystalline zinc ferrite ($ZnFe_2O_4$) are reported.

The work done in the thesis has been published in Journal of Molecular Structure, Ceramics International, Superlattices and Microstructures and Journal of Alloys and Compounds.

xxii