List of Tables

Table 2.1 Processes for making ceramic foams	14
Table 4.1 Manufacturer specified specifications of sucrose	34
Table 4.2 List of compositions used in the present study	34
Table 5.1 List of selected compositions (wt% basis) for fabrication of por alumina ceramics using rice husk	ous 51
Table 5.2 Different mixture compositions and the corresponding bulk density of fabricated green alumina samples	59
Table 5.3 Different mixture compositions, the corresponding green density, linear firing shrinkage and sintered density of fabricated porous alumina samples	% 63
Table 5.4 Crystal structures and lattice parameters of mullite and α - Al ₂ O ₃	64
Table 6.1 Different mixture compositions, the corresponding total porosity, opporosity, average pore size from SEM, interconnection of fabricated porous alum sample	pen 1ina 72
Table 6.2 Comparison of σ_o and β values of porous alumina ceramics fabricathrough different processes	ited 78
Table 7.1 Experimental and predicted (EMT) thermal conductivity of por alumina compacts fabricated using (a) 10, (b) 20, (c) 30 and (d) 40 wt% RH (180) μ m average size	ous (75- 92
Table 7.2 Experimental and predicted (EMT) thermal conductivity of por alumina compacts fabricated using 20 wt% RH powder with (a) < 75 (b) 75-180 180-355 (d) 355-420 and (e) 420-600 μ m size	rous (c) 93
Table 8.1 Variation of dielectric constant of porous alumina samples as a funct of porosity and pore size at different temperatures	tion 114
Table 8.2 Variation of loss tangent of porous alumina samples as a function porosity and pore size at different Temperatures	1 of 123
Table 9.1 List of selected sample compositions (wt% basis) for permeabine measurement	ility 134
Table 9.2 Variation of (a) Darcian permeability k_1 and (b) non-Darcian permeability k_2 with pore size of porous alumina compacts	lity 138