
Chapter 4

UML Approach to Markov Reliability

Modeling

4.1 Introduction

A software system can be analyzed for its quality from many perspectives such as its

performance, scalability, maintainability, usability and reliability. In general, software

reliability is among the major factors in software quality “. . . since it quantifies software

failures, which can make a powerful system inoperative” [67]. In safety critical systems

like Nuclear Power Plant, Aerospace and Medical applications the reliability requirements

are very high. The study of reliability as the quantification of the operational behavior

of software systems with respect to user requirements is defined as SRE. The classic

SRE process includes four major steps [11]: (i) reliability objective (ii) operational profile

(iii) reliability modeling (iv) reliability validation. A reliability objective specifies the

reliability target of the software with respect to the end user. The failures of the system

can be classified into many types [68] as given in table 4.1. A Reliability objective defines

the type of failures that the end user wants to measure.

Once failure classification is performed, reliability requirements can be defined using

reliability metrics. The construction of an operational profile is important in order to

select test cases according to the usage of the system [67]. A fault must be executed to

41

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 42

Table 4.1: Failure classification of system.

Failure Class Description
Transient Occurs with certain inputs
Permanent Occurs with all inputs
Recoverable System can recover without operator intervention
Unrecoverable Operation intervention is needed to recover from failure
Non-corrupting Failure does not corrupt system state or data
Corrupting Failure corrupts system state or data

cause a failure, otherwise it is just a dormant fault [69]. Reliability modeling is essential

to the reliability prediction and estimation process. Most of the reliability modeling

approaches attempt to predict software reliability in the later stages of the life cycle

[67], out of them, SGRM is the most popular one. Those models have been widely used

to predict reliability in the later phases of software by modeling the number of faults

and the failure rate as testing progresses. As a result of those testing, errors are found

and removed and hence the reliability improves. If the reliability objective is not met,

more testing will be applied in an iterative process. Finally in reliability validation, the

projected and observed reliabilities are compared.

Though almost 200 SGRMs have been proposed, as per Michael R. Lyu [67], SRE

is not yet fully delivering its promise. A major reason behind it is that SGRMs are

measurement-based models and hence employed in isolation at the later stages of the

SDLC. Also, no generic model can be fitted to all the kinds of software. Further, such

models treat the software as a monolithic whole without concern to its internal structure.

Ambiguous, inconsistent and incomplete requirements; and defect is design; are the

major factors for software failure. Ambiguous, inconsistent and incomplete requirements

can also lead to a defective design. Hence there is a need to involve all the stakeholders, es-

pecially clients, in constructing a reliability model to ensure that none of the requirements

have missed out. Hence there must be a common language to construct the reliability

model.

We postulate it is possible to address this gap by providing a methodology to sup-

port SRE from requirements to deployment, with adequate analysis, through appropriate

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 43

mappings. This will address the modeling limitations of the current approaches, which

have been stated in section 1.1. We propose an approach to predict software system

reliability from scenario specifications, which involve extending a scenario specification

to model (i) the probability of component failure and (ii) scenario transition probabilities

derived from an operational profile of the system. We also carry out an empirical sensi-

tivity analysis of the system reliability as a function of (i) the components’ reliability and

(ii) the transition probability between scenarios. We describe a scenario specification of

the control logic of a running safety critical system of a Nuclear Power Plant as a case

study.

4.2 A Case Study

Software systems are becoming more and more complex and hence they are developed

in parts, known as components, which are responsible to perform their pre-defined func-

tions. These components have well defined interfaces through which, they are integrated

to construct the overall software system. Therefore, analyzing the software reliability

requires models that include software components and how they weave together. Since

the reliability of the system is the function of the reliability of every component in the

system, therefore, to predict the reliability estimate of the overall system, there is a re-

quirement to predict the reliability estimate of each component. In order to do that, we

demonstrate our approach of reliability prediction on a small control logic component

of a running safety critical CBS, known as ECCS, of Indian Nuclear Power Plant. We

characterize what constitutes the specification of a control logic component.

4.2.1 Short description of ECCS

Nuclear reactors are used for generating electricity from nuclear fission reaction. Heat

from nuclear fission is passed to a working fluid (water or gas), which runs through

turbines. A nuclear coolant is circulated past the reactor core to absorb the heat that

it generates. The coolant transfers the heat to the steam generators. Steam generators

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 44

generate steam from this heat, which is used to rotate the turbine to produce electricity.

The coolant flows through the mechanical pipes and valves. There can be LOCA, if

mechanical pipes or valves break due to any reason. In that case there is an external

mechanism to cool down the reactor core to prevent the melting of the fuel. The melting

of the fuel leads to the radiation exposure to the public or can also leads to explosion.

The radiation can cause cancer and thyroid destruction. This mechanism of mitigating

the consequences of LOCA is performed by a safety critical system, known as ECCS.

4.2.2 ECCS Instrumentation

The instrumentation of ECCS can be understood through its mimic diagram, shown in

figure 4.1. It contains various mechanical equipments like tanks, pipes, valves and pumps.

In case of LOCA, nitrogen tank pressurizes heavy water and light water to inject into

the reactor core. The water injects in three phases: first phase is heavy water injection

under high pressure, second phase is light water injection under intermediate pressure

and finally in third stage, suppression pool system under low pressure comes. Heavy

water is injected under high pressure because initially reactor core is highly pressurized

and hence low pressure cannot inject the water into the core. The use of heavy water in

the first stage ensures the integrity of the reactor core in case of any transient, instead

of actual LOCA. As soon as the pressure comes down, in case of break in PHT circuit,

intermediate pressure is capable to inject the light water. There is a suppression pool of

higher capacity (3000 cubic meter) and the drain lines are connected from F/M vaults

and F/M service area. All the heavy water and light water passes through core and gets

dumped into the suppression pool. Therefore when the two light water tanks become

empty, water from the suppression pool can be circulated continuously through pumps

and heat exchangers. The temperature of water in the suppression pool increases because

water transfers the heat of the reactor core into the suppression pool. Heat exchangers

are used to maintain the water temperature in the suppression pool within permissible

limit.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 45

Legend

 Heat exchanger

 Check valve

 Pump

 Motor valve

Figure 4.1: Mimic diagram of ECCS.

4.2.3 Control logic module

There are many control logics for the operation of ECCS equipments (valves, pumps,

tanks, etc). For the illustration of our work, we describe the control logic for opening

and closing a motorized valve based on Nitrogen tank pressure as follows:

1. On LOCA signal, the Level Transmitter senses the light water level in the light

water accumulators.

2. If there is sufficient water, the two series valves will open.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 46

The architecture of this control logic is depicted in figure 4.2. On LOCA condition,

LT senses the level of the light water accumulator and passes on to the control logic,

which compares the light water level with the threshold value. If it is greater than the

threshold value, it de-energizes the relay to open the valve; else it will retain the relay

in the energized (normal) state. Based on this logic, three important components are

identified: Control logic, LT, Relay. Scenarios can be built, using UML, to refine and

analyze the requirements of the stated control logic of valve actuation, for which HMSC

are represented as Activity diagrams, shown in figure 4.3 and BMSC are represented as

Sequence diagrams, shown in figure 4.4. Scenario specifications also provide solutions

to the some important questions, related to reliability: i) which component is more

significant for overall system reliability? ii) what is the impact of any component failure

on the overall system reliability? iii) in what fashion the components should be arranged

to obtain the predicted reliability? To answer these questions, we need to make reliability

models at early phases of the SDLC.

Light water

accumulator
LT Control Logic

Relay contact for

closing/opening of

valve, one for each

valve

Figure 4.2: Architecture of valve control logic.

4.3 Defining attributes into scenario specifications

We introduce new attributes into scenario specifications of UML to demonstrate our

approach for reliability prediction.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 47

Initialize

Record level

Control logic

for valve

open

Control logic

for valve close

Figure 4.3: Activity diagram for valve actuation.

Figure 4.4(b) Sequence diagram for record level

Level

Sensor Database Control Actuator

Figure 4.4(d) Sequence diagram for

control logic for valve close

command
data

query

stop

Sensor Database Control Actuator

Figure 4.4(c) Sequence diagram for

control logic for valve open

query

data
command

Sensor Database Control Actuator

Figure 4.4(a) Sequence diagram for initialize

start

Sensor Database Control Actuator

Figure 4.4: Sequence diagram for valve actuation.

4.3.1 Basic Message sequence Chart (BMSC)

It is a structure b = (E,L, I,M, instance, label, order) where,

E: countable set of events that can be partitioned into a set of send and receive

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 48

events denoted by send (E) and receive (E), respectively.

L: set of message labels.

I: set of instance names.

M : send(E) → recieve(E), the pair of send(E) and receive(E), referred to as mes-

sages in M.

instance: E → I maps every event to the instance on which the event occurs. Given

i ∈ I, the set e ∈ E|instance(e) = i is denoted by i(E).

level: maps events to labels, requiring that ∀(e, e′) ∈ M where label(e) = label(e′)

and if (v, v′) ∈M and label(e) = label(v) then instance(e) = instance(v) and instance(e′) =

instance(v′).

order: set of total orders ≤i of an instance i, where ≤i corresponds to the top-down

ordering of events on i.

The total ordering of events ≤i presented above model the relation where an event

is considered to occur only after all the preceding events on the same instance, following

a sequential representation of time.

4.3.2 High-level Message Sequence Charts (HMSC)

It is a graph of the form N,E, s0, where N is a set of nodes, E is a set of edges connecting

nodes, and s0 ∈ N is the initial node. A node n is adjacent to n′ if (n, n′) ∈ E.

4.3.3 Labeled Transition Systems (LTS)

It is a structure P = (S, L,∆, q) where,

S: finite set of states.

L: L = α(P) ∪ τ where α(P) is a set of labels representing the communicating

alphabet of P.

∆: ∆ ⊆ (Sπ, ε × L × S) defines the labeled transitions between states, where no

transition is originated from the states error, π,or end,ε.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 49

q: q ∈ S is the initial state.

4.4 A Technique for Early Software Reliability Predic-

tion

System reliability in the early phases of SDLC can be obtained by transforming the

scenario specifications into behavior models. We extend the approach given by Uchitel

et al [27] by annotating the scenario specifications to explore reliability at the modeling

level, thereafter analyzing the probability that the system can reach to a failure state.

We illustrate our approach of computing reliability from scenario specifications followed

by conversion into the representation of component behavior in LTS with probability

weights. We consider the following assumptions in our approach:

1. The transition between the components follows Markov properties.

2. Failures are independent.

3. If a component C of reliability RC wants to use the services of component C ′ of

reliability R′C , it will send a message to C ′. Hence the reliability with which this

service is performed is RC ×R′C . We also assume that the execution time to invoke

the component is very short; hence is not included in the reliability computation.

In HMSC, there is only one initial and one final state. Multiple initial an final states

can be defined with the concept of super-initial and super-final states [70].

To illustrate our approach, we re-define the BMSC by appending two more attributes

Rins : I → [0, 1], the reliability of an instance i ∈ I,and Pe : E → [0, 1], the probability

that an event e is successful. Here e ∈ recv(E) is the reliability of instance i, R(i)

and instance(e) = i. We also need to re-define HMSC by adding one more attribute

Pt : E → [0, 1] to represent the transition probability between scenarios. Clearly,

∀n ∈ N,
∑
e∈S(n)

Pt(e) = 1,

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 50

where S : N → 2E

S(n): the set of edges for the adjacent nodes of a node n and is defined as: S(n) =

e ∈ E|∃n′ ∈ N.e = (n, n′)

Pt(i→ j): Transition probability from scenario i to j.

Our framework for reliability prediction consists of 4 phases, described below, as

depicted in figure 4.5.

Scenario

specification

LTS

components

identification

Reliability

model

creation

Reliability

prediction

Figure 4.5: Framework for reliability prediction.

4.4.1 Phase1: Scenario Specification

In this phase we identify all the possible scenarios and probabilities of transition between

them in our redefined HMSC. We also identify Pt and reliability of each component in

our redefined BMSC. We reproduce the activity diagram, described in figure 4.3, which

was used to represent HMSC, to represent the redefined HMSC in figure 4.6. Let,

RS: reliability of Sensor component

RD: reliability of Database component

RC : reliability of Control component

RA: reliability of Actuator component

The redefined BMSC would be same as the original BMSC as shown in figure 4.4,

except for showing the components’ reliabilities, shown in figure 4.7. Using the opera-

tional profile of 1 year for this control logic, we compute transition probabilities between

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 51

Table 4.2: Transition probabilities between activities of HMSC

Pt(init→
rlevel)

Pt(rlevel→
vo)

Pt(rlevel→
vc)

Pt(vo →
rlevel)

Pt(vc →
init)

Pt(vc →
stop)

1.0 0.8 0.2 0.2 0.3 0.7

Table 4.3: Reliabilities of components of BMSC

RS RD RC RA

0.996 0.999 0.990 0.994

the components as given in table 4.2.

 Initialize

Record level

Control logic

for valve open

Control logic

for valve close

Stop

 vel)

 vel)

))

)

)

Figure 4.6: Modified Activity diagram for valve actuation with transition probabilities.

4.4.2 Phase2: LTS components identification

In this phase, we synthesize probabilistic-LTS [71] from the scenario specification that

was shown in the first phase. The difference between LTS and probabilistic LTS is

that LTS customizes the probabilistic-LTS by introducing a probability function to the

labeled transitions between states, where the transition probability function P satisfies

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 52

Figure 4.7(b) Sequence diagram for record level

Level

Sensor Database Control Actuator

Figure 4.7(c) Sequence diagram for

control logic for valve open

query

data
command

Sensor Database Control Actuator

Figure 4.7(d) Sequence diagram for

control logic for valve close

command

data

query

stop

Sensor Database Control Actuator

Figure 4.7(e) Sequence diagram for control logic for Stop

stop

Sensor Database Control Actuator

Figure 4.7(a) Sequence diagram for initialize

start

Sensor Database Control Actuator

Figure 4.7: Modified Sequence diagram for valve actuation.

the following property:

∀s ∈ S,
∑
l∈L

∑
s′∈S

P (s, l, s′) = 1

It is impractical to define an LTS with many states, for which Finite State Process (FSP)

has been introduced [72-73]. For each component, the FSP process with weights on each

action of that process is first synthesized. Each process represents the behavior of the

corresponding component in the redefined BMSC with its weight. The algorithm to create

a probabilistic-FSP from a scenario specification is given in Algorthim 1.

In the first step, the behavior of the component is built while traversing each re-

defined BMSC. Finally in the second step, the FSP is built for the behavior of the

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 53

component defined by the redefined HMSC. The mapping from the redefined HMSC to

the redefined BMSC is modeled and the possible adjacencies of nodes in the redefined

HMSC, along with the function getadjacent() in figure 4.7, is modeled. In extension

to Uchitel et al’s approach, we map the adjacent nodes. In the getadjacent() function,

the transition probabilities are mapped to the weights of the hidden transitions, termed

internal transitions.

We present probabilistic LTS in figure 4.8 for this control logic. We apply the first

and second steps to synthesize the redefined LTS. Each activity contains the redefined

LTS from the created BMSC and so models the behaviour of the logic within that BMSC.

The transitions between the redefined LTS, shown in the second step, correspond to the

transitions between the BMSCs defined in the HMSC. Weights on the transitions are

same as in the redefined HMSC, as shown in figure 4.6. It can be seen from the message

’data’ in figure 4.7(c) and figure 4.7(d) that there can be “successful” transitions with

probability Rctrl and “unsuccessful” transitions with probability 1− Rctrl. This action is

only applicable to the transitions which are labelled with ’data’ as in this case only some

operations are being performed.

The weights should be computed properly to reduce each component probabilistic-

LTS to first its minimal form followed by its deterministic form. We extend the approach

given in [27] to introduce new assignments for accommodating the weights of the internal

actions. The algorithm is given in Algorithm 2.

This algorithm eliminates the transitions, which merge the transition’s target state

with its source state, with the outgoing transitions of the target state becoming outgoing

transitions of the source state. Because there can be multiple transitions from the initial

source state, the weights of the transitions that are to be eliminated must be pushed to

the new outgoing transitions, with the new weight on each such outgoing transition equal

to its old weight times the weight of the eliminated transition.

There is a need to do filtration before running this algorithm. Remove all the transi-

tions which lead to a stop state, terminate state or self-loop state. At the end, weights of

the outgoing transitions of the resulting state may not be necessarily sum to one, hence

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 54

weights must be normalized. For determination of component probabilistic-LTS, we first

find all the transitions which start from the same state and leave to different successor

states, under the same action. Each such set of non-deterministic transitions is merged

to have the same successor state, with the probability weights of the original transitions

summed to form the weight for the transition to the merged successor state. Accounting

for cycles in the state machine is required. The algorithm is given in Algorithm 3.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 55

pFSP(scenario s, component c){

∀ BMSC b∈s.getBMSC(),

getbehavior(c,b);

getadjacent(s.getHMSC().getinitnode(), s.getHMSC());

∀ ∈ s.getHMSC().getnodes()

b=s.getHMSC().map(n);

CString node_behav=c.name()+b.name();

∀ ∈ s.getHMSC().getnodes()

getadjacent(n,s.getHMSC());

cout«′′c.name()′′«′′intaction′′;

CString getbehavior(component c, BMSC b){

CString s, wt, err, mesg;

int next;

double rel, error;

instance inst=b.getinstance(c);

CString label=c.name()+b.name();

for(int i=0; i<inst.size(); i++){

next=i+1;

mesg=i.getEvent(a).label();

rel=i.getEvent(a).weight();

if rel<1.0 then

error=1-rel;

end

s=s+wt+err;

err=mesg;

wt=label+rel+label+next;

s=s+wt+err;

}

s=s+”stop”;

return s;

}

CString getadjacent(node n,HMSC h){

CString s;

double pts;

if h.getadjacents(n)==0 then

s=”stop”;

else
∀ node m ∈ h.getadjacents(n){

pts=n.transition(m).val();

if !frstnodtrans then

s=s+pts+m.id();

end

}

end

return s;

}
Algorithm 1: Algorithm to convert Scenario specification to probabilistic FSP

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 56

Stop

stop

1

Initialize

start

1

CL for valve open

-1 1 2 3
query data command

CL for valve close

-1 query

1
data

2
command

3
stop

4

Record Level

Figure 4.8: Probabilistic-LTS for control logic.

Input I = (S, L,∆, q);

Output O = (S ′, L′,∆′, q′);

O ← I \ {pt};

q′ ← q;

∆′ ← φ;

for each s ∈ S do

∆′ ← ∆′ ∪ s, p, l, s, where l 6= pt;

for each n ∈ Path(s) do

∆′ ← ∆′ ∪ {(s, p× p′, l, u) : (ni, p
′, l, u) ∈ ∆, l 6= pt, for 0 ≤ i < |n|};

end for

end for

where:

Path(s) is a sequence of states n = s0, s1, . . . ;

if s0 == s then

s ∈ S where si+1 ∈ adj(si);

if (s, p, l, s′) ∈ ∆ then

s′ ∈ adj(s) where pt ∈ L;

end

end
Algorithm 2: Algorithm to minimize probabilistic-LTS

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 57

Input I = (S, L,∆, q);

Output O = (S ′, L′,∆′, q′);

∆′ ← φ;

q′ ← q;

for each s ∈ S do

for each s′ ∈ adj(s), (s, p, l, s′) ∈ ∆ do

adj′(s)← adj(s);

if ∃s′′ ∈ adj′(s), (s, p′, l′, s′′) ∈ ∆, l = l′ then
for each s′ ∈ adj(s′), s′′ 6= s, (s′, p′′, l′′, s′′) ∈ ∆ do

∆′ ← ∆′ ∪ (s′, p× p′′, l′′, s′′) : (s′′, p′′, l′′, i) ∈ ∆;

end for

for each s′′ ∈ adj(s), s′ 6= s′′, (s, p′, l′, s′′) ∈ ∆ do

if l = l′ then
for each s′′′ ∈ adj(s′′), s′′′ 6= s, (s′′, p′′, l′′, s′′′) ∈ ∆ do

∆′ ← ∆′ ∪ (s′, p′ × p′′, l′′, s′′′) : (s′′′, p′′, l′′, u) ∈ ∆;

end for

p← p+ p′;

end

∆′ ← ∆′ ∪ {s, p, l, s′};

adj′(s)← adj′(s)− {s′′};

end for
end

end for

end for
Algorithm 3: Identification of probabilistic-LTS

4.4.3 Phase3: Reliability model creation

In the third phase we create the reliability model. Using the algorithm, the minimal

LTS for our control logic can be derived from table 4.2 and table 4.3, as shown in figure

4.9. From figure 4.9 we can see that the sum of the outgoing transitions from each state

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 58

in probabilistic-LTS is 1. Here state E represents correct termination and the state -1

represents fault termination. Figure 4.9 represents the reliability model that extracts the

system reliability, which resembles Discrete Time Markov Chain.

(0.2) command

(1) start (0.8) query (0.99) data

(0.2) query

(1) end

(0.99) data (1) command

(0.01) data

(0.7)stop

(0.3)stop

(0.01) data

E 7

-1 0 1 2 3 4 5 6 0.8

Figure 4.9: probabilistic-LTS for control logic with transitions.

4.4.4 Phase4: Reliability prediction

This is the final phase of our framework which was illustrated in figure 4.5. In the

previous phase we create a reliability model, which is DTMC. Cheung et al [18] proposed

a framework to predict the reliability of software components, the final phase of which

we use here to predict the reliability of our control logic. Let the representation of all the

states in this DTMC model be given by equation 4.1. The transition probability matrix

from the created DTMC model is given in equation 4.2.

{0, 1, 2, 3, 4, 5, 6, 7, E,−1} = {S0, S1, S2, S3, S4, S5, S6, S7, S8, F} (4.1)

where Si ∈ behavioural state ∀i = 0→ 8 and F is fault state.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 59

P =

S0 S1 S2 S3 S4 S5 S6 S7 F S8

S0

S1

S2

S3

S4

S5

S6

S7

F

S8



0 1 0 0 0 0 0 0 0 0

0 0 0.8 0 0.2 0 0 0 0 0

0 0 0 0.99 0 0 0 0 0.01 0

0 0.2 0 0.8 0 0 0 0 0 0

0 0 0 1 0 0.99 0 0 0.01 0

0 0 0 1 0 0 1 0 0 0

0 0.3 0 1 0 0 0 0.7 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0

0 0 0 0.4 0.5 0.2 0 0 0 0



(4.2)

Let pi(t) be the probability that a component is in state i at time t. When component

executes for a very long time (t→∞), these probability converges and leads to stationary

distribution [18].

⇀
p = [p(S0), p(S1), p(S2), p(S3), p(S4), p(S5), p(S6), p(S7), p(F), p(S8)] (4.3)

Also,

∑
i∈M

p(i) = 1 (4.4)

⇀
p =

⇀
pP (4.5)

These are linear equations and can be solved by standard numerical techniques [41].

Hence the reliability of the communication module can be computed by removing the

probability of unsuccessful packet sent, which is denoted by F, i.e.

R = 1− p(F) (4.6)

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 60

So from equation 4.5, we get equation 4.7

[S0, S1, S2, S3, S4, S5, S6, S7, F, S8]

= [S0, S1, S2, S3, S4, S5, S6, S7, F, S8]

S0 S1 S2 S3 S4 S5 S6 S7 F S8

S0

S1

S2

S3

S4

S5

S6

S7

F

S8



0 1 0 0 0 0 0 0 0 0

0 0 0.8 0 0.2 0 0 0 0 0

0 0 0 0.99 0 0 0 0 0.01 0

0 0.2 0 0.8 0 0 0 0 0 0

0 0 0 1 0 0.99 0 0 0.01 0

0 0 0 1 0 0 1 0 0 0

0 0.3 0 1 0 0 0 0.7 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0

0 0 0 0.4 0.5 0.2 0 0 0 0


(4.7)

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 61

Solving equation 4.7 we get the following linear equations

S0 = 0,

S1 = S0 + 0.2S3 + 0.3S6,

S2 = 0.8S1,

S3 = 0.99S2 + 0.8S3,

S4 = 0.2S1,

S5 = 0.99S4,

S6 = S5,

S7 = 0.7S6,

F = 0.01S2 + 0.01S4,

S8 = S7

(4.8)

Using equation 4.4, we get

S0 + S1 + S2 + S3 + S4 + S5 + S6 + S7 + F + S8 = 1 (4.9)

Solving equations 4.8 & 4.9, we get

S0 = 0;S1 = 0.151;S2 = 0.1208;S3 = 0.56;S4 = 0.0302;

S5 = 0.03;S6 = 0.03;S7 = 0.021;S8 = 0.021;F = 0.00151

Hence the reliability of the control logic, which we take as a case study, given by equation

4.6 is

R = 1− p(F) = 1− 0.00151 = 0.99849 (4.10)

4.5 Sensitivity Analysis

We carry out analysis to determine the impact of change in components’ reliabilities and

change in the transition probabilities in probabilistic-LTS on the system reliability.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 62

Determining the impact of changes in component reliabilities of the system reliability

helps to identify the components that are the most critical for system reliability. This

information will help the system designer or architect to design these critical components

carefully, by incorporating redundancy, etc. We change the reliability of one component

at a time and see the impact on the system reliability. The reliability of the system

architecture as a function of components’ reliability is shown in figure 4.10.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 0.6 0.7 0.8 0.9 1

sensor

database

control

actuator

x:components
 reliability
y:system
 reliability

Figure 4.10: System Reliability as a function of components reliability.

It can be noticed that as the sensor’s reliability decreases, the system reliability also

decreases rapidly. Hence the impact of the sensor’s reliability on the system reliability is

very high, and so the sensor is a very critical component.

We consider this result because all the valve operations are based on the sensor

(LT) measurement. If LT gives the wrong measurement of the tank level, the system will

behave in an unspecified manner, which can jeopardize the safety.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

P(rlevel-
vo)

P(rlevel-
vc)

x:Transition
 Probability
y:System
 reliability

Figure 4.11: System Reliability as a function of transition reliability.

We also analyze the sensitivity of the system reliability as a function of the scenario

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 63

transition probabilities. We know that sum of outgoing transitions from a scenario is

unity. If we change the value of Pt(rlevel → vo) from 0.8 to 0.1 and the value of

Pt(rlevel → vc) from 0.2 to 0.9, we get the results as shown in figure 4.11. We can

see that as the transition probability Pt(rlevel → vo) decreases, system reliability also

decreases and as the transition probability Pt(rlevel → vo) increases, system reliability

decreases.

4.6 Experimental Validation

To validate the correctness of our approach and the accuracy of our results, we computed

the reliability of the same logic using the operational profile of one year. We developed

a CBS, known as Test Facility, which is responsible to ensure the healthiness of all the

ECCS equipments, logics and interlocks. Test Facility is used to monitor the ECCS

process parameters round the clock and keeping in view of ECCS target reliability of 103

years/year , it tests the ECCS equipment once in a month. Test Facility has a feature to

log every action of the operator, every event and every changed state of any equipment

or process parameters. During the testing, the conditions or logics are simulated and

equipment operations, relevant to those conditions or logics are monitored and logged.

For the control logic that we have taken as a case study, we took the log of the valve

operation, as given in table 4.4. As per the specification of the system, the total number

of times the valve should open is 7 and total number of times the valve should close is

also 7. Let

t =number of months.

no =number of times the valve has opened.

nc =number of times the valve has closed.

nfo =number of times the valve has failed to open.

nfc =number of times the valve has failed to close.

nf = nfo + nfc =number of times the valve has failed.

n =total number of times the valve should succeed.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 64

Rt =Reliability of valve operation logic up to time t.

Therefore failure probability if given by equation 4.11,

Failure probability =
nf
n

(4.11)

and hence Reliability is given by equation 4.12,

Reliability = 1− Failure probability (4.12)

Considering data of 1 month from table4,

nf = 0,

n = 14

∴ Failure probability =
0

14
= 0

Reliability R1 = 1− Failure probability

= 1− 0 = 1

Similarly the reliability for the rest of the period can be computed, which is shown in

table 4.4.

From table 4.4, it can be noticed that in the 8th month, the valve failed to open

only 1 time, and thereafter till 12 months, no failure has been observed. So the reliability

of the valve operation logic that has been computed is 0.994. We could only get the data

of one year, as the new version was installed at the Nuclear Power Plant one year back.

So we can write,

R12 = 0.994 (4.13)

If we compare the reliability figure from the operation profile of 1 year that is 0.994,

with the reliability figure that we predicted through system modeling that is 0.99849, we

notice that both the figures are almost same, which is an admirable result.

CHAPTER 4. UML APPROACH TO MARKOV RELIABILITY MODELING 65

Table 4.4: Operational profile of 1 year for valve operation logic

t n0 nc nfo nfc nf n Rt

1 7 7 0 0 0 14 1
2 14 14 0 0 0 28 1
3 21 21 0 0 0 42 1
4 28 28 0 0 0 56 1
5 35 35 0 0 0 70 1
6 42 42 0 0 0 84 1
7 49 49 0 0 0 98 1
8 55 56 1 0 1 111 0.991
9 62 63 1 0 1 125 0.992
10 69 70 1 0 1 139 0.993
11 76 77 1 0 1 153 0.994
12 83 84 1 0 1 167 0.994

4.7 Conclusion

We have proposed an approach to predict software system reliability as a function of its

components’ reliabilities. The methodology consists of specifying the scenarios with prob-

abilistic properties along with the creation of probabilistic-LTS from the scenario specifi-

cations. This probabilistic-LTS helps to derive the software system reliability model. The

process has been illustrated in detail with the help of a case study of a Nuclear Power

Plant system. We have also given the sensitivity analysis, in which we have analyzed

the impact of components’ reliabilities on the software system reliability. This impact

analysis helps to find the criticality of the components of the system. Through this in-

formation, the system architect can take the preventive action. Further, the impact of

transition probabilities on the software system reliability has been shown. Finally we

have validated our approach by comparing the predicted reliability from our approach

and from the operational profile data of 1 year.

