
Chapter 1

Introduction

Software has become an essential part of industry, medical systems, spacecraft and mili-

tary systems, and many other commercial systems. The application of software in these

safety critical systems has led software reliability to be an important research area [1, 2,

3]. Software reliability denotes the probability of failure free operation of software under

pre-defined conditions for a specified duration. The failure of software in safety critical

systems may lead to risk significant events. We illustrate only some of the catastrophic

accidents that had taken place due to the failure of software to realize the essence of

software reliability:

1. Therac -25:

The Therac-25 was a radiation therapy machine produced by Atomic Energy of

Canada Limited (AECL) after the Therac-6 and Therac-20 units (the earlier units

had been produced in partnership with CGR of France).

It was involved in at least six accidents between 1985 and 1987, in which patients

were given massive overdoses of radiation, approximately 100 times the intended

dose.[4]:425 These accidents highlighted the dangers of software control of safety-

critical systems, and they have become a standard case study in health informatics

and software engineering.

2. Crash of Air France Flight 447 [5]:

1

CHAPTER 1. INTRODUCTION 2

On May 31, 2009, an Airbus A330-200 departed from the Rio de Janeiro-Galeão

International Airport due to arrive at Paris 11 hours later. It crashed into the

Atlantic Ocean on June 1. The aircraft was carrying 216 passengers, and 12 crew

members, all of whom are presumed to be dead. In addition to the loss of the

aircraft itself, Air France announced that each victim’s family would be paid roughly

e17,500 in initial compensation. This accident makes it the deadliest disaster for

Air France, surpassing the Air France Flight 4590 in 2000 that killed 109 people.

Regarding software related contributing factors, the onboard automating reporting

system transmitted several messages regarding discrepancies in the indicated air

speed (IAS) readings before the aircraft disappeared. In total, 24 error messages

were generated as systems failed across the aircraft. On June 4, 2009 (three days

after the crash of Flight 447), Airbus issued an Accident Information Telex to

operators of all Airbus models reminding pilots of the recommended Abnormal and

Emergency Procedures to be taken in the case of unreliable airspeed indication.

Efforts to retrieve the flight data recorders, critical to determining the exact cause

of the crash, will resume in February 2010, but the chance of recovery is low. A

final report on the accident is expected to be issued by the end of 2010.

3. Emergency-Shutdown of the Hatch Nuclear Power Plant [6, 7]:

The Edwin I. Hatch nuclear power plant was recently forced into an emergency

shutdown for 48 hours after a software update was installed on a computer. The

accident occurred on March 7, 2008 after an engineer installed a software update

on a computer operating on the plant’s business network. The software update

was designed to synchronize data on both the business system computer, and the

control system computer. According to a report filed with the Nuclear Regulatory

Commission (NRC), when the updated computer rebooted, it reset the data on the

control system, causing safety systems to errantly interpret the lack of data as a

drop in water reservoirs that cool the plant’s radioactive nuclear fuel rods.

As a result, automated safety systems at the plant triggered a shutdown. Estimating

CHAPTER 1. INTRODUCTION 3

a loss based on electricity prices, the total cost to purchase electricity from external

sources during the 48-hour shutdown period would be approximately $5 million.

This does not include other operation-related costs.

The main cause of this accident was the installation of a software upgrade on

a computer, without the knowledge of its impact on the entire system. System

boundaries should be carefully defined, and the business network should be external

to what might be safety critical. Although communication can be allowed between

the business and control networks, it is better to accomplish this using a query

mechanism rather than granting the former unrestricted access to the latter.

4. Loss of Communication between the FAA Air Traffic Control Center, and Airplanes

[8,9]:

On Tuesday, September 14, 2004, the Los Angeles International Airport, and other

airports in the region suspended operations due to a failure of the FAA radio system

in Palmdale, California. Technicians onsite failed to perform the periodic mainte-

nance check that must occur every 30 days, and the system shut down without

warning as a result. The controllers lost contact with the planes when the main

voice communications system shut down unexpectedly. Compounding this situation

was the almost immediate crash of a backup system that was supposed to take over

in such an event. The outage disrupted about 600 flights (including 150 cancella-

tions), impacting over 30,000 passengers. Flights through the airspace controlled

by the Palmdale facility were either grounded or rerouted elsewhere. Two airplane

accidents almost occurred, and countless lives were at risk.

A bug in a Microsoft system compounded by human error was ultimately respon-

sible for the three-hour radio breakdown. A Microsoft-based replacement for an

older Unix system needed to be reset approximately every 50 days to prevent data

overload. A technician failed to perform the reset at the right time, and an internal

clock within the system subsequently shut it down. In addition, a backup system

also failed. When a system has a known problem, it is never a good idea to continue

CHAPTER 1. INTRODUCTION 4

operation. Instead of relying on an improvised workaround, the bug in the software

should be corrected as soon as possible to avoid a potential crisis. Learning from

this experience, the FAA deployed a software patch which now addresses this issue.

If the backup had been operating correctly, this accident would not have occurred.

For systems where a high degree of safety is of utmost concern, solid redundancies

should always be in place.

5. Shutdown of the Hartsfield-Jackson Atlanta International Airport [10]:

Hartsfield-Jackson Atlanta International Airport is one of the world’s busiest air-

ports, both in terms of passengers, and number of flights. The alertness of the

security screeners is tested by the random appearance of artificial bombs or other

suspicious hard-to-detect devices on the X-ray machine displays, followed by a brief

delay, then a message indicating that it was a test. On April 19, 2006, an em-

ployee of the Transportation Security Administration (TSA), U.S. Department of

Homeland Security, identified the image of a suspicious device, but did not realize

it was part of the routine testing for security screeners because the software failed

to indicate such a test was underway. As a result, the airport authorities evacuated

the security area for two hours while searching for the suspicious device, causing

more than 120 flight delays, and forcing many travelers to wait outside the airport.

The false alarm was clearly due to a software malfunction which failed to alert the

screeners by showing a warning message to indicate that the image of the suspicious

device was just a test. Whenever a critical software system is using sample data for

testing purposes, it should not create unnecessary suspicion among the end users.

This sample data should be carefully chosen, and a thorough controlled testing

should be conducted to ensure that an appropriate test alert message is displayed.

Therefore, practitioners always want an assessment of the software reliability (or

quality) and wish to know when to reach to desired target. In order to assess software

reliability and assure software quality, one of methods is to apply Software Reliability

Growth Models (SRGM). SRGMs can describe failures as a random process, which is

CHAPTER 1. INTRODUCTION 5

characterized in either times of failures or the number of failures at fixed times [11-13]. In

general, SRGMs can provide very useful information about how to improve the reliability

of software products. It is now well-recognized that reliability growth models are better

described by a NHPP. Numerous SRGMs have been proposed, and some appear to be

overall better than others. Unfortunately, models that are overall good are not always

the best choice for a particular data set, and it is not possible to know which model to

use a priori. Even when an appropriate model is used, the predictions made by a model

may still be less accurate than desired due to the following reasons:

1. These approaches are black-box based i.e., the software system is considered as a

whole and only its interactions with the outside world are modeled, without looking

into its internal structure.

2. There is no single SGRM that can be fit to model the failure process of all the types

of software.

3. Software systems are being developed in a heterogeneous fashion using components

developed in-house, contractually, or picked off-the-shelf, and hence it may be in-

appropriate to model the overall failure process of such systems using the existing

software reliability growth models [14].

4. SGRMs are based on unrealistic assumptions. From our previous studies [15-16],

several conventional SRGMs can be unified under a general formulation.

1.1 Need for early prediction of reliability for software

systems

The assessment of software reliability based on SGRM will often be too late. These are

mostly employed at the later stage of the software development life cycle, before which

many critical design decisions are made. Identification of significant problems during

implementation or operation can lead to re-engineering of large parts of the system,

CHAPTER 1. INTRODUCTION 6

which has been shown to be prohibitively costly. Therefore, quality attributes must be

“built into” the software system throughout design and development, and particularly

during architectural design.

The above suggests that building reliable software systems requires understanding

reliability at the architectural level. Accessing software reliability during the early stages

of SDLC is termed as Software Reliability Early Prediction. There are following advan-

tages of early prediction of software reliability:

1. The impact of proposed design changes on reliability is determined by comparing

the reliability predictions of the existing and proposed designs.

2. The ability of the design to maintain an acceptable reliability level under environ-

mental extremes can be accessed through reliability predictions.

3. Assess the reliability earlier to take corrective action if the reliability does not meet

the desired expectations.

4. Assess the reliability of an operational application to identify components that

provide the highest potential for reliability improvement.

1.2 Motivation of Research

After realizing the substantial benefits of early prediction of software reliability, several

recent approaches have begun to quantify software reliability at the level of architectural

models, or at least in terms of high-level system structure [17-22]. Some of them are based

on Markov Model (explained in chapter 2). A model should include all the functional

requirements. Generally, software fails because of ambiguous or incomplete requirements

or due to the defect in software design. Ambiguous requirements also penetrates defect

in the design. Therefore, a reliability model must contain precise requirements. There is

a requirement that the constructed reliability model should take care of all the software

requirements and hence should be explainable to all the stakeholders. The existing models

are not easily explainable to all the stakeholders, especially to the clients, who may not

CHAPTER 1. INTRODUCTION 7

have knowledge about modeling. Hence, clients whole are the source of requirements

cannot know whether the constructed software reliability model have taken care of all

the requirements. These issues have been addressed in the present research work.

The approaches that are based on Markov model, for quantification of reliability

during architectural design phase, are known as Markov reliability models. Markov mod-

els fail to model the concurrency and are limited to model to the probability of changes

in the system with the exponential distribution. Markov reliability models are in the

classification of probabilistic models due to the uncertainties involved in their input and

hence output parameters. Improper treatment of these uncertainties can lead to the

inaccurate results, which can make the wrong decisions. Consideration of uncertainty

in the analysis gives insights into decision making by giving optimistic and pessimistic

sets of solutions. Acceptable degree of confidence in the results can only be achieved

by proper management of uncertainty. In case of Markov reliability model, the input

parameter is the transition probabilities in between the states of Markov chain. The reli-

ability of the software is the function of the transition probabilities in between the states

of the Markov Model. There can be two types of states in Markov Chain, behavioral

and failure. Many researchers, academicians and practicing engineers in various fields

worked extensively to develop methods for carrying out the computation of transition

probabilities. In these approaches, authors have computed them analytically based on

some assumptions and hence do not give accurate prediction, which results inaccurate

reliability prediction. Therefore there is an essential requirement to address this issue,

which has been addressed in the present research work.

Apart from it, the reliability requirements of every component of the software may

not necessarily be same due to the variance in the criticality of every component. The

reliability of overall software system is a function of the reliabilities of each component of

the system. The early assessment of the impact of change in reliability of any component

on the reliabilities on its associated components is useful to take preventive actions (during

design), like incorporating redundancy, diversity, etc. Also, if the change in reliabilities,

on the basis of test data, of every component can be informed, the same impact analysis

CHAPTER 1. INTRODUCTION 8

mechanism can be used to assess the overall system reliability to take corrective action,

in case the target reliability is deviated. These issues have been addressed in the present

research work.

1.3 Objectives of the present work

The issues related to early prediction of reliability of software systems are addressed in

this work. It is the requirement phase, where the fault can get embed at the first point.

Faults are propagating in nature. The faults of the requirement phase propagate in the

design phase, thereafter in the implementation phase. It is impossible to discover all

the faults in the testing phase and hence that will lead to a faulty system, which, when

gets uncovered in operational phase, can lead to catastrophic failures. Similarly faults in

design, implementation and testing phase will lead to a faulty system.

Therefore researchers are continuously putting effort in proposing methods for assess-

ment of software reliability in the early phase of software development life cycle (SDLC).

These methods include the approaches that can be applied in requirements analysis and

design phase. The objective of the present work is to address the reliability related issues

during the architectural design phase and project its benefit for taking preventive and

corrective actions.

1.3.1 Uncertainty in Markov reliability models

There are several methods which can be used for early prediction of software reliabil-

ity, that are based on Markov models. A software reliability model must consider all

the functional and non-functional requirements. Missing requirements will result into

an unreliable system. There should be a method to verify the incorporation of all the

requirements in Markov reliability model. In the existing literature, there is no method

through which the incorporation of all the requirements can be verified. In order to ac-

count for such uncertainty, sophisticated reliability modeling techniques are necessary.

This issue is addressed in this research work.

CHAPTER 1. INTRODUCTION 9

1.3.2 Uncertainty in input parameters in Markov reliability mod-

els and their limitations

The reliability based on Markov models is a function of the transition probabilities in

between the states of Markov chain. In the existing approaches, these probabilities are

either assumed or computed based on unrealistic assumptions. Since inaccurate transition

probabilities will give inaccurate reliability figure, there is a need to address these issues,

if the reliability analysis is to serve as a tool in the decision making process. Moreover

Markov reliability models are limited to model the probability of changes in the sys-

tem with exponential distributions and incapable to model many facets like concurrency,

multithreading. These issues are addressed in this research work.

1.3.3 Impact analysis of component reliability on the reliability

of a software system

A software system consists of many software components. The reliability of a software

system is the function of the reliabilities of each component. In case of early prediction,

sensitivity analysis of component’s reliability on the reliability of its associated compo-

nents, and hence on the overall system, is useful to take preventive action for the assurance

of the reliability of the overall software system. The reliability depends on the failure

rate and hence, the reliability of the components of a software system gets changed in

the operational phase. The technique for sensitivity analysis will be proved beneficial to

take corrective action as well, if there is any mechanism through which the change in the

reliability of the software components can be notified to the maintainer to take corrective

action like repair or replacement of the faulty component. Further, it will be beneficial

to a large extent, in case a software system consist one or many COTS components. All

these issues are addressed in this work.

CHAPTER 1. INTRODUCTION 10

1.4 Scope of the Research

1. The proposed methodologies are applicable to any kind of software systems and the

case studies have been focused only on safety systems of NPP.

2. All the proposed models are available in the form of analytical expression for the

quantification of associated parameters.

3. In case of embedded software systems, the wear and tear out of the chip in which

software resides has not been considered.

1.5 Thesis Outline

This thesis is structured as follows:

In Chapter 2, literature overview for the work that is proposed in this thesis is given.

The classification of CBS is described. It covers the concepts and software reliability and

its early prediction.

Based on the literature survey carried out, certain unavoidable limitations related

to the existing software reliability models, for early prediction, are identified. The im-

practical issues and their planned strategies have been brought out in Chapter 3.

In Chapter 4, by describing the power of UML modeling in context of software re-

quirements capturing and analysis, an approach to predict system reliability, by extending

the UML is proposed. The validation of the proposed approach through a control logic

component of safety critical system of Indian Nuclear Power Plant is shown. This gives

the Markov Model, which can be used to predict the reliability of the system using Che-

ung’s method.

In Chapter 5, the issues in the Markov reliability model are discussed and solutions

to address them are proposed. A framework to predict the transition probabilities in

between the states of Markov reliability model more accurately, on which the reliability

depends has been proposed. A tool, TimeNET, for steady state distribution of the

transition rates in between the states of Markov reliability model is used. Experimental

CHAPTER 1. INTRODUCTION 11

Validation of the proposed approach is shown using a safety critical system of Nuclear

Power Plant. Sensitivity analysis of the transition probabilities and parameter assignment

in TimeNET on the software reliability is also shown.

In Chapter 6, the impact analysis methodology on the change in reliability of any

component on the reliabilities of other components and hence on the reliability of the

software system, has been show. Bayesian network has been used. The experimental

validation of this approach on the same case study is also shown.

Chapter 7 presents conclusions regarding this study and suggestions for future work.

