List of Figures

- Fig. 2.1 Plots of u(x, t) vs. t for $a_0 = 10, \beta = 0.5, k = 2, n = 1, x = 0.5, 39$ and for different values of α
- Fig. 2.2 Plots of u(x, t) vs. t for $a_0 = 10, \beta = 0.5, k = 2, n = 2, x = 0.5, 39$ and for different values of α
- Fig. 2.3 Plots of u(x, t) vs. t for $a_0 = 10, \beta = 0.5, k = 2, n = 1, x = 0.5, 40$ and for different values of α
- Fig. 2.4 Plots of u(x, t) vs. t for $a_0 = 10, \beta = 0.5, k = 2, n = 2, x = 0.5, 40$ and for different values of α
- Fig. 2.5 Plots of u(x, t) vs. t for $a_0 = -10$, $\beta = 0.5$, k = 2, n = 1, x = 0.5, 41 and for different values of α
- Fig. 2.6 Plots of u(x, t) vs. t for $a_0 = -10$, $\beta = 0.5$, k = 2, n = 2, x = 0.5, 41 and for different values of α
- Fig. 2.7 Plots of u(x, t) vs. t for $a_0 = -10$, $\beta = 0.5$, k = 2, n = 1, x = 0.5, 42 and for different values of α
- Fig. 2.8 Plots of u(x, t) vs. t for $a_0 = -10$, $\beta = 0.5$, k = 2, n = 2, x = 0.5, 42 and for different values of α
- Fig. 2.9 Plots of $\langle X^2(t) \rangle$ vs. *t* for $a_0 = 5, \beta = 0.5$ and for different 43 values of α

- Fig.2.10 Plots of $\langle X^2(t) \rangle$ vs. *t* for $a_0 = 10, \beta = 0.5$ and for different 43 values of α
- Fig.2.11 Plots of $\langle X^2(t) \rangle$ vs. *t* for $a_0 = -2, \beta = 0.5$ and for different 44 values of α
- Fig.2.12 Plots of $\langle X^2(t) \rangle$ vs. *t* for $a_0 = -5$, $\beta = 0.5$ and for different 44 values of α
- Fig. 4.1 Plots of exact residual error E_m vs. \hbar for $\alpha = 0.8 + 0.2 \frac{xt}{LT}$, L = 10 69 , T = 1
- Fig. 4.2 Evolution curve of u(x=0.5, t) vs. *t* at $\hbar = -0.975296$ 70
- Fig. 4.3 Plots of exact residual error E_m vs. \hbar for $\alpha = xt$ 70
- Fig. 4.4 Evolution curve of u(x, t) vs. x and t for $\alpha = xt$ 71
- Fig. 5.1 Plots of exact residual error E_m vs. \hbar for $a = 1, \varepsilon = 1$ and 84 $\alpha = 1$
- Fig. 5.2 Plots of exact residual error E_m vs. \hbar for $a = 1, \varepsilon = 1$ and 84 $\alpha = 0.75$
- Fig. 5.3 Plots of exact residual error E_m vs. \hbar for $a = 1, \varepsilon = 1$ and 85 $\alpha = 0.5$

- Fig. 5.4 Phase Portrait between u_1 and u_2 (a) for $a = 1, \varepsilon = 1$ and 86 $\alpha = 0.5$ (b) for $a = 1, \varepsilon = 1$ and $\alpha = 0.75$ (c) for $a = 1, \varepsilon = 1$ and $\alpha = 1$
- Fig. 5.5 Phase Portrait between u_1 and u_2 for a = 1, $\alpha = 0.75$ and 87 $\varepsilon = 1,2,3,4$
- Fig. 5.6 Phase Portrait between u_1 and u_2 (a) for a = 1, $\varepsilon = 0.5$ and ⁸⁸ $\alpha = 0.75$ (b) for a = 1, $\varepsilon = 0.5$ and $\alpha = 0.85$ (c) for a = 1, $\varepsilon = 0.5$ and $\alpha = 0.95$
- Fig. 5.7 Phase Portrait between u_1 and u_2 (a) for a = 1, $\varepsilon = 8$ and 88 $\alpha = 0.75$

Fig. 6.1 Plot of
$$u(r, t)$$
 for the case (i) for $f(r) = r$, $g(r) = 1$ 99

Fig. 6.2 Plot of
$$u(r, t)$$
 for the case (ii) for $f(r) = \sqrt{r}$, $g(r) = \frac{1}{\sqrt{r}}$ 99

Fig. 6.3 Plot of
$$u(r, t)$$
 for the case (iii) for $f(r) = r^2$, $g(r) = r$ 100

- Fig. 6.4 Solution Plot for u(r, t) in all the three cases for r=0.5 101
- Fig. 6.5 Solution Plot for u(r, t) in all the three cases for r=0.9 101
- Fig. 6.6 Solution Plot for u(r, t) in all the three cases (i), (ii) & (iii) 103 respectively for r=0.5 for $\beta = 2$ and 3/2