List of Figures

Fig. 2.1 Plots of $u(x, t)$ vs. t for $a_{0}=10, \beta=0.5, k=2, n=1, x=0.5, \quad 39$ and for different values of α

Fig. 2.2 Plots of $u(x, t)$ vs. t for $a_{0}=10, \beta=0.5, k=2, n=2, x=0.5, \quad 39$ and for different values of α

Fig. 2.3 Plots of $u(x, t)$ vs. t for $a_{0}=10, \beta=0.5, k=2, n=1, x=0.5, \quad 40$ and for different values of α

Fig. 2.4 Plots of $u(x, t)$ vs. t for $a_{0}=10, \beta=0.5, k=2, n=2, x=0.5, \quad 40$ and for different values of α

Fig. 2.5 Plots of $u(x, t)$ vs. t for $a_{0}=-10, \beta=0.5, k=2, n=1, x=0.5$, and for different values of α

Fig. 2.6 Plots of $u(x, t)$ vs. t for $a_{0}=-10, \beta=0.5, k=2, n=2, x=0.5, \quad 41$ and for different values of α

Fig. 2.7 Plots of $u(x, t)$ vs. t for $a_{0}=-10, \beta=0.5, k=2, n=1, x=0.5, \quad 42$ and for different values of α

Fig. 2.8 Plots of $u(x, t)$ vs. t for $a_{0}=-10, \beta=0.5, k=2, n=2, x=0.5, \quad 42$ and for different values of α

Fig. 2.9 Plots of $\left\langle X^{2}(t)\right\rangle$ vs. t for $a_{0}=5, \beta=0.5$ and for different 43 values of α

Fig.2.10 Plots of $\left\langle X^{2}(t)\right\rangle$ vs. t for $a_{0}=10, \beta=0.5$ and for different 43 values of α

Fig.2.11 Plots of $\left\langle X^{2}(t)\right\rangle$ vs. t for $a_{0}=-2, \beta=0.5$ and for different values of α

Fig.2.12 Plots of $\left\langle X^{2}(t)\right\rangle$ vs. t for $a_{0}=-5, \beta=0.5$ and for different 44 values of α

Fig. 4.1 Plots of exact residual error E_{m} vs. \hbar for $\alpha=0.8+0.2 \frac{x t}{L T}, L=10$

$$
\begin{equation*}
, T=1 \tag{69}
\end{equation*}
$$

Fig. 4.2 Evolution curve of $u(\mathrm{x}=0.5, \mathrm{t})$ vs. t at $\hbar=-0.975296$

Fig. 4.3 Plots of exact residual error E_{m} vs. \hbar for $\alpha=x t$

Fig. 4.4 Evolution curve of $u(x, \mathrm{t})$ vs. x and t for $\alpha=x t$

Fig. 5.1 Plots of exact residual error E_{m} vs. \hbar for $a=1, \varepsilon=1$ and $\alpha=1$

Fig. 5.2 Plots of exact residual error E_{m} vs. \hbar for $a=1, \varepsilon=1$ and $\alpha=0.75$

Fig. 5.3 Plots of exact residual error E_{m} vs. \hbar for $a=1, \varepsilon=1$ and 85 $\alpha=0.5$

Fig. 5.4 Phase Portrait between u_{1} and u_{2} (a) for $a=1, \varepsilon=1$ and
86 $\alpha=0.5$ (b) for $a=1, \varepsilon=1$ and $\alpha=0.75$ (c) for $a=1, \varepsilon=1$ and $\alpha=1$

Fig. 5.5 Phase Portrait between u_{1} and u_{2} for $a=1, \alpha=0.75$ and $\varepsilon=1,2,3,4$

Fig. 5.6 Phase Portrait between u_{1} and u_{2} (a) for $a=1, \varepsilon=0.5$ and $\alpha=0.75$ (b) for $a=1, \varepsilon=0.5$ and $\alpha=0.85$ (c) for $a=1, \varepsilon=0.5$ and $\alpha=0.95$

Fig. 5.7 Phase Portrait between u_{1} and u_{2} (a) for $a=1, \varepsilon=8$ and $\alpha=0.75$

Fig. 6.1 Plot of $u(r, t)$ for the case (i) for $f(r)=r, g(r)=1$

Fig. 6.2 Plot of $u(r, t)$ for the case (ii) for $f(r)=\sqrt{r}, g(r)=\frac{1}{\sqrt{r}}$

Fig. 6.3 Plot of $u(r, t)$ for the case (iii) for $f(r)=r^{2}, g(r)=r$

Fig. 6.4 Solution Plot for $u(r, t)$ in all the three cases for $r=0.5$

Fig. 6.5 Solution Plot for $u(r, t)$ in all the three cases for $r=0.9$

Fig. 6.6 Solution Plot for $u(r, t)$ in all the three cases (i), (ii) \& (iii) 103 respectively for $r=0.5$ for $\beta=2$ and $3 / 2$

