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6.1 Introduction 

The vibration equation for the large membrane represents the free vibration of 

a large circular membrane. The governing equation for the vibration of a 

circular elastic membrane which stretched over a large circular frame is 

represented by 
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where /Tc  , T  is tension in the membrane and  is its mass density. 

Das (2009), and Das and Gupta (2011) have studied the above problem using 

the semi analytic methods viz., Adomian decomposition method, Homotopy 

Perturbation Method and Homotopy analysis Method.  In last few decades 

there was lot of interest found among the researchers in the applications of 

fractional calculus. From the literature survey (Miller and Ross, 1993; 

Podlubny, 1999; Kilbas et al., 2006) on the fractional calculus, it is seen that the 
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subject is widely used by the researchers in many field of science and 

technology. Previously fractional calculus was the domain of researchers in 

mathematics but during last few decades its vast applications in different 

branches of physics and engineering make this subject very popular among 

the researchers. Recently fractional calculus is used to study fractional 

Brownian motion (Boufoussi and Hajji, 2011). Fractional calculus deals with 

the generalization of standard order derivative and integration. During  the 

solutions of fractional differential equations many techniques have been 

proposed viz., variational iteration method(He, 1998; Wu, 2011) , Adomian 

decomposition method (Duan et al,2013 ; Song and Wang,2013), Homotopy 

analysis method (Hashim et al., 2009; Mishra et al., 2014; Zhang et al., 2011; 

Jafari and Seifi, 2009) , Operational matrix of Legendre polynomials 

(Saadatmandi and Dehghan, 2011; Saadatmandi and Dehghan, 2010), 

Operational matrix of B-spline functions (Lakestani et al.,2012), Legendre 

multiwavelet collocation method (Yousefi et al., 2011), Operational matrix of 

Chebyshev polynomials (Doha et al., 2011) etc. Bernstein polynomials frame a 

complete basis on interval [a,b], where Rba,  . Many researchers have tried 

and used Bernstein basis polynomial to solve different kinds of differential 

and integral equations. Maleknejad et al. (2012) have used Bernstein 

polynomial operational matrix to solve nonlinear Volterra–Fredholm–

Hammerstein integral equations. Rad et al. (2014) have employed Bernstein 
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polynomial with Tau method to solve fractional order differential equation. 

Bernstein polynomials had been used to solve variable order linear cable 

equation by Chen et al. (2014), Singular integro-differential equation by 

Bhattacharya and Mandal (2008), Numerically nonlinear age-structured 

population models by Yousefi et al.(2012). Turnbull and Ghosh (2014) had 

used Bernstein polynomial basis function to estimate uni-modal density. To 

the best of my knowledge the fractional order vibration equation using 

Bernstein polynomial basis function has not yet been solved by any 

researcher.  

In the present chapter, an effort has been given to solve the equation (6.1) for 

a large membrane using operational matrix of Bernstein polynomial basis. By 

considering different initial conditions, the nature of the solutions for 

different particular cases are presented through figures. 

6.2 Bernstein polynomials and its properties 

The i-th Bernstein polynomial of degree n in the interval [a, b], Rba,  is 

defined by the formula  
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where as if the above interval is [0,1] then the i-th Bernstein polynomial is 

represented by 
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using the binomial expansion for inx)1( in the equation (6.3), we get the 

Bernstein polynomial in the following form as 
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These Bernstein polynomials construct a basis over the interval [0, 1] whereas 

from (6.4) it is clear that the Bernstein polynomials are also a combination of 

power basis function }...,,,1{ 32 nxxxx .  Juttler (1998) introduced the dual basis of 

the Bernstein basis represented by  )}(),...(),(),({ 210
xDxDxDxD n

n
nnn  for the Bernstein 

polynomials of degree n for ]1,0[x , which has the property  
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If )(xf  is a square integrable function in an interval [0,1] and if 

)}(.,.),.(),(),({ ,,2,1,0 xBxBxBxB nnnnn is a finite dimensional vector space, then 

)(xf can have a unique best approximation from  expressed in terms of  

Bernstein basis with first (n+1) terms of the basis as 

)}(.,.),.(),(),({)( ,,2,1,0 xBxBxBxBx nnnnn , which can be expressed as  
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where ]....,,[
210 n

T ccccc  

Then ),)(,(1 xfQc                                                                                          (6.7) 

where Q  is an )1()1( nn matrix which is called as Dual matrix of ,  and 

can be obtained as  

dxxxxxQ T )()())(),((

1

0

.                                                                   (6.8) 

In the present chapter we approximated the two dimensional function 

])1,0[]1,0([),( 2Ltxu  as 
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and  U can be obtained as  
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6.3 Operational matrix of the derivative using Bernstein 

polynomial basis 

The derivative of the vector )(x  of Bernstein basis is represented as  
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)( )1( xD
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,                                                                                                (6.11) 

where )1(D  is the )1()1( nn   operational matrix of derivative calculated as 

*)1( BVPD .                                                                                                           (6.12) 

Here  
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where 1

][kB  is the k-th row of 1B  for k=1,2,…n. proceeding in this way we can 

calculate the operational matrix for higher order derivative as  
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where, Nn  and superscript of )1(D represents the matrix power. 

6.5 Considered problem and its solution 

To solve governing equation (6.1), let us consider the following initial 

conditions 

)()0,( rfru ,   )()0,( rcgru
t
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and 

 .0),0( tu                                                                                                             (6.15)  

For solving the above problem, let us consider the following approximation of 

the solution in the form of Bernstein polynomial basis as 
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where U is unknown and 

),()()(
))()((),( * tUBVPr

r

tUr

r

tru TT
T

                                            (6.17) 

.)()()(
))()((),( 2*

2

2

2

2

tUBVPr
r

tUr

r

tru TT
T

                                      (6.18) 



CHAPTER 6 

 97  

For the fractional order derivative  
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where D is the operational matrix which is obtained by the algorithm given 

by Saadatmandi (2014). Substituting the operational matrix structure of all the 

derivatives from the equations (6.17)-(6.19) in the governing equation, the 

following algebraic equation is obtained as 
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Dispersing the equation (6.20) at ),( ii tr  for i=1, 2, 3. . .n and with the help of 

MATHEMATICA software, the values of U can be calculated. 

6.6 Numerical results and discussion 

 During solutions of our considered problem, we have taken n=3 in the 

equation (6.16), which gives rise to 

)}(),(),(),({)( 3,33,23,13,0 rBrBrBrBr  , )}(),(),(),({)( 3,33,23,13,0 tBtBtBtBt . 

Three cases of initial conditions are considered as  

Case (i): ,1)(,)( rgrrf  

Case (ii): 
r

rgrrf
1
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Case (iii): rrgrrf )(,)( 2 .    

At 6c  for the order of the derivative 
2

3
. Taking the domain for the 

considered problem as }1010),,{( tandrtr and the points for 

dispersions are taken as 43,2,1,i,
6

  tand
5

i

ii
ri  , the operational matrix is 

obtained as  
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Calculating the operational matrix for the first and second order derivatives 

are  
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and substituting in the equation (6.20), a linear system of equations with ‘16’ 

unknowns is obtained. Solving this system of equations, the matrix U can be 

obtained for the considered three cases as 

  

(i)

318201.95926396.34840581.2952037.0

629464.83904249.29795088.2705303.0

285440.76684852.27251410.2308689.0

034989.62434862.14039855.2011991.0

U ,  
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  (ii) 

734.232436.4586898.2953673.0

884.2244568.4775551.3852851.0

507.2097944.4228134.2647742.0

343.2298038.5214811.7212847.0

U ,

(iii) 

5582.472323.3165275.2775189.0

2038.338141.229464.1514431.0

7175.205144.17488218.0115528.0

53857.633832.1086813.0056203.0

U

and respective solutions are displayed through  Figs. 6.1-6.3. 

 

Fig.6.1. Plot of u (r, t) vs. r,t for the Case (i) 

       

              Fig.6.2. Plot of u (r, t) vs. r,t  for the Case (ii) 
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                Fig.6.3. Plot of u (r, t) vs. r,t for the Case (iii) 

The two dimensional figures of u (r, t) vs.  t  for r=0.5 and r = 0.9 for the three 

considered cases are shown through Fig 6.4 and Fig 6.5 respectively. It is seen 

from the figures that for both the considered values of r, u(r,t) increases as the 

values of f(r) and g(r) increase. The obtained results are in complete 

agreement with the results obtained by Das (2009), and Das and Gupta (2011). 

It is also observed from Fig. 6.6 that in all three cases, at  r=0.5 the increase 

rate of u(r ,t) is faster when the system approaches from standard order to 

fractional order.  
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Fig.6.4. Plot of u(r, t) vs. t in all the three cases for r=0.5 

0.2 0.4 0.6 0.8 1.0
t

50

100

150

200

u

 

Fig.6.5. Plot of u(r, t) vs. t in all the three cases for r=0.9 

Case (iii)

Case (i) 

Case (ii) 

Case (iii) 

Case (i) 

Case (ii) 



CHAPTER 6 

 102  

  
0.2 0.4 0.6 0.8 1.0

t

20

40

60

80

u

 

(a) Case (i) 

 

0.2 0.4 0.6 0.8 1.0
t

50

100

150

200

u

 

(b) Case (ii)    
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(c) Case (iii)  

 Fig.6.6. Plots of u(r, t) vs. t in all the three cases for 2  and 2/3  at 

r=0.5. 

6.7 Conclusion 

The present chapter has achieved the solutions of the fractional order 

vibration equation using the operational matrix of Bernstein polynomial basis 

for the different initial conditions. The attribute of the present study is 

fractional order vibration equation is successfully converted into a linear 

system of equations which are dispersed in the domain 1,01,0  and solved 

numerically. As a check on accuracy of the proposed method solution, the 

results obtained are found to be in complete agreement with the results 

obtained by Das (2009), and Das and Gupta (2011). 
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