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5.1 Introduction 

Van der Pol oscillator equation was first introduced in 1920 by Balthazar Van 

der Pol (1920) who introduced the equation to describe the oscillation of 

triode in the electrical circuit. The mathematical model for this system is a 

second order differential equation with third degree of nonlinearity as 

0)()())(1()( 2 tutututu ,                                                                            (5.1) 

where 0  is a control  parameter and u ,
.

u  are the second and first order 

derivative of u with respect to time. If ,0  equation (5.1) represents the 

simple linear oscillator and for ,1  it represents relaxation oscillation. The 

equivalent state space formulation of the equation (5.1) is 
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In the equation (5.1) for the small value of )(tu , the damping force is negative 

i.e., )(tu .Again if )(tu  is bigger, it becomes dominant and the damping is 
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positive. Van der Pol oscillator is an example of self oscillatory system which 

is now considered as a very useful mathematical model. Equation (5.1) is also 

known as unforced Van der Pol equation. Van der Pol proposed another 

version of the above equation by including a periodic forcing term as  

wtatutututu sin)()())(1()( 2  .                                                                 (5.2) 

In 1945, Cartwright and Littlewood (1945) analyzed the Van der Pol equation 

with large nonlinearity parameter. In 1949, Lavision (1949) studied the Van 

der Pol equation and had shown that the equation has singular solution. The 

equation is considered as basic model for oscillatory process for Physics, 

Biology, Electronics, and Neurology. Van der Pol himself built a number of 

electronic circuits to model human heart using the equation. 

Many researchers have tried to solve and study the Van der Pol equation in 

various forms.  Mickens (2001) proposed the analytical and numerical study 

of a non-standard finite difference scheme for the unplugged Van der Pol 

equation. In 2002, Mickens (2002a) studied numerically the Van der Pol 

equation using a non-standard finite-difference scheme. In the same year, 

Mickens (2002b) proposed a step-size dependence of the period for a forward-

Euler scheme of the Van der Pol equation. In 2003, Mickens (2003) proposed 

different forms of Fractional Van der Pol oscillators. Researchers have tried 

many methods to solve the Van der Pol differential equation using Energy 
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balance method (Mehdipour et al.,2010; Younesian et al.,2010), Parameter 

expanding method (He et al., 2010; Herisanu  et al.,2010 ) etc.  

Finding the solutions of the Fractional order differential equations have 

become very popular among  the researchers (Atangana and Secer,2013) due 

to the non local behavior as well as memory effect. Leung et al. (2012) have 

used residue harmonic balance method for fractional order Van der Pol like 

oscillators. V. Gafiychuk et al. (2008) have done the analysis of fractional order 

Bonhoeffer Van der Pol oscillator. Leung and Guo (2011) have used forward 

residue harmonic balance for autonomous and non autonomous systems with 

fractional derivative damping. Guo et al. (2011) have given the asymptotic 

solution of fractional Van der Pol oscillator using the same method. Leung et 

al. (2010) have used the method for discontinuous nonlinear oscillator for 

fractional power restoring force. Sardar et al. (2009) have found the 

approximate analytical solution of multy term fractionally damped Van der 

Pol equation. Konuralp (2009) studied numerical solution of Van der Pol 

equation with fractional damping term. Pereira et al.  

(2004) have proposed a fractional order Van der  Pol equation as 
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 with the state space formulation as 



CHAPTER 5 

 76  

.)1(

,

2

2

11
2

2
1

uuu
dt

ud

u
dt

du

 

which is obtained by introducing a capacitance by a fractance in the nonlinear 

RLC circuit. Barbosa et al. (2004) proposed fractional order Van der Pol 

equation by introducing a fractional order time derivative in the state space 

equation of the classical Van der Pol equation as 
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which gives us the Van der Pol equation as 
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In the present chapter, the two fractional order time derivatives in the state 

space equation are considered as 
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which generate the fractional order Van der Pol equation as 
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.0)0(,)0(with uau  

Equation (5.5) represents the classical Van der Pol equation for 1 . 
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In the method HAM proposed by Liao (1992) some parameter terms are used 

viz., auxiliary linear operator, embedding parameter or Homotopy parameter, 

initial guess, convergence control parameter, auxiliary parameter etc. In this 

method there are flexibilities to choose the auxiliary linear parameter, initial 

guess, auxiliary function and the convergence control parameter. Liao 

showed the advantages of the method are it is independence of any small or 

large physical parameters and also provides a convenient way to guarantee 

the convergence for approximation of series solution. Due to these advantages 

it can overcome the restrictions and limitations of various existing traditional 

perturbation and non-perturbation methods. The biggest advantage of the 

method is the smooth construction of so called   zero-th order deformation 

equation, which is a base of HAM to connect a given non-linear problem and 

a relatively much simpler linear ones. Keeping in mind these advantages and 

flexibilities of HAM, an endeavor has been made in this chapter to solve the 

fractional order Van der Pol equation. The convergence of the series solution 

(Liao, 2012; Atangana, 2014) with the proper choice of optimal values of 

convergence control parameter and also the stability analysis of the Van der 

Pol equation for different fractional order time derivatives through numerical 

and graphical presentations for different particular cases is the striking 

feature of this scientific contribution. The remarkable contribution of this 

study is the presentation of oscillations of the system, which are depicted 
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through phase portraits for various values of control parameters and 

fractional order derivatives.   

5.2 Solution of the problem by HAM 

The equation (5.5) can be rewritten as 

,10,0)()()()()( 22
tutuDtuDtutuD ttt                                (5.6) 

with  .0)0(,)0( uau     

The linear auxiliary operator is  
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with the property that  

,0][cL                                                                                                                 (5.8) 

where c is the integrating constant, ),( qt  is an unknown function. 

The nonlinear operator is defined as 

.),(),(),(),(),()],([ 22
qtqtDqtDqtqtDqtN ttt                     (5.9) 

Hence the zero-th order deformation equation is 

,)],([)](),([)1( 0 qtNqtuqtLq                                                               (5.10) 

where ]1,0[q  is the embedding parameter, 0  is the convergence control 

parameter, )(0 tu is the initial guess of )(tu . 

The m-th order deformation equation is  

,)]([)]()([ 11 tuRtutuL mmmmm                                                                  (5.11) 
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with initial condition  

,0)0(mu                                                                                                               (5.12) 

where m  is defined as  
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Therefore solution of the deformation equation is  
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Proceeding in the similar manner, we can calculate the other components 

4, nun  and hence we get the series solution of the considered problem as 
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As given by Liao (1992), at the m-th order of approximation, one can define 

the exact square residual error as 

dttuNE
m
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)(                                                                            (5.19) 

During numerical computation the limits of t  in the equation (5.19) is taken 

from 0 to 1.  

The optimal value of can be obtained by means of minimizing the so called 

exact residual error defined by equation (5.19), corresponding to the nonlinear 

algebraic equation 0mE . 

Convergence Theorem: If the series solution defined by the equation (5.18) is 

convergent then it converges to an exact solution of the nonlinear problem 

(5.6) as mentioned in Liao (1992) as theorem (4.21) and theorem (4.22) 

 

5.3 Numerical results and discussion  

In this section, the numerical results of )(tu for the considered non-linear 

fractional Van der Pol oscillator equation have been obtained. The optimal 

values of , for comparison of minimum exact residual errors for 

1,1a and various values of  are provided through Tables 5.1-5.3 and 

are displayed through Figs. 5.1-5.3. It is observed from Tables 5.1-5.3 that with 

increase in the order of approximations, the residual error is decreasing and 
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optimal value of  goes away from 1. Tables 5.1-5.3 also depict that with 

decrease in the value of , residual error is decreasing for 1. 

Order of  
Approximation 

 mE  mE  at 1 

1 -  1.02178 7.23448×10-3 7.56674×10-3 

2 -  0.729311 7.59265×10-2 1.09266×10-1 

3 -  0.76059 1.07886×10-4 5.11962×10-2 

Table 5.1. Comparison of exact residual error for different values of  at 
1 .  

 

 Order of 
Approximation 

 mE  mE  at 1 

1 -  1.04575 1.39174×10-2 1.50387×10-2 

2 -  0.624875 1.41559×10-1 2.35311×10-1 

3 -  0.758726 2.03645×10-4 9.34828×10-2 

Table 5.2. Comparison of exact residual error for different values of  at 
75.0  . 

 

 Order of 
Approximation 

 mE  mE  at 1 

1 - 1.09418 8.14262×10-3 1.21135×10-2 

2 - 0.550819 1.87993×10-1 3.65587×10-1 

3 - 0.725017 2.56436×10-3 1.22567 

Table 5.3. Comparison of exact residual error for different values of  at 
5.0  . 
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The phase portraits between 1u and 2u  are presented through Figs 5.4(a)-(c). It 

is observed that for 1 and ,5.0  system approaches towards an 

equilibrium point whereas for 75.0and1  the system gives us a stable 

limit cycle and with the increase of the values of  from 0.75 to 1 it is seen 

from Figs 5.4 (b) - (c) that amplitude of the limit cycle is increasing. In Fig. 5.5 

drawn for 75.0  and ,4)1(1  the same nature is found in the amplitude 

of the limit cycle. When 5.0 , the system approaches towards the 

equilibrium point at 75.0  (Fig.5.6 (a)). An interesting phenomenon is 

observed at 85.0,5.0  and 95.0,5.0 . In both occasions limit 

cycles obtained are displayed through Fig. 5.6(b) and Fig.5. 6 (c). In the first 

case the path of the orbit approaches towards the limit cycle from outside 

whereas in the later one the nature is opposite. Again for 7 , some strange 

natures are found in the limit cycles at 75.0  depicted through Fig.5.7 

which may be described as bad bands (Guckenheimer, 1980).  
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Fig.5.1. Plots of exact residual error mE  vs.  for 1,1a  and 1 . 
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Fig.5.2. Plots of exact residual error mE  vs. for 1,1a  and 75.0 . 
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Fig.5.3. Plots of exact residual error mE  vs. for 1,1a  and 5.0 . 
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(c) 

Fig.5.4. Phase Portrait between u1 and u2 (a) for 1,1a  and 5.0 (b) 

for 1,1a  and 75.0 (c) for 1,1a  and 1. 
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 Fig.5.5. Phase Portrait between u1 and u2 for ,1a 0.75  and 4,3,2,1 . 
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Fig. 5.6. Phase Portrait between u1 and u2 (a) for ,1a 5.0 and 75.0  (b) 

for ,1a 5.0 and 85.0 (c) for ,1a 5.0 and 95.0 . 
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Fig. 5.7. Phase Portrait between u1 and u2 (a) for ,1a 8  and 75.0  . 
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5.4 Conclusion 

There are two important goals that have been achieved through the present 

study. First one is how the convergence of approximate solution can be 

accelerated using convergence control parameter which demonstrates 

computationally efficient approximate solutions with low residual errors 

during the solution of the historical nonlinear equation in fractional order 

system. This clearly reveals the reliability and potential of the method HAM 

during the solution of nonlinear partial differential equations even in fractional 

order system. Second one is the observation of limit cycles for small values of  

when is close to the standard one, and also the large value of  when  is 

close to 0.5, which clearly demonstrate the variations of achieved stable limit 

cycles of the system with changes in small value of control parameter and 

higher value of fractional order time derivative to the large value of control 

parameter and small value of fractional  order derivative. 


