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4.1 Introduction 

Fractional calculus (Oldham and Spanier, 1974; Miller and Ross, 1993; 

Podlubny, 1999; Kilbas et al., 2006) gives us flexibility to do the integration 

and differentiation of arbitrary order. Till date constant order fractional 

derivative and integration are tremendously used in the modeling of the 

physical problem of fluid flow or diffusion. The flow of the fluid in 

heterogeneous medium is becoming an important area of research in recent 

time. In homogeneous medium the diffusion equation of constant order 

explains all the stages of the diffusion like normal diffusion, anomalous 

diffusion etc. In heterogeneous media like porous media where different 

permeability exists at different places so to explain the diffusion process in 

this kind of media, variable order fractional diffusion equation is required. In 

many diffusion processes, diffusion speed changes with time either it is 

accelerating or it is retarding. Traditionally researchers have tried to model 

The contents of this chapter have been accepted for publication in The Journal of 

Mathematics and Computer Science, 2015.
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this phenomenon of changing speed by taking time dependent diffusion 

coefficient. The variable order fractional differential equation is the 

appropriate selection for the modeling of this kind of phenomenon. If the 

diffusion process is interfered by any kind of disturbances or by noises due to 

which there is fluctuation in the whole system then the system will show 

deviation from constant order fractional system to variable order system.  

In physical process, memory also plays a very important role and the best 

way to use the effect of the memory on the process is the application of 

constant order fractional system but if the memory property of the system 

changes with time or with space or with both then variable order partial 

differential equations provide a better description of the memory. Recently, 

many researchers have found that variable order model is the most 

appropriate for the modeling of the physical process where behavior of 

fractional order derivative changes with time and space. 

Caputo (1995; 2001) first gave the concept of distributed order derivative in 

1967. Distributed order derivative was not sufficient for the modeling of 

diffusion process with varying speed. Samko et al. (1993; 1995) first proposed 

the concept of variable order operator. Lorenzo and Hartley (2002) have 

investigated the different types of variable order fractional order operator 

definitions. Smit and Vries (1970) investigated stress strain behavior of 
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viscoelastic material using fractional order differential equation and shown 

that order ‘ ’depends on strain level. Sun (2009) used variable order model 

for describing the different kinds of anomalous diffusion process. Coimbra 

(2003) has discussed the mechanics of variable order differential operator. 

Metzler et al. (1994) have explained that order of fractional differential 

equation used in relaxation process and reaction dynamics depends on 

temperature. Kobelev et al. (2003) have studied statistical and dynamical 

systems with fixed and variable memories. Cooper and Cowan (2004) have 

used variable order model for processing the geographical data verification. 

Lin et al. (2009) discussed the stability and convergence of an explicit finite 

difference approximation for variable order nonlinear diffusion equation. 

Pedro et al. (2008) investigated the motion of the particle suspended in a 

viscous fluid with drag force using variable order calculus. Sun et al. (2011) 

have done a comparative study of constant order and variable order fractional 

models. Razminia et al. (2012) have discussed the existence for non- 

autonomous variable order fractional differential equations. Sun et al. (2010) 

have made the study of mean square displacement behaviors of anomalous 

diffusion with variable and random orders. Many researchers have 

successfully solved the variable order fractional differential equation using 

numerical methods. Valerio et al. (2011) have given the numerical 

approximation of variable order fractional derivatives. Zhang et al. (2013) 
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have solved the variable fractional order mobile immobile advection 

dispersion model. Chen et al. (2014) have given numerical simulation of a new 

two dimensional variable order fractional percolation equation in non 

homogeneous porous media. Shen (2012) has given Numerical technique for 

the variable order time fractional diffusion equation. Sun et al. (2012) have 

explained a finite difference scheme for variable order time fractional 

diffusion equation. Sun et al. (2014) have used variable indexed model to 

explain transient dispersion in heterogeneous media. To the best of my 

knowledge no researcher has tried to solve the variable order fractional 

differential equation using Homotopy analysis method. 

After proposing Homotopy analysis method (HAM) in 1992 Liao (1997; 1998; 

2003; 2005; 2006; 2007a; 2007b; 2010) himself has given strong effort to prove 

the applicability and validity of HAM. The method is applied by many 

researchers (Odibat et al., 2010; Vishal and Das, 2012; Mishra et al., 2014) in 

many fields to solve the Mathematical models of integer order as well as 

fractional order. The basic concept of HAM is to give the successive 

approximate solutions of the problem which leads to the exact solution of the 

problem. The beauty of the present chapter is successful implementation of 

HAM to solve the variable order fractional diffusion equations where the 

convergence of the series form of the solution is obtained by minimizing the 

averaged residual error. 
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4.2 Formula and definition 

4.2.1 The variable order fractional derivative of Caputo type is defined by 

Coimbra (2003) as  
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For simplicity it is assumed that the function is well defined at t=0 and hence 

the definition takes the structure as follows 
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4.2.2 Samko (1993) has proposed the definition of variable order integration as 
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Using the above definitions, the following formulas are obtained (Sun et al., 

2010) 
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4.3 Solution of the problems by HAM 

4.3.1 We consider the following variable order time fractional diffusion 

equation without source term which is already solved numerically by Sun et 

al. (2012):  
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Considering the Linear operator as 
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and the nonlinear operator as 
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the m-th order deformation equation is  
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and c  can be calculated using the initial conditions . 
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Proceeding in the similar manner, we can calculate the other terms  5, nun  

and hence finally the approximate series solution of the problem is obtained 

as ,),(),( txLimtxu N
N

                                                                                     (4.17)
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4.3.2 Consider the diffusion equation as  
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the m-th order deformation equation is obtained as 
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where m   is defined in  equation(4.11). 

Taking  xu0  , we obtain 
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Finally the approximate series solution of the problem is obtained using 

equation (4.17). In this chapter the convergence control parameter of the 

HAM is evaluated by reducing the residual error as given by Liao (2012) at 

the m-th order approximation. The exact square residual error is given by 
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However to calculate the residual error and to reduce the CPU time, the 

method is used as suggested by Liao (2012) to calculate residual error as 
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where the optimal  value of  is calculated  by minimizing the averaged 

residual error through  the formula  

.0mE
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4.4 Results and discussion  

In this section during the analysis of the residual error of the first considered 

problem, it is assumed that Mx =34, Mt =34 and
34

1
,

34

10
tx , and the 

obtained results are displayed through Table 4.1. It is seen from the table that 

mE  decreases if the number of term in the series solution increases. Variation 

of mE for various  is shown through Fig.4.1 for k=0.01, 

.,2.08.0
LT

xt
10,=L 1=T .
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Fig.4.1. Plots of exact residual error mE  vs.  for ,2.08.0
LT

xt
10,=L 1.=T  

 

Table 4.1. Comparison of residual error (
mE ) and convergence control 

parameter ( ) for ,2.08.0
LT

xt
10,=L 1.=T  

 
It is also seen from the Fig.4.1 and Table.4.1 that the magnitude of residual 

error is minimum at ,-0.975296   when five terms in the series solution are 

taken. For this value of , the variation of u(x,t) vs. t is depicted through 

Fig.4.2 which is in complete agreement with the results given by Sun (2012). 

No of terms in the 

series solution 

Residual error (
mE ) Value of    

Three terms 2.13959×10-9 -0.995985 

Four terms 9.33408×10-13 -0.975296 

Five terms 2.1842×10-16 -0.975296 
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Fig.4.2. Evolution curve of u(x=0.5, t) vs. t at .-0.975296  

Similar calculations are done for the second considered problem to achieve 

the value of  for which the residual error is minimum. Taking Mx =10, Mt 

=10 and
10

1
,

10

1
tx , the corresponding results are displayed through 

Table.4.2 and Fig.4.3. The variation of u(x,t) for -0.13456  are displayed 

through Fig.4.4 for different values of   x and t as and when .xt  
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Fig.4.3. Plots of exact residual error mE  vs.  for xt . 
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Table.4.2. Comparison of residual error (
mE ) and convergence control 

parameter ( ) for .xt  
 

Taking -0.134256, we have plotted the solution curve of the above problem 

depicted through Fig.4.4 

 

 

 

             u(x,t) 

 

 

Fig.4.4. Evolution curve of u(x, t) vs. x and t. for .xt  

 

 

No of terms in the series 

solution 

Residual error  (
mE ) Value of    

Two terms 0.289179 -0.257313 

Three terms 0.027088 -0.176075 

Four terms 0.00560894 -0.134256 
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4.5 Conclusion 

In the present chapter the first aim was to solve the variable order Fractional 

differential equation and matching the result with Sun (2012) taking the same 

values of parameters to authenticate the effectiveness of the method even for 

variable order problems. Our second aim was to solve a nonlinear variable 

order fractional diffusion equation with a reaction term and furnish the 

stability of the solution for the different particular cases which is first of its 

kind in case of a variable order fractional diffusion system in nonlinear 

dynamics 


