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3.1 Introduction 

Lagrange multiplier method was used by Inokuti et al. (1978), with the help of 

which the variational iteration method (VIM) was proposed by the Chinese 

scientist, He (1998; 1999). VIM has been successfully used by various authors 

to solve linear and nonlinear differential equations (He, 1998; 1999; 2000; 2004; 

Momani and Abuasad, 2006; Wazwaz, 2007; Molliq et al. 2009; Porshokouhi et 

al., 2010; Wu, 2011a) etc. The reliability and simplicity of the method and the 

reduction in the size of the computation gave the method a wide applicability. 

He (1998) first applied VIM to solve the fractional order differential equation. 

Wu and Lee (2010) proposed fractional variational iteration method which is 

very much useful for solving fractional order differential equations. Wu 

(2011b) also used fractional variational iteration method to solve fractional 

order nonlinear differential equations. Khan et al. (2011) used fractional 

variational iteration method for fractional initial boundary value problems 

arising in the applications of nonlinear science. VIM needs the establishment 

The contents of this chapter have been Accepted for publication in Journal of 
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of correction functional, evaluation of Lagrange’s multiplier and the initial 

approximation. The most challenging step is the calculation of Lagrange’s 

multiplier. Jafari and Abbas (2010) proposed a new method for calculating 

general Lagrange multiplier in the VIM. Jumarie (2006) proposed a new 

modified Riemann–Liouville left derivative for fractional order derivative, 

which is not required to satisfy higher integer-order derivative than . It is 

also proposed that -th derivative of a constant is zero, where  is any 

arbitrary real number. 

In the past century notable work is done in the area related to diffusion 

equations. An interesting behavior of these diffusion equations is that it 

generates the Brownian motion (BM). Many authors viz., Wazwaz (2007), 

Sadighi and Ganji (2007) etc. have used VIM to solve diffusion equations. 

Fractional diffusion equation is obtained from the classical diffusion equation 

in mathematical physics by replacing the first order time derivative by a 

fractional derivative of order ( 10 ). It is already described in the 

previous chapter that the anomalous diffusion is characterized by a diffusion 

constant whose mean square displacement is calculated as .~)(2 ttx  Wu 

(2012a; 2012b) has solved time fractional diffusion equation in porous 

medium and also fractional order diffusion equation in the case of local verses 

nonlocal. Das (2009a; 2009b) used VIM to find the solutions of fractional 

diffusion equation of order , where 10  for various initial conditions 
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involving power of x. Later, Vishal and Das (2012) have solved the nonlinear 

fractional order diffusion equation with absorbent term and external force 

using optimal homotopy analysis method. 

Anomalous diffusion and relaxation behaviors are often described in terms of 

fractional order equations, and generalized kinetic and stochastic equations. 

For example, fractional Brownian motion (FBM) is a very useful approach to 

anomalous diffusion. It represents a random process driven by so-called 

fractional Gaussian noise. FBM is closely related with the generalized 

Langevin equation (GLE) for a particle driven by fractional Gaussian noise. 

An alternative approach to anomalous diffusion is the continuous time 

random walk (CTRW) which is a random walk subordinated to a renewal 

process in which each random particle jump is preceded by a random waiting 

time. The CTRW theory generalizes the results of the standard random walk 

concept. 

Ordinary linear and nonlinear differential equations of fractional order in 

which unknown functions are operated by derivative of fractional order have 

already been studied by many researchers (Al-Bassam, 1982; 1986; Campos, 

1990; El-Sayed, 1992; 1993; Podlubny, 1999; Elizarraraz and Verde-Star, 2000; 

Kilbas and Trujillo, 2001; Grin'ko, 1991; Sabatier et al., 2007; Goodrich, 2010; 

Ahmad and Nieto, 2009; Odibat and  Momani, 2006; Kosmatov, 2009; Wang, 

2011) for last few decades for the sake of mathematical modeling and useful 
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applications in different branches of science and engineering. The accuracy of 

the fractional order system is much more than the standard order system 

since the fractional order system allows great flexibilities in the model than 

the standard order. 

 Due to the immense applications of fractional order diffusion equations and 

differential equations in various areas in science and engineering, I have been 

motivated to solve those types of equations using a new technique to achieve 

the solutions in approximate analytical form. Soltani and Shirzadi (2010,) 

proposed a modification to the VIM for the evaluation of Lagrange multiplier 

through addition and subtraction of a linear term in the correction functional. 

In the present chapter the author has proposed correction functional using G. 

Jumarie’s (2006) Modified fractional order derivative and introduced a new 

idea for the calculations of Lagrangian multiplier using Jumarie’s fractional 

order Taylor’s series.  In this chapter a sincere attempt has been taken to solve 

fractional order differential equations using the modified fractional 

variational iteration method to show the validity of the method. The salient 

feature of the chapter is finding the solutions of two considered problems in 

terms of Mittag-leffler function. 
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3.2 Basic definitions 

Definition 3.2.1 Jumarie (2006) defined the fractional derivative in the 

following limit form 

h

fxf
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This definition is closed to the standard definition of derivatives, and as a 

direct result, the -th derivative of a constant is zero. 

Definition 3.2.2 If Rf ]1,0[:  is a continuous function and  is a real 

number in the interval )1,0( , then Jumarie’s modified Reimann- Liouville 

fractional derivative (2006) is defined by  
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Definition 3.2.3 The formula for Integration by parts can be used in the 

fractional calculus as (Jumarie, 2009) 
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Definition 3.2.4 Assume that the continuous function (x)f xR,R:f  has 

a fractional derivative of order k  for any positive integer k  and for any , 

10 ; then( Jumarie ,2006)  

,10,)(
)1(

)(
0

xf
k

h
hxf k

k

k

                                            (3.4) 

which provides the local fractional Mc-Laurin’s series as 
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3.3 Algorithm of the proposed method 

Consider the fractional order differential equation 

,)()],([)],([),( tktxuNtxuRtxuDt                                                     (3.6) 

where )],([ txuR  represents the linear terms, )],([ txuN  represents nonlinear 

terms in the differential equation and )(tk  is a continuous function. 

Consider the correction functional as 

))()],([)],([),((01 tktxuNtxuRtxuDIuu nnnttnn .                  (3.7) 

Introducing a linear term nu in equation (3.7), we obtain 
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It is obvious that the successive approximation 0,nun  can be established by 

determining Lagrange multiplier . The function  nu
~  is a restricted variation, 

which means 0~
nu . The successive approximation 0),,(1 ntxun , of the 

solution ),( txu  will be readily obtained upon using the Lagrange’s multiplier 

and by using any selective function 0u . The initial value )0,(xu  is usually used 

for selecting the zero-th order approximation 0u .  

To find the optimal value of , we have 

0),(( 001 ntnttnn uItxuDIuu . 
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i.e., 000 ntnttnn uIuIuu .                                             (3.9) 

This yields the stationary conditions 

0),(1
t

t  .                                                                                       (3.10) 

and 0 ,                                                                                                 (3.11) 

which give rise to  1),(
t

t  

 and  ,1),(),(
tt

tt  

,1),(),(2

tt
tt  

 1),(),( 23

tt
tt . 

Putting all these values in the fractional order Taylors series expansion, we 

obtain 

...
)31(

)(
),(

)21(

)(
),(

)1(

)(
),(),(),(

3
3

2
2 t

t
t

t
t

ttt
tttt

 

...
)31(

)(

)21(

)(

)1(

)(
1

32 ttt
 

])([)1(
)1(

)()1(

0

1

tE
k

t

k

kk

 .                                                 (3.12) 

Substituting this value of Lagrangian multiplier in equation (3.7), we get the 

following iteration formula 

))()],([)],([),(]()([01 tktxuNtxuRtxuDtEIuu nnnttnn .        (3.13) 
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Starting with the initial approximation ),0,(),(0 xutxu  we get the successive 

terms ...,, 321 uuu  using this procedure for sufficiently large value of n, we get 

),( txun as an approximation of the exact solution for large n and finally the 

exact solution is obtained as 

),(lim),( txutxu n
n  .                                                                                (3.14) 

Example 3.3.1 Consider the diffusion equation 
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where )()0,( xfxu .                                                                                          (3.16) 

Here the correctional functional is taken as 
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Introducing a linear term 
nu ,  we get 
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Applying restricted variations to the linear term and space fractional term in 

equation (3.18), we get 
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 The stationary condition yields  
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0),(1
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which finally give the Lagrangian multiplier as 
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Thus the correction functional becomes 

x

u

t

u
tEIuu nn

tnn ))((01
.                                       (3.19) 

Taking  )(0 xfu , the next approximation is obtained as 
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For the sake of calculation, taking term upto k=2, we get the next iterated 

value as 
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Proceeding in the similar way, we get 2,nun and thus approximate solution 

is obtained using equation (3.14).  



CHAPTER 3 

 55  

Example 3.3.2 Wu (2011b): The nonlinear fractional order differential 

equation 

,122 yy ,10,10 x                                                            (3.22) 

given that  y(0)=0  and  .1)0(y  

The Correction functional is taken as  
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Introducing a linear term ,ny we get 
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To find the optimal value, we have 
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Using fractional order Taylor’s series for ),( x , we get 
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Hence correction functional (3.23) reduces to 
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Using Mc-laurian series for fractional derivative as 
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For the sake of calculation, taking term upto k=0, we get the next iterated 
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Proceeding in the similar way, we get 2,nyn and thus the approximate 

solution is obtained using equation (3.14). 

Particular case: Taking k=0 in ,2y  we get  
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 which is in complete agreement with  Wu (2011b). 
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3.4 Conclusion 

In the present chapter a modified VIM is proposed for solving fractional order 

nonlinear differential equation and linear partial differential equation. The 

proposed method clearly exhibits the suitability for a large class of fractional 

order differential equations. The beauty of the chapter is the finding of 

Lagrangian multiplier in terms of Mittag-Leffler function which helps to 

obtain the solutions of the considered problems in approximate analytical 

form.  


