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On the solution of the nonlinear fractional diffusion-
wave equation with Absorption: a homotopy approach  

  
2.1 Introduction 

In this chapter, a sincere attempt has been taken to solve the nonlinear 

fractional diffusion equation with reaction term as 
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where u(x, t) is a field variable which is assumed to vanish for t < 0. The 

absorbent team related to the reaction diffusion process is described as 
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which possesses a long time correlation with the exponent , which may be 

determined by dynamical mechanism of the physical process. The equation 

will represent a death process for the sink term as 00a and a birth process 

for a source term as 00a  mentioned by Angstmann. et al. (2013). The 

equation (2.1) is said to be fractional diffusion equation for 10 and 

fractional wave equation for 21 . The difference between these two cases 

The contents of this chapter have been published in Zeitschriftfür Naturforschung   A 69, 
135-144, 2014.
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can be seen in the formula for the Laplace transform of the Caputo fractional 

derivative of order   ),1( Nmmm as 
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For the case 10 , we have initial condition  

kxxu )0,( . (2.4) 

For the case 21 , we have initial conditions 
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Due to the presence of the reaction term, the equation (2.1) may be useful to 

investigate, several situations by choosing an appropriate ),(ta  for example, 

catalytic processes in regular, heterogeneous, or disordered systems (Havlin 

Ben-Avraham, 1987; Lee, 1994; Alemany et al. 1994). Another example is an 

irreversible first-order reaction of transported substance so that the rate of 

removal is  as given by Crank (1956). The above type of anomalous 

diffusion is a ubiquitous phenomenon in nature and appears in different 

branches of science and engineering. Equation (2.1) for 1 and without 

absorption represents a model of plasma diffusion for 2/1n , thermal limit 

approximation of Carlemans model of the Boltzmann equation for 1n , 

diffusive in higher polymer systems for 2n , isothermal percolations of 

perfect gas through a micro-porous medium for 1n  and process of melting 

and evaporation of metals for 2n  (Wazwaz,2001). Equation (2.1) for 
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0,1 0an  i.e., the nonlinear time-fractional diffusion equation in absence of 

absorption has exact solution  txtxu ),(  . Similarly for 02 0an the 

exact solution is 
)41(

),(
t

x
txu (Das et al., 2011). 

For 1, equation (2.1) represents a Fickian or normal diffusion process. 

When 10 , 21 , equation (2.1) describes a diffusion process which is 

temporally non-Fickian but specially  Gaussian. For 2 , equation (2.1) 

represents a wave equation, which is also known as Ballistic diffusion. 

Einstein's theory of Brownian motion reveals that the mean square 

displacement of a particle moving randomly is proportional to time. But after 

the advancement of fractional calculus, it is seen that the mean square 

displacement for an anomalous diffusion equation having time fractional 

derivative grows slowly with time i.e., ttX ~)(2 , where 10  is the 

anomalous diffusion exponent. When 0n , equation (2.1) reduces to the 

linear fractional order diffusion equation as for 10 . In this case after a 

lengthy mathematical calculation it is seen that 

)(~)( 1

1,12 ratEttM k

k
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k
r n and .0)(12 tM k Thus the 

mean square displacement ,)(~)( 1

1,1

2 rtEttX  where, )(, tE is the 

Mittag-Leffler function.  
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Replacing integer order with fractional order time derivative changes the 

fundamental concept of time and with it the concept of evolution in the 

foundations of physics. The fractional order  can be identified and has a 

physical meaning related to the statistics of waiting times in the Montroll-

Weiss theory. The relation was established in two steps. First, it was shown by  

Hilfer and Anton (1995) that Montroll-Weiss continuous time random walks 

with a Mittag-Leffler waiting time density are rigorously equivalent to a 

fractional master equation. Then Hilfer (1995) explained that this underlying 

random walk model was connected to the fractional time diffusion equation 

in the usual asymptotic sense of long times and large distances. 

A simple model for simulating diffusive phenomena is the random walk 

approach. A random walker can be regarded as a diffusing particle, 

performing a random motion, similar to the Brownian motion, on an

appropriate discrete lattice in discrete time steps. However, diffusion then is a 

stochastic process of many moving particles. So we have to simulate not only 

one diffusing particle, but a large number of particles. Both, the diffusive 

process and its simulation, can be characterized by the time development of 

their mean square displacement. It is already mentioned that the anomalous 

diffusion is characterized by a diffusion constant and the mean square 

displacement of diffusing species in the form ttX ~)(2   and the 

phenomena of anomalous diffusion is usually divided into anomalous sub-
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diffusion for 10  and anomalous super-diffusion for 21 . The 

strictly time fractional diffusion of order 10,  generates a class of 

symmetric densities whose moments of order 2m are proportional to the m  

power of time (Gorenflo et al., 2002). We thus obtain a class of Non-Markovian 

stochastic processes (they possess a memory!) which exhibit a variance 

consistent with slow anomalous diffusion. In 1999, applying a fractional order 

Fokker-Plank equation approach, Metzler et al. (1999) have shown that 

anomalous diffusion is based upon Boltzman statistics. Many researchers 

have used fractional equations to describe Levy flights or diverging diffusion. 

The integer-order model can be viewed as a special case from the more 

general fractional order model since it can be retrieved by putting all 

fractional orders of the derivatives equal to unity. In other words, the ultimate 

behavior of the fractional order system response must converge to the 

response of the integer-order version of the model. This shows that fractional 

calculus is the extension of classical mathematics. In the last two decades, 

fractional differential equations have been widely used by the researchers not 

only in science and engineering but also in economics and finance. It is also a 

powerful tool in modeling multi scale problems, characterized by wide time 

or length scale. The attribute of fractional order systems for which they have 

gained popularity in the investigation of dynamical systems is that they allow 

greater flexibility in the model. An integer order differential operator is a local 
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operator whereas the fractional order differential operator is non-local in the 

sense that it takes into account the fact that the future state not only depends 

upon the present state but also upon all of the history of its previous states. 

An important characteristic of these evolution equations is that they generate 

the fractional Brownian motion which is a generalization of Brownian motion. 

For physical systems, one should have to keep in mind two things for 

application of fractional order in the system for making a decisive step for the 

penetration of mathematics of fractional calculus into a body of natural 

sciences. Firstly to analyze the importance and physical influence of the 

memory effects on time or space or both and secondly to give proper 

interpretation of general meaning of non integer operator. The main 

advantage of the fractional calculus is that fractional derivatives provide an 

excellent instrument for the description of memory and hereditary properties 

of various materials and processes. 

Fractional derivatives and integrals are useful to explore the characteristic 

features of anomalous diffusion, transport and fractal walks through setting 

up of fractional kinetic equations, master equations etc. Fractional kinetic 

equations have proved particularly useful in the context of anomalous sub-

diffusion (Metzler and Klafter, 2000). The fractional diffusion equation, which 

demonstrates the prevalence of anomalous sub-diffusion, has led to an 

intensive effort in recent years to find the solution accurately in straight 
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forward manner (Langlands and Henry,2005). The fractional diffusion 

equation is valuable for describing reactions in the dispersive transport media 

(Yuste and Lindenberg, 2001).  Anomalous diffusion processes occur in many 

physical systems for various reasons including disorder in terms of energy or 

space or both (Weiss, 1994; Hughes, 1995). Fractional reaction-diffusion 

equations or continuous time random walk models are also introduced for the 

description of nonlinear reactions, propagating fronts and two species 

reactions in sub-diffusive transport media (Henry and Wearne, 2000). Chen et 

al. (2007) proposed an implicit difference approximation scheme (ISAS) for 

solving fractional diffusion equation, where the stability and convergence of 

the method had been analyzed by Fourier method. Schot et al. (2007) have 

given an approximate solution of the diffusion equation in terms of Fox H-

function. Zahran (2009) has offered a closed form solution in Fox H-function 

of the generalized fractional reaction-diffusion equation subjected to an 

external linear force field, one that is used to describe the transport processes 

in disorder systems. It is to be noted that some works on fractional diffusion 

equations have already been done by Angulo et al. (2000), Pezat and Zabczyk 

(2000), Schneider and Wyss (1989),Yu and Zhang (2006), Mainardi  (1996), 

Mainardi et al. (2001), Anh and Leonenko (2003). Recently, Das (2012) has 

solved the fractional order nonlinear reaction diffusion equation using a 

mathematical tool variational iteration method and has shown that sub-
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diffusions occur even for cubic order non-linearity and also cubic order of x in 

the initial condition. 

The theory of fractional time evolutions describes novel three parameters 

susceptibility functions which contain only a single stretching exponent. Also 

it shows that two widespread characteristics of relaxation spectra in the glass 

forming materials, (Hilfer, 2002; Hilfer, 2003a) has shown that a power-law 

tail in the waiting time density is not sufficient to guarantee the emergence of 

the propagator of fractional diffusion in the continuum limit. Another work of 

Hilfer (2003b) underlines that fractional relaxation equations providing a 

promising mathematical framework for slow and glassy dynamics. In 

particular fractional susceptibilities are seen to reproduce not only 

broadening or stretching of the relaxation peaks but also the high frequency 

wing and shallow minima observed in the experiment.  

Homotopy Analysis Method (HAM) is an analytical approach to get the series 

solutions of linear and nonlinear differential equations. The difference with 

the other perturbation methods is that this method is independent of 

small/large physical parameters. Another important advantage of this 

method as compared to the other existing perturbation and non-perturbation 

method lies in the flexibility to choose proper base function to get better 

approximate solution of the problems. This method offers certain advantages 

over routine numerical methods. Numerical methods use discretization  
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which give rise to rounding off errors causing loss of accuracy, and require 

large computer memory and time. This computational method is better since 

it does not involve discretization of the variables and hence is free from 

rounding off errors and does not require large computer memory or time 

.This method has been successfully applied by many researchers for solving 

linear and non-linear partial differential equations,( Liao ,1995; 1997; 2003; 

2009) and by Das et al. (2011). Reaction-diffusion appears during the 

propagation of flames and migration of biological species. Tumor growths are 

the examples of such phenomena. Therefore, in this chapter a drive is taken to 

see the nature of these types of equations with memory effect due to the 

presence of fractional order time derivatives after solving the equation using 

HAM technique. The salient feature of the chapter is the graphical 

presentations and numerical discussions of the damping behaviors of the field 

variable ),( txu in order to obtain sub-diffusion of the time fractional nonlinear 

equations due to the presence of various parameters of physical interest. 

 

2.2 Solution of the problem by homotopy analysis method 
  
Taking the Laplace transform on both sides of equation (2.1), we get 

t

n dxutaL
x

txu
txu

x
L

t

txu
L

0

),()(
),(

),(
),(

.                        (2.6) 

Now for ,10 we have 



CHAPTER 2 

 32  

t

n dxutaL
sx

txu
txu

x
L

s
xu

s
txuL

0

),()(
1),(

),(
1

)0,(
1

),( , (2.7) 

and for  ,21 we have 
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In the view of equations (2.4) and (2.5), equations (2.7) and (2.8) reduce to 
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 Now taking the Inverse Laplace transform, we have 
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To solve the equation (2.10) by HAM, we choose the linear auxiliary operator 

as 
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where ),,( qtx is an unknown function. Furthermore, in the view of equation 

(2.7), we have defined the nonlinear operator as  
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Now we construct the zero-order deformation equation as 
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Differentiating the zero-order equation (2.13) m-times with respect to q and 

then dividing it by m!  and finally setting q=0 , one has the so called  m-th 

order deformation equation as 
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with the initial condition 
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and  is non-zero auxiliary parameter. 

For n=1, 
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and for n=2, 
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Applying the idea of homotopy- analysis method, we have 

,)),((),(),( 11 ctxuRtxutxu mmmmm                                                           (2.19) 

where c, the integration constant c is determined by the initial condition (2.15) 

2.2.1 Case-I (for n=1) : Taking     

 then from equation (2.19), the values ),( txum for m=1, 2, 3, . . .can be obtained 

as 
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and so on. 

2.2.2 Case-II (for n=2) : Taking  

then from equation (2.19), the values ),( txum for m=1,2,3,...can be obtained as 
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and so on. 

Finally, the m-th order approximation series solution is given as 
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2.3 Numerical results and discussion 

In this section, numerical results of the field variable u(x,t) for different values 

of fractional order derivative are calculated for the parameters' values 

1,2,5.0 k at x=0.5 and these results are depicted through Fig. 2.1 and 

Fig. 2.2 at 9.0)1.0(6.0  for n=1 and n=2 respectively, Fig. 2.3 and Fig.2. 4 at 

5.1)1.0(2.1 for n=1 and n=2 when 100a  and also through Figs. 2.5 – 2.8 

with similar conditions when 100a , when the degree of non-linearity is 

one i.e., n=1, it is seen from Fig. 2.3 that even for 1 due to the effect of sink 

term 00a the sub-diffusions are observed with lesser overshoots than those 

for 1 (Fig.2.1). If the degree of non-linearity increases then similar types of 

results are found from Fig. 2.2 and Fig. 2.4 with much greater overshoots of 

sub-diffusion. It is also observed from Figs. 2.5 -2.8 that even for 1 the 
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super-diffusions are found due to the effect of source term 00a . Figs. 2.9 – 

2.12 demonstrate the variations of Mean square displacement )(2 tX with 

time t for linear fractional order system n=0 in the presence of sink (death) 

and source (birth) terms. It is seen from the figures that there are behavioral 

changes of )(2 tX for death and birth processes. The figures clearly justify the 

occurrence of anomalous behavior of linear diffusion equation in the 

fractional order system. Tables 2.1 and 2.2 show comparison between the 

approximate and exact values for n=1 and n=2  in the absence of reaction term 

i.e., 00a , which clearly exhibit the fact that even six order terms of the 

approximation of the solutions are sufficient to get good approximation to the 

exact solution. It is evident that the accuracy can further be enhanced by 

computing few more terms of the approximate solutions. 
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t x 
u(x,t) at

2

1
 

u(x,t)at 1 Exact solution   
at 1 

0.0 -1.0 -1.0 -1.0 -1.0 

0.0 -0.5 -0.5 -0.5 -0.5 

0.0 0.0 0.0 0.0 0.0 

0.0 0.5 0.5 0.5 0.5 

0.0 1.0 1.0 1.0 1.0 

0.5 -1.0 -0.2021 -0.5 -0.5 

0.5 -0.5 0.2979 0.0 0.0 

0.5 0.0 0.7979 0.5 0.5 

0.5 0.5 1.2979 1.0 1.0 

0.5 1.0 1.7979 1.5 1.5 

1.0 -1.0 0.1284 0.0 0.0 

1.0 -0.5 0.6284 0.5 0.5 

1.0 0.0 1.1284 1.0 1.0 

1.0 0.5 1.6284 1.5 1.5 

1.0 1.0 2.1284 2.0 2.0 

 
Table 2.1. Comparison of the HAM solution with the exact solution for n = 1. 
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t x 
u(x,t) at 

2

1
 

u(x,t) at 1 Exact solution 

at 1  

0.0 -1.0 -1.0 -1.0 -1.0 

0.0 -0.5 -0.5 -0.5 -0.5 

0.0 0.0 0.0 0.0 0.0 

0.0 0.5 0.5 0.5 0.5 

0.0 1.0 1.0 1.0 1.0 

0.1 -1.0 -52.945 -1.2905 -1.2910 

0.1 -0.5 -26.473 -0.6452 -0.6455 

0.1 0.0 0.0 0.0 0.0 

0.1 0.5 26.473 0.6452 0.6455 

0.1 1.0 52.945 1.2905 1.2910 

0.2 -1.0 -341.268 -2.0515 -2.2361 

0.2 -0.5 -170.634 -1.0259 -1.1180 

0.2 0.0 0.0 0.0 0.0 

0.2 0.5 170.634 1.0259 1.1180 

0.2 1.0 341.268 2.0518 2.2361 

 
Table 2.2. Comparison of the HAM solution with the exact solution for n = 2. 
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Fig. 2.1. Plots of u(x, t) vs. t for 0a  = 10,  = 0.5, k = 2, n = 1, x = 0.5 and for  

different values  of . 
 

Fig. 2.2. Plots of u(x, t) vs. t for 0a  = 10,  = 0.5, k = 2, n = 2, x = 0.5 and for 

different values of . 
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Fig. 2.3. Plots of u(x, t) vs. t for 0a  = 10,  = 0.5, k = 2, n = 1, x = 0.5 and for 

different values of . 
 
 

 

Fig. 2.4. Plots of u(x, t) vs. t for 0a  = 10,  = 0.5, k = 2, n = 2, x = 0.5 and for 

different values of . 
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Fig. 2.5. Plots of u(x, t) vs. t for 0a  = -10,  = 0.5, k = 2, n = 1, x = 0.5 and for 

different values of . 

Fig.2.6. Plots of u(x, t) vs. t for 0a  = -10,  = 0.5, k = 2, n = 2, x = 0.5 and for 

different values of . 
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Fig. 2.7. Plots of u(x, t) vs. t for 0a  = -10,  = 0.5, k = 2, n = 1, x = 0.5 and for 

different values of . 
 
 

Fig. 2.8. Plots of u(x, t) vs. t for 0a  = -10,  = 0.5, k = 2, n = 2, x = 0.5 and for 

different values of . 
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2.4 Conclusion 
 
There are four important goals that have been achieved through the study of 

the present chapter. First one is the successful presentation of the effects of the 

reaction term on the nonlinear fractional order diffusion-wave solutions. 

Second one is the graphical presentations of the sub-diffusion and super- 

diffusion for different particular cases for both birth and death processes. 

Third one is the study of mean square displacement which justifies the 

anomalous nature of fractional order diffusion processes for linear as well as 

nonlinear cases. Fourth one is the tabular presentation of the comparison of 

the approximate solutions for some particular cases with the exact solutions, 

which clearly reveals the reliability and effectiveness of our considered 

method HAM.


