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 1.1 Linear and Nonlinear PDE 

A Partial differential equation (PDE) is an equation which involves an 

unknown function of two or more variables and certain of its partial 

derivatives. A second order partial differential equation in two independent 

variables in general is written as 

,0.),,,,,,,( ttxtxxtx uuuuuutxf where,  
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,  .                            (1.1) 

We consider the above equation in a suitable domain 2R . To find the 

solution, we try to find a twice continuously differentiable function ),( txuu  

which when substituted in equation (1.1) converts it into identity in   .The 

domain  of x and t, where problem is defined, is known as space time 

domain and PDE, which involves t (time) as one of the independent variable, 

is known as Evolution equation whereas if both the independent variable are 

spatial variable like x, y then the equation is known as Equilibrium or steady-

state equation. A partial differential equation is said to be linear if it is linear 

in the unknown function and all its derivatives with coefficients depending 

only on independent variables, in another way speaking a partial differential 

equation is linear if sum of two solutions is also a solution i. e., superposition 
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principal should be followed and a constant multiple of the solution is also a 

solution i. e., homogeneity should be followed. A partial differential equation 

which does not satisfy the properties of superposition and homogeneity is 

known as nonlinear partial differential equation. 

 
1.2 Fractional differential equation 

Fractional differential equations are the generalization of ordinary differential 

equations and integration to arbitrary non integer orders. Recent 

investigations have shown that many physical systems can be represented 

more accurately through fractional derivative formulation. Miller and Ross 

(1993) defined the fractional differential equation as, let 021 .,..,,, rrrr mmm  be 

strictly decreasing sequence of non negative numbers and if mbbbb .,..,,, 321  are 

constants then a fractional differential equation is defined as  

0)(]...[ 021
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rrr mmm .                                                         (1.2) 

But even this equation has complexity hence some other conditions are 

imposed as let ir  be the rational number, and if  q is the least common 

multiple of all the denominator of nonzero ir  we can express equation (1.2) as   
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and0 .                          (1.3) 

On the values of q=1 and 1, equation (1.3) represents an ordinary 

differential equation, the equation (1.3) is known as fractional linear 
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differential equation with constant coefficients  of order (n, q) . Almost four to 

five decades ago the paradigm started to shift from pure mathematical 

formulations to its applications in various fields. During the last few decades 

fractional calculus has been applied to almost every field of science although 

some of the mathematical issues remain unsolved, most of the mathematical 

difficulties have been resolved and some mathematical issues in this field 

have been resolved to a point. One of the major advantages of fractional 

calculus is that it can be considered as super set which contains integer order 

calculus and hence fractional calculus has the potential to handle even that 

situation which integer order calculus cannot. 

 

1.3 Fractional Calculus 

Fractional calculus is the extension of calculus where the order of 

differentiation and integration are generalized. In fractional calculus the order 

of differentiation and integration can be any real number or complex number 

instead of only being the integer, although the idea of generalized order 

differentiation and integration seems to be very new but it is as old as the 

integer order calculus .The first formal introduction of fractional calculus is 

believed that it has been introduced in a letter dated September 30, 1965 

between Leibniz and L’Hospital.  L’Hospital asked the question that what will 

be the result if n=1/2 in the notation for the n-th derivative which was 
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introduced by Leibniz. The birth of the fractional calculus comes from the 

Leibniz answer that “An apparent paradox, from which one day useful 

consequences will be drawn”.  The question raised by L’Hospital has been the 

topic of research for more than 300 years. 

The popularity of fractional calculus was less in the start because of the 

conflicting definitions for the fractional operators and inconsistent rules for 

the inverse operators. Fourier mentioned about the derivative of arbitrary 

order using the Fourier integral representation, Euler also had mentioned the 

arbitrary order derivative but they did not apply it anywhere.  It was first 

Niels Henrik Abel in 1823 used fractional calculus for solving Integral 

equation arising in famous Tautochrone problem, which is also known as 

isochrones problem. During the development of fractional calculus many 

people have contributed among which few popular names are Euler, 

Lagrange, Laplace, Fourier, Abel, Liouville, Riemann, Grunwald, Letnikov. 

 Joseph Liouville defind the fractional derivative of a special class of function 

which can be expanded in the form of series. Because of this restriction 

Liouville’s gave the second definition of fractional derivative which was 

applicable for the function of the type )0where( ax a . The development of 

Riemann –Liouville definition of fractional derivative appeared in the work of 

Sonin (1869) using Cauchy’s Integral formula. In the recent years it is also in 

practice to use the Weyl formula of fractional integration. Heaviside 
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contribution in the development of generalized operators is in his work in the 

operational calculus. In twentieth century the work on fractional calculus 

accelerated. 

The first international conference was held in university of new Haven in 

1974, and just after the conference no of publication on fractional calculus 

increases drastically. The second conference on fractional calculus was held 

on 1984, where some eminent mathematician participated and few open 

question came on the platform of the conference .The pace of development of 

fractional calculus accelerated after the publication of books of Igor Podlubny 

in 1999  and  the book by  Miller and Ross (1993). These books really made 

tremendous popularity of fractional calculus among the researchers some 

other books contributed in the popularity of fractional calculus are 

“application of fractional calculus in physics “ by  Hilfer (2000) , “The analysis 

of fractional differential equation” by  Diethelm (2004) and “Theory and 

application of fractional differential equation”  by Kilbas et al.(2006). Since 

fractional calculus is finding it applications in many field of Engineering and 

Science, some of the areas where fractional calculus has made a profound 

impact include Rheology, Viscoelasticity, Electrical Engineering, 

Electrochemistry, Biology, Signal and image processing, Mechanics,  Physics, 

Control theory, Fluid dynamics, Diffusive transport etc. Presently it is hard to 

find the area of Science, where use of fractional calculus is not found. 



CHAPTER 1 

~6~ 

1.4 Special Functions 

In fractional calculus we use some special functions like Gamma function, 

Mittag-leffler function etc. 

1.4.1 Gamma function  

The Euler’s Gamma function generalizes n! by )1(n and  it allows n to take 

non- integer value or even complex values ( Kilbas et al. , 2006 ) 

Gamma function is defined by the integral as 

 
0

1)( dxxez zx  .                                                                                    (1.4) 

Gamma function follows the reduction formula  

)()1( zzz  .                                                                                        (1.5)  

1.4.2 Mittag-Laffler function 

One parameter Mittag-Leffler function )(zE  is the generalization of 

exponential function and it is also known as Mittag- Leffler function of first 

kind (Mittag- Leffler, 1903) defined as 
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The two parameters Mittag–Leffler function )(, zE , also known as Mittag-

Leffler function of second kind is defined as (Kilbas et al., 2006) 
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It is very obvious that for 1and1 , we get 
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and for 1 , 

)()(1, zEzE .                                                                                          (1.9) 

 

1.5 Popular definitions of fractional order derivatives and 

fractional order integrals 

Fractional calculus is as old as conventional calculus but the beauty of the 

fractional calculus is the fractional derivatives and integrals has non-local 

property. The fractional derivatives and integrals considers the history as well 

as nonlocal distributed effect. After the L’Hospital’s question it was first 

Leibniz (1695) who started in the direction of fractional calculus. Then many 

scientist have tried to define the fractional derivative but the first serious 

attempt to give a logical definition of a fractional derivative is due to 

Liouville, he gave two formulae for fractional order derivative. His first 

formula explains that the arbitrary order derivative of a function )(xf which 

can be expanded in the series form 

0Re,)(
0

aecxf
n
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n ,                                                                      (1.10)  

is 



CHAPTER 1 

~8~ 

0

)(
n

xa

n eacxfD .                                                                             (1.11) 

Liouville gave the second formula for fractional derivative for the class of the 

function of type 0where ax a   as 

0,
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Another approach starts with the generalization of repeated integration which 

says that if f  is locally integrable in ),(a  then its n-fold integral is given by 
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For almost all x  with xa and .Nn On generalizing )()!1( nn , 

we can get a formula for the integration of arbitrary order as  

0,)()(
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)( 1

x

a

xa duufuxxfI .                                           (1.14) 

This formula leads to the definition of Riemann- Liouville fractional order 

integration, which says that 

,0,0,)()(
)(

1
)( 1 xduufuxxfJ

x

a

x                                      (1.15)  

 and )()(0 xfxfJ x . 

Until now many scientists had given many definitions of fractional derivative 

among them few are very popular as Rimann-Liouville definition, Caputo 

definition (Hilfer, 2000),  Grunwald-Letnikov defnition. 
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Definition A real function 0,)( xxf  is said to be in a space ,, RC  
if 

there exists a real number p  such that ),()( 1 tfttf p

 where 

),,0[)(1 Ctf and is said to be in space nC  if Cf n)( , .Nn  

1.5.1 Riemann-Liouville fractional derivative 

The fractional order derivative of order ,0 of a function )(xf  is defined as 
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where .,1,0,0 Nnnnax  

1.5.2 Properties of Riemann-Liouville operator 

The following are few properties of Riemann-Liouville fractional integral 

operator xJ  and fractional order differential operator xaD  for 

0,0,1,Cf  and 1 :  

(i) ,)()( xfJxfJJ xxx  

(ii) ),()( xfJJxfJJ xxxx  

(iii) 1

)1(

)1(
xxJ x . 

 
1.5.3 Caputo fractional order derivative 

In the Caputo sense, the Fractional order derivative of a function )(xf  is 

defined by (Caputo, 1967; Caputo and Mainardi, 1971) 
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where .,1,0,0 Nnnnax  

1.5.4 Properties of Caputo operator 

The following are some basic properties of Caputo fractional derivative: 

(i) If ,,1 NnCf n then nxfDx 0,)(  is well defined and ,)( 1CxfDx   

(ii) ,)()( xfxfJD xx  

(iii) ,0,
!

)0()()(
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xx for .,1, NnnnCf n  

1.5.5 Grunwald–Latnikov definition of fractional order derivative 

It says that (Podlubny, 1999) 
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1.6 Laplace transform of fractional order derivative 

The Laplace transform of a function f (t) defined for all real no ,0t  is the 

function F(s) which is defined by  

  CsdttfesF st ,)()(
0

.                                                                            (1.19) 

The necessary and sufficient conditions for the existence of Laplace transform 

are 

(i) Function should be piecewise smooth in every finite interval in ),0[ ,  
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(ii) Function should be of exponential order i.e., there exists a constant 

0Tand0M    such that  .,)( TtMetf t  

The original function f (t) can also be regained from its Laplace transform by taking 

the inverse Laplace transform such as  

,)Re(,)(
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1
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st                                                    (1.20) 

where 0c lies in the right half plane of absolute convergence of the Laplace 

integral . 

1.6.1 Laplace transform of Reimann-Liouville’s fractional derivative and 

integral 

Let 0  and F(s) is the Laplace transform of f (t), then following definitions 

hold according to Podlubny (1999).   

(i) The Laplace transform of Reimann-Liouville fractional integral of order 

is defined as 

)(]);([0 sFsstfDL t .                                                                                (1.21) 

(ii) Laplace transform of Reimann-Liouville fractional derivative of order  is 

defined as 

1
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1.6.2 Laplace transform of Caputo fractional derivative  

The Laplace transform of Caputo fractional derivative of order is defined as  

1

0

)(1

0 )0()();(
n

k

kk

t fssFsstfDL    , where .1 nn                      (1.23)  

If  the  Reimann-Liouville  and Caputo both fractional derivative exist  for a function 

f(t) then in the Laplace transform of Reimann-Liouville fractional derivative the 

initial value of fractional integral )(tfJ n and its integer order derivative of 

order k=1,2,3,. . .,n-1 are required whereas in the case of Caputo fractional 

order derivative only initial value of the function and its integer order 

derivative of order k=1,2,3 ,. . .,n-1 are required. This gives an advantage to 

Caputo derivative over the Reimann-Liouville fractional derivative while 

applying in the physical problems.  

 

 1.7 Homotopy Analysis Method (HAM) 

The HAM technique was introduced by S. J. Liao in 1992 for the linear and 

nonlinear problems. This technique is the combination of classical 

perturbation technique and Homotopy, a concept of Topology. HAM is the 

unification of Luyapunov artificial small parameter method, Delta expansion 

method, Adomian decomposition method. On theoretical background HAM 

works on the concept that a nonlinear equation can be split into infinite 

number of linear sub equations. Let us consider here one nonlinear equation 

in a general form of two variables as 
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  ,0)],([ txu                                                                                            (1.24) 

where N is the nonlinear operator, u(x,t) is the unknown function to be 

evaluated with the spatial and temporal variable x , t. Let us consider  u0(x,t),  

an initial guess for the solution and construct the zero order deformation 

equation as  

 )];,([),()],();,([)1( 0 qtxNtxHtxuqtxLq  ,                                        (1.25) 

where L is an auxiliary linear operator, 0  is the convergence control 

parameter, 0),( txH  is the auxiliary function, q is known as embedding 

parameter and ]1,0[q . In HAM there is freedom to choose the auxiliary 

linear operator L, auxiliary function ),( txH  and initial approximation ),(0 txu  

for ),( txu .  Since proper base function is selected for solution by HAM, 

therefore this method is very popular among the researchers to solve linear 

and nonlinear differential equations. The auxiliary linear operator has the 

property that L [0] =0.  It is obvious from the equation (1.25) that at 0q , then 

),()0;,( 0 txutx  and at 1q , ),()1;,( txutx .Hence as embedding parameter 

q  varies from 0 to 1, then );,( qtx  varies from initial guess ),(0 txu  to the 

solution of the differential equation ),( txu . Considering the Taylors series of 

);,( qtx  as  

  ,),(),();,(
1

0

k

k

k qtxutxuqtx                                                                  (1.26) 
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where ,
!

1
),(

0q

k

k

k
qk

txu which is named as Homotopy derivative by S. J. 

Liao. If the above series (1.26) is convergent then at 1q it converges to the 

exact solution of the differential equation (1.24) and the convergence of the 

series (1.26) is controlled by   parameter. Substituting 1q  in the equation 

(1.26) we get   

  
1

0 ),(),()1;,(
k

k txutxutx ,                                                                     (1.27) 

which is one of the solutions of the differential equation (1.24) as proved by 

Liao (1992).  Let us consider the vector  

 )},(........,,),(),,(),,({),( 210 txutxutxutxutxu nn ,                                             (1.28) 

hence the m-th  order deformation equation is obtained as  

 )),((]),(),([ 11 txuRtxutxuL mmmmm
,                                                     (1.29) 

with the initial condition  

  ,0)0,(xum                                                                                                          (1.30) 

where 
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and  
.1,1

,1,0

m

m
m  

On solving the m-th  order deformation equation (1.29) we get  
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,))],(([),(),( 1

1

1 ctxuRLtxutxu mmmmm  

where c  is the integration constant determined by the initial condition in 

(1.30). In this way we obtain ),( txum  for 1m . Therefore to get the final 

solution we have  

),,(lim),( txtxu N
N

                                                                              (1.32) 

where 
1

0

),(),(
N

m

mN txutx . 

The speciality of HAM is the finding of convergence control parameter . As 

done by researchers during finding the solutions of a nonlinear problems the 

convergence region is controlled by plot of  and then choosing the proper 

value of  from this region for getting convergence of the series solution. 

Since HAM is good mathematical tool to solve nonlinear problems if we have 

the idea about the structure of the solution of the problem so that a proper 

base function can be selected and for finding the solution as we know that any 

real continuous function can be represented by so many type of base function 

viz., algebraic, periodic, exponential. Thus for the some physical nonlinear 

problems in physical world, sometime it is difficult to approximate the 

solution when there will be lack of knowledge about proper set of base 

functions.  
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1.8 Variation Iteration Method (VIM)  

It was J.H. He who first proposed the variation iteration method(1998; 1999b; 

2000b),which was later followed by many mathematicians such as wazwaz 

(2001), Bildik (2006), Ates and Yildirim (2009), Sweilam et al. (2007), Odibat 

and Momani (2008b) etc. during the solutions of various  linear and nonlinear 

differential equations. It is also applied to solve the fractional differential 

equations. In the approach of variational iteration method, we get an 

approximate analytical solution of linear and nonlinear problems without 

linearization and discreatization. The proposed method is very simple, 

attractive and a concise mathematical tool. The implementation of this 

method reduces the computational work as compared to traditional 

techniques. He (1998) first applied VIM to solve fractional order differential 

equation. After that many scientists applied this technique to solve fractional 

order differential equation. Some of them are odibat and Momani(2009), Khan 

et al.( 2011), Wu(2012)  who used VIM for solving the time fractional diffusion 

equations in porous medium.  

This approach can be used in an efficient and reliable way to handle the 

nonlinear differential equation such as follows 

,0)()]([)]([ xgxuNxuL                                                                      (1.33) 
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where [.]L  represents the linear operator defined as 
m

m

dx

d
L

(.)
[.] , 

,Nm [.]N represents the nonlinear operator and )(xg is known analytic 

function, with the initial conditions as 

n

n cu )( , 1,......,2,1,0 mn ,                                                                 (1.34) 

where mc ’s are real numbers. In the variational iteration method, we construct 

a correctional functional as follows   

dguNuLxuxu nn

x

nn )}()()({)()()(
0

1 .                                  (1.35) 

In the above expression )( is the Lagrange multiplier which is calculated 

optimally using variational theory. To calculate the Lagrange multiplier we 

use the concept of restricted variation for nonlinear term ),(uN  constructing 

the functional (1.35) stationary. In that case 0~
nu , where nu

~  represents a 

restricted variable. Hence,  

dguNuLxuxu nn

x

nn )}()~()({)()()(
0

1 ,                         (1.36) 

which gives the Lagrange multipliers as ),()( xf  and on substituting it 

in the equation(1.35 ), we get an iterative formula as 

dguNuLxfxuxu nn

x

nn )}()()({),()()(
0

1 .                              (1.37) 
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The initial approximation for the solution )(0 xu  can be chosen with the help 

of the initial and boundary conditions of the problem. This algorithm is more 

successful with proper selection of the initial approximation )(0 xu . Usually 

the initial values n

n cu )0()( , 1,......,2,1,0 mn  are taken for the selection of 

initial approximation )(0 xu . In this method if we construct the initial 

approximation )(0 xu  as  

j
m

j

j
x

j

c
xu

1

0

0
!

)( ,                                                                                        (1.38) 

then the higher order approximations )(xun for 1n , can be calculated and 

the final solution can be obtained as  

)(lim)( xuxu n
n

 .                                                                                       (1.39) 

 

 1.9 Variable order fractional differential equations  

Variabe order systems are the extension of fractional order to the functional 

order system, where the order of derivative and integral changes, and are the 

functions of either independent variable or dependent variable or both. A 

variable order system will be like 

  )()(),( tytfD ty

t .                                                                                      (1.40) 

The introduction of constant order calculus from its inception has dominated 

in the modeling of the physical processes. Consider the problem of a sliding 
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box on a surface which is partially wet. Then the motion of the box first 

governed by the dry friction and afterward it is governed by the viscous 

friction. One question rises here that what is the best mathematical frame 

work to describe this kind of transition. Another physical problem which can 

be considered is that the force acting on a particle which is oscillating in the 

viscous fluid and this complex dynamics is represented by the differential 

equation such as Navier stokes equation which can be represented by simple 

variable order equation. One more example is that when mass is moving from 

a viscous medium to a viscoelastic medium the motion of the mass cannot be 

captured by the constant order calculus. Variable order equation leads to a 

new paradigm in Science. It is very obvious that variable order calculus is a 

very natural option for the modeling of the dynamical problems with 

transitional situation. 

 

1.10 Diffusion equations  

Diffusion is macroscopically related with the change of concentration. On 

contrary to the mass flow of liquids, diffusion involves random and 

spontaneous movements of individual molecules. In diffusion, flux represents 

the number of particles traversing a unit area per unit time and the 

concentration is the number of particles per unit volume. The classical 

diffusion equation can be derived using Fick’s Law and conservation law. 



CHAPTER 1 

~20~ 

According to Fick's law, “the rate of diffusion per unit area in a direction 

perpendicular to the area is proportional to the gradient of concentration of 

the solute in that direction”, which can be presented mathematically as 

  ,
x

u
DJ                                                                                                 (1.41) 

where J is the diffusion flux, D is diffusion constant. According to continuity 

equation which states that “change in density in any part of system is due to 

inflow and outflow of the material (i.e., no material can be created or 

destroyed)”and mathematically presented as 

.0
x

J

t

u
(1.42) 

Hence the classical diffusion equation can be derived from (1.41) and (1.42) as 

.
2

2

x

u
D

t

u
(1.43) 

Consider the fractional Fick law (Norwood, 1972; Moodi and Tait, 1983) 

t

dutKDJ
0

)().( (1.44)

Now taking the kernel )(tK  as  

20,)(
)1(

1
)( 2ttK ,                                                  (1.45) 

the equation (1.41) together with the equation (1.42) and the equation (1.44) 

leads us to fractional diffusion equation as 
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.
2
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x

u
D

t

u
                                                                                            (1.46) 

The parameter D appearing in the diffusion equation signifies the strength or 

weakness of the underlying diffusion process. There are multiple mechanisms 

responsible for the transport. Diffusion is one of the transport phenomena and 

one of the mechanisms responsible for the diffusion is Brownian motion. This 

is observed as early as 1785, by Robert Brown. 

 

1.11 Bernstein basis polynomial  

Bernstein basis polynomial was introduced in 1912 by Sergei Natanovich 

Bernstein in the effort to express the continuous function by the polynomials 

in any interval. Bernstein polynomial is the linear combinations of Bernstein 

basis polynomial .The Bernstein basis polynomial of degree n form a basis for 

the vector space of polynomials of degree at most n. Any Bernstein 

polynomial of degree n can be recursively written in terms of two Bernstein 

basis polynomial of degree n-1 as  

)()()1()( 1,11,, xBxxBxxB ninini  .                                                                (1.47) 

In Bernstein polynomial partitions, the unity property  

1)(...)()( 1,
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n

i
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n

i

ni ,                                                     (1.48)  
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are very useful in computer graphics. Its intrinsic numerical stability makes it 

more advantageous while applying. Corresponding to any continuous 

function f(x) in [0, 1], there is a sequence of Bernstein polynomials as follows: 

rnr
n

r

n xx
r

n

n

r
fxfB )1();(

0

,                                                                     (1.49) 

which converges uniformly to f(x). Another interesting property of Bernstein 

polynomial is that the approximation of any function f(x) by Bernstein 

polynomial is at least as smooth as function f(x) is i.e., if f(x) has C r instead of 

C0 continuity all derivatives of );( xfBn  up to order r converge uniformly to 

the corresponding derivative of the function f(x) (Floater, 2005). 


