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ABSTRACT

Rainfall–runoff modeling is one of the most well-known applications of hydrology. The goal of rainfall–runoff modeling is to simulate the peak

river flow caused by an actual or hypothetical rainfall force. In existing methods, the rainfall–runoff relationships are quantified to predict the

daily streamflow of each catchment from its landscape attributes to measure the daily rainfall. However, the structural model error, infiltra-

tion rate, and the steep slopes of the hill affect the prediction process. To tackle these issues, this paper proposed a novel rainfall prognostic

model-based artificial framework, which predicts day-to-day rainfall to prevent environmental disasters. The day-to-day predictions minimize

the risks to life and property and also manage the agricultural farms in a better way because the possibility of rainfall has been estimated

earlier. Furthermore, the posterior fire-breathing network is utilized to estimate model errors in the computational runoff by using time-

dependent and random noise to the model’s internal storage to solve the uncertainty problem. Since the model errors are estimated,

there are limits to the infiltration rate and thus a prophetic multilayer network is utilized which relies on the soil runoff levels. Moreover,

the network measures the dynamics of soil moisture to regulate the infiltration rate according to the rural or urban section. Moreover, to

measure the surface water from the steep slopes, the system offered a well-ordered selective genetic algorithm to calculate the velocity

of runoff in different bend areas to overcome the numerical problem. Thus, the model results showed that the work effectively predicts

the rainfall from the investigation of model errors, infiltration rates, and velocity to achieve a better prediction range in the rainfall.

Key words: posterior fire-breathing network, prophetic multilayer network, rainfall prognostic artificial model framework, rainfall–runoff

model, well-ordered selective genetic algorithm

HIGHLIGHTS

• Despite the progress made in recent years, modeling hydrological reactions to rainfall prediction remains a complex task in runoff model-

ing. Thus the presented paper effectively introduced a rainfall prognostic artificial model framework for the prediction of rainfall.

• The framework applied a posterior fire breathing network to estimate model errors with random noise to reduce the uncertainty. Further

to regulating the infiltration rate, the system suggested a prophetic multilayer network which analyses the runoff levels with the soil moist-

ure in urban and rural areas.

• In addition, to evaluate the velocity at low water depths on steep slopes, the model incorporates a well-ordered selective genetic algorithm

to forecast different bend areas to overcome the numerical problem. Thus, from the rainfall model, the daily rainfall is efficiently predicted

to prevent the environmental glitches.

• Experimental results show that the framework exhibits the highest prediction range of 12-20 mm with the subjective results, and outper-

forms the existing runoff models with a better infiltration rate of 1.5 cm/hr, runoff level 0.05 cm, and the obtained velocity of 0.45 mm.

1. INTRODUCTION

More recently, the unit hydrograph concept has been developed to conceptualize the reaction of a catchment to a storm event
based on the theory of superposition. The unit hydrograph helps to isolate the runoff of the base flow and storm events from

the streamflow (Fowler et al. 2016). Runoff models have become more complex with increased computational capacity and a
deeper understanding of hydrological processes (Guo et al. 2017). Modeling runoff helps to understand hydrological pro-
cesses better and how changes impact the hydrological process (Dakhlaoui et al. 2017). A runoff model is represented as
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a sequence of equations that help to estimate how much rainfall functions runoff of the different parameters used to charac-

terize the watershed. It can be difficult to model the surface runoff since the measurement is complex and includes several
interconnected variables (Sitterson et al. 2018).

A model’s overall modules include inputs, control equations, boundary or parameter conditions, model processes, and out-

puts (Garcia et al. 2017). It requires surface runoff simulation to consider yields of floodplain and reactions, predict water
quality, change over time, and forecast. Hydrological Simulation Program-Fortran (HSPF1) is a hydrological model which
as part of its management utilizes runoff functions for the prediction of sediment charges, nutrients, pollutants, harmful
chemicals, and other concentrations of water quality (Fraga et al. 2019). While there are many ways to classify models,

not all models fall into one category as they are designed for a variety of purposes. The water demand has increased as a
result of fast population growth, industrialization, and urbanization (Kratzert et al. 2018). It is also one of the prime criteria
for farming, domestic, and industrial activities. Nevertheless, the careful preparation and control of water supplies to mitigate

property damage and lifelessness due to flooding is becoming very important (Nourani 2017).
According to the Asian Development Bank (ADB), from 1950 to 2011 Pakistan witnessed 21 floods which are mostly attrib-

uted to rainfall. Unexpected and strong rainfall contributes to overflowing dams, which are the leading cause of severe

flooding (Ledesma & Futter 2017). Streamflow forecasting for a catchment area is one of the well-known and main hydro-
logical variables since hydrological engineering, design, and actions for development and evaluation such as water supply,
irrigation, flood control, and hydropower production require information on hydrological catchment stream flows (Song

et al. 2019). The modeling of the rainfall-streamflow is considered to be complicated, nonlinear, and time-variable because
the streamflow produced from a watershed depends not only on the hydro-meteorological parameters but also on the spatio-
temporal irregularities in the features of the watershed and the patterns of rainfall (Xiang et al. 2020). Precisely forecasting
streamflow helps to manage different water uses such as irrigation, hydropower development, preparing water delivery

policies, and flood risk management (Jaiswal et al. 2020). Hydrologists have developed and used various types of models
for modeling hydrological processes such as streamflow forecasting, prediction of rainfall, flood forecasting, and modeling
of rainfall–runoffs, etc. (Nourani et al. 2019).

Additionally, the calculation of suspended sediment during a flood caused by heavy rain and cyclone is very difficult. Direct
sediment yield measurement is complicated because it takes enough time and energy. Computational hydrology has bench-
mark work criteria in the sediment modeling area (Knoben et al. 2019). Many variables influence the yield of suspended

sediments, and their partnerships with each other are extremely nonlinear and complex. Suspended sediment yields are there-
fore very difficult to estimate using traditional mathematical models such as multiple linear regression (MLR) and sediment
rating curve (SRC) which do not provide satisfactory performance (Weeser et al. 2019). A typical feed-forward neural network
has its limitations when it comes to time-series data. Feed-forward neural networks are built on the basis that the examples of

training and testing (data points) are independent (Del Giudice & Padulano 2016).
For the efficiency of the spatial-temporal resolution, the entire network state is removed after each example has been pro-

cessed. When data points are naturally connected, a conclusion is not needed. Besides, a typical artificial neural network

(ANN) model (feed-forward) will allow a fixed-sized sliding window over the dataset to handle time-series data (Chlumecký
et al. 2017). Tuning the scale of these sliding windows for the highest predictive precision adds additional work to the range of
models. In finer time resolution flood assessments, the constraint is increasingly noticeable. Despite some examples of using a

recurrent neural network (RNN) for hydrological modeling (Reshma et al. 2018), there is no long short-term memory (LSTM)
model that forecasts future river flow solely based on precipitation inputs to address the issue of accumulative uncertainty in
the literature. Therefore, to overcome the model errors, the infiltration rate with the soil moisture and steep slopes in the hill is

a vital part to calculate in the runoff model for the prediction of daily rainfall. Thus, the research work proposed a novel
framework for better prediction of rainfall with a runoff model. The main contribution of the paper is as follows:

• To estimate model errors in the computational runoff, the time-dependent and posterior fire-breathing network is utilized.

• The prophetic multilayer network is directly considering the relationship between infiltration and soil moisture through a
collection of parsimonious computational parameters to estimate the infiltration rate.

• By utilizing a well-ordered selective genetic algorithm the velocity of runoff on steep slopes is calculated.

The remainder of the article is structured as follows. In section 2, the literature survey is presented in detail. The proposed
rainfall prognostic model-based artificial framework is characterized in Subsection 3. Section 4 follows the result and the
output of the proposed work. Finally, the overall work is resolved in Section 5.
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2. LITERATURE SURVEY

Vidyarthi & Chourasiya (2020) introduced the use of the ANN in estimating the runoff of a river. The classical gradient des-
cent (GD) algorithm is the most commonly used algorithm for training the ANN runoff models so far. The achievement of the
GD algorithm, however, is affected by changes to get stuck at the local minimum. In the paper, one of the popular evolution-

ary optimization algorithms, known as particle swarm optimization (PSO), has been explored to train the ANN rainfall–
runoff model. However, the accuracy of the models using evolutionary algorithms is low.

Asadi et al. (2019) Proposed Inputs from the hydrogeomorphic and biophysical period series, including the Normalized

Vegetation Difference Index (NDVI) and Connectivity Index (IC), were evaluated in addition to climatic and hydrological
inputs. They used selected inputs for the creation of ANNs in the catchment of the Haughton River and the catchment of
the Calliope River, Queensland. Results show that IC is incorporated as a hydrogeomorphic parameter and NDVI. Besides,

the availability of remote sensing land use datasets (i.e., NDVI) and high-resolution feature maps to reflect geomorphologic
catchment features may also be a limiting factor.

Kumar et al. (2019) proposed the hydrological implementation of the ANN and the emotional neural network (ENN) for

the simulation of rainfall–runoff in some order, Bihar as the area experiences flooding due to heavy rainfall. The ENN is a
revised version of the ANN since it contains neural parameters that improve the process of network learning. The selection
of inputs for the rainfall–runoff model is a key task. The paper makes use of a cross-correlation study to recognize possible
predictors. The principal component analysis (PCA) was then conducted for the collection of data sets showing key patterns

on the chosen data sets. The data sets collected after PCA were then used in the creation of the models ENN and ANN. More-
over, tremendous work is needed to estimate the reliability and performance of the models.

Ünes ̧ et al.’s (2019) implementation of the rainfall and runoff partnership is very important for the effective use of water

supplies and flood prevention. Nowadays various methods of artificial intelligence (AI) techniques are used to assess the
relationship between rainfall and runoff. The present research utilizes ANNs. Popular approaches like MLR are also used.
The data collected from the US have been integrated into the report. The multi-linear regression and feed-forward back-propa-

gation ANN models used 731 daily rainfalls, runoff, and temperature data to produce input data. However, the lack of
evaluation of watershed characteristics creates issues in deciding the relationship between rainfall–runoff results.

Chadalawada et al. (2020) proposed a novel model-building algorithm using the full potential of flexible modeling frame-

works by searching for model space and using machine-learning (ML)-based model configurations. The proposed algorithm
for ML is based upon an evolutionary approach to computation using genetic programming (GP). Up until now, state-of-the-
art GP modeling implementations have used the algorithm as a short-term forecasting tool that produces an expected future
time-series very similar to neural network implementations. However, no sufficient observations were provided in the catch-

ment area.
Chen & Chau (2019) conducted uncertainty analysis on the hybrid double feed-forward neural network (HDFNN) model

for generating the sediment load prediction interval (PI). They used the LUBE technique, in which the lower and upper

bounds are created directly as outputs of neural network-based models. Partitioning analysis demonstrates that the
HDFNN model consistently performs well in creating PI for low, medium, and high loads. However, the LUBE approach
does not solve highly nonlinear, discontinuous, and non-differentiable optimization problems.

Fotovatikhah et al. (2018) used flood management systems (FMSs) in their research to aid in the decision-making process in
crucial scenarios. They looked at AI and computational intelligence (CI) approaches for detecting early flood events with a
low false alarm rate. The city administration was able to respond quickly and effectively in post-disaster scenarios using this
strategy. They came to the conclusion that using an ensemble CI technique to predict floods was quite effective. However,

using an ensemble CI technique is not always the best option. Furthermore, the ensemble method is incapable of addressing
unknown discrepancies between the sample and the population.

Amir Mosavi et al. (2018) analyzed the state of the art of ML models in flood prediction. They investigated providing an

extensive overview on the various ML algorithms used in the field through a qualitative analysis of robustness, accuracy, effec-
tiveness, and speed.

They found that the effective strategies are hybridization, data decomposition, algorithm ensemble, and model optimiz-

ation. However, the hybridization method is expensive, costing up to five times the value of the normal process. The data
decomposition method, ensemble algorithm, and model optimization techniques suffer if not provided with the normal
requirements.
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Taormina & Chau (2015) tested the suitability of the LUBE approach in producing PIs at different confidence levels (CLs)

for the 6 h ahead streamflow discharges of the Susquehanna and Nehalem Rivers, US. The PSO in LUBE applications, var-
iants of this algorithm had been employed for CWCminimization and they were found to vary substantially depending on the
chosen PSO paradigm. The algorithm has a low convergence rate in the iterative process so that advanced algorithm should

be utilized for prediction.
Wu & Chau (2013) employed several soft computing approaches for rainfall prediction. They utilized moving average (MA)

and singular spectrum analysis (SSA) techniques for preprocessing. The modular model was composed of local support
vector regression (SVR) models or/and local ANN models. Modular models involved preprocessing the training data into

three crisp subsets (low, medium, and high levels) according to the magnitudes of the training data, and finally two SVRs
were performed in the medium- and high-level subsets. Also, ANN or SVR was involved in training and predicting the
low-level subset. The ANN-MA displayed considerable accuracy in rainfall forecasts compared with the benchmark,

although, the neural network should include back-propagation to increase the speed of the training process.
In Vidyarthi & Chourasiya (2020) the accuracy of the models is low, moreover, in the study by Asadi et al. (2019), avail-

ability of remotely sensed datasets has a limiting factor. In Mosavi et al. (2018), the hybridization method costs up to five

times the value of the normal process. Data decomposition, ensemble algorithm, and model optimization techniques
suffer if not provided with the normal requirements. From the aforementioned issues, it is essential to develop a new frame-
work for the rainfall–runoff model for enhanced prediction.

3. A RAINFALL PROGNOSTIC MODEL-BASED ARTIFICIAL FRAMEWORK

For modeling the rainfall–runoff process, models have been developed that are based on conceptual representations of the

physical processes of the water flow lumped over the entire catchment area (lumped conceptual type of models). The par-
ameters of such models cannot, in general, be obtained directly from measurable quantities of catchment characteristics,
and hence model calibration is needed. To calibrate a model, values of the model parameters are selected so that the

model simulates the hydrological behavior of the catchment as closely as possible. The process of model calibration is nor-
mally done either manually or by using computer-based automatic procedures. In manual calibration, a trial-and-error
parameter adjustment is made. In this case, the goodness-of-fit of the calibrated model is based on a visual judgment by com-

paring the simulated and the observed hydrographs. However, since there is no generally accepted objective measure of
comparison, and because of the subjective judgment involved, it is difficult to assess explicitly the confidence of the model
simulations. The development of such relationships is an example of a regionalization methodology and is a useful goal
for a number of reasons. For example, the construction of a hydrologic structure such as a bridge or dam may require a pre-

diction to be made of the hydrologic response of a catchment at an ungauged point.
Rainfall prediction is the integration of science and technology to estimate the atmosphere’s environment. In order to effec-

tively utilize water supplies, crop production, and pre-planning water systems, the rainfalls should be calculated in advance.

Various strategies for runoff can avoid precipitation, and accurate input of rainfall in time and space is crucial to the response
of rainfall–runoff modeling. Recently conceptual rainfall–runoff models use basic spatially lumped storage-flow relationships
to compensate for the spatial complexities of hydrological processes within a basin. These rough approximations introduce

model errors that are hard to describe. Also, it is imperative to estimate uncertainties in measured data (e.g., discharge), model
inputs (e.g., rainfall, parameters), and the model itself. Failure to consider any sources of uncertainty would result in an under-
estimation of the prediction ability. While formulating an effective model error and parameterization, the parameters (e.g.,

variance of random noise) must be calculated from the entire available data. The hybrid AI framework is designed by utilizing
the novel rainfall prognostic model-based artificial framework which uses the posterior fire-breathing network to estimate
model errors. Also, the model errors are estimated by a prophetic multilayer network that relies on soil runoff levels. Further-
more, to tackle the numerical challenge of measuring surface water from steep slopes, the system used a well-ordered selective

genetic algorithm to determine the velocity of runoff in distinct bend areas. Further, to determine the runoff level in the state-
of-the-art methods, many limitations lead to a high infiltration rate. In such modeling methods, runoff rates from metropolitan
centers are believed to be a flat rate value that is essentially disconnected from the underlying soil moisture. Since soils vary

from undeveloped areas to urban areas due to the mixture of compaction and synthetic materials in the soil, resulting in differ-
ent infiltration rates than uncompacted soils. As a result, runoff in urban areas is growing due to impermeable surfaces; soils
also impact runoff rates in urban green areas (such as parks and sports fields). Furthermore, to protect the surface water from
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steep slopes face velocity measurements on different scales and a watershed application evaluates the velocity field. Many

works are involved in describing the fields of velocity in a particular case and some works that tackle numerical problems.
The low water depths run off steep slopes which contributes to the physical representation of the friction at the bottom for
specific water depth to height ratios of roughness. Nonetheless, the capability can be very difficult in mountain environments

like heterogeneous and high low slope values as well as intermittent rain inputs. Therefore, the paper proposed a novel rain-
fall prognostic artificial model framework, which relies on the models of ANNs. The architecture of the proposed framework
is shown in Figure 1.

Initially, the framework introduced and applied a novel posterior fire-breathing network to estimate model errors of a con-

ceptual rainfall–runoff model and to perform uncertainty analysis. The solution accounts for model errors by adding time-
dependent, random noise into the internal storage of the hydrologic model. The model also effectively quantifies variability
in the performance and the parameters arising from variance in the input data used to calibrate. Furthermore, the level of

runoff is simulated using the Prophetic Multilayer Network technique which is employed to model infiltration. The technique
is also found to be related to the input as the exactness of the ANNmodel was higher for soil types with higher proportions in
the training data. The fraction of precipitation converted into either runoff or infiltration depends on the amount of soil moist-

ure, and the dynamics of soil moisture vary according to the model’s rural or urban portion. In addition to overcoming runoff
at low water depths on steep slopes, the framework proposed a well-ordered selective genetic algorithm (WSGA) for velocity
measurements and predictions in different bend sections and comparing their test results with each other and with actual

data. Four experimental test cases have been used to explore and evaluate the numerical model and to understand its behav-
ior better. The overall rainfall modeling is given in the following sections.

Figure 1 | Architecture of the rainfall prognostic model-based artificial framework.

Journal of Hydroinformatics Vol 24 No 5, 1070

Downloaded from http://iwaponline.com/jh/article-pdf/24/5/1066/1114172/jh0241066.pdf
by guest
on 26 April 2023



3.1. Posterior fire-breathing network

The network calculates a conceptual rainfall–runoff process’s model errors and analyzes uncertainty. The model error assess-
ment assumes that the results of the discharge reflect exactly the hydrological behavior of the catch. However, time-series are

successively extracted from stage measurements and conversions of stage ratings and therefore may contain highly uncertain
values. Thus, by incorporating time-dependent, spontaneous noise into the internal storage of the hydrological model, the
solution accounts for model errors and thus efficiently quantifies uncertainty in model output and parameters resulting
from variation in the input data used for calibration. Adoption of the posterior fire-breathing network in driving a rainfall–

runoff model reduces the error by estimating the runoff at the catchment outlet with different rainfall inputs from different
parts of the catchment. Initially, the noise parameter of the model errors was calculated and revised sequentially through
the approximation of the Gamma density to its posterior. With the approach suggested in the article, Gamma approximations

were obtained in these graphs, while Gaussian approximations have the same mean and variance as the Gamma approxi-
mations. These observations suggest that the posterior is originally asymmetric and non-Gaussian, but as more data is
assimilated, it tends to become more Gaussian.

The objective is to recursively estimate posteriors for the model error precision including for the Hymod states and par-
ameters using the posterior fire-breathing network. Each time a major discharge discovery appears accessible it is
incorporated by

• updating the posterior of t (precision of model errors) and

• updating the states and parameters of Hymod.

It is realized that the model error accuracy posterior is modified separately from the state and parameter posterior. The
alternative of introducing the precision as an external unknown to the state vector, i.e., the state-augmentation method, is
never considered here. Information on mathematics to update posteriors is given in the following two sections.

3.1.1. Sequential updating of the posterior of τ

The posterior precision or inverse variance of the model errors is calculated sequentially in the system. It is accom-

plished by preserving a Gamma density approximation of the posterior: as new data become available the
approximation is modified in real-time to represent new knowledge on model errors. Thus, the Gamma approximations
are used for their corresponding calculations of the accuracy (or variance) of model errors a positive sum. In Bayesian
analysis, the Gamma density is a popular approach for modeling precision variables, partially even with its mathemat-

ical properties; e.g., a Gamma prior is conjugated to a Linear-Gaussian probability, leading to posterior closed-form
expressions. In the article, work with differential equations, so miss conjugacy and the posterior is not accessible ana-
lytically, but they can be effectively estimated, as mentioned below. It factors in an approximate but effective recursive

approach for determining the posterior of t that is completely Bayesian and extends point (posterior mode) estimation of
the model noise.

Mathematically, the posterior of τ at time t is written recursively in terms of the posterior at the time t� 1 and the likelihood

at the time t. For model noise on a selected flow or state variable x, the formula is:

p(tjDt)ap(tjDt�1)s
ð
xt

ð
mt

p(mtjDt�1)N(xtjmt, t
�1)p(Dtjxt)dmtdxt (1)

where Dt is the current discharge measurement, and Dt ¼ (Dt�1, Dt) which holds all up to and including the date t of dis-
charge. The prior of t at the time t is inscribed as s. The double integral represents the likelihood t at the time t:
p(mtjDt�1) is the predictive distribution of the chosen flow or state variable before adding noise, N(xtjmt, t

�1) is the model
noise term xt � N(mt, t

�1), and p(Dtjxt) is a likelihood at time t of the true flow or state (after adding noise).

Rectangles in Figure 2 denote reservoirs for which a water balance is determined. Model error is applied to the slow-reser-
voir state as an example. The changes in areas that make up the posterior t are seen in blue. Equation (1) can be understood
by reference to the model error depicted in Figure 2, which shows the case of model error added to the slow-reservoir state Ss.
The case mt corresponds to the modeled state Ss,m (‘m’ indicates modeled) before adding model error and xt corresponds to
the true state Ss after adding model error. To update the posterior for τ at time t, three sources of information are combined
(arrows in Figure 2):
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• the prior for t (i.e., the posterior for t at the time t� 1),

• the predictive distribution of Ss, p(mtjDt�1) and

• probabilistic information on Ss provided by the current discharge observation p(Dtjxt)

As Figure 2 shows, the latter two are combined (xtjmt, t� 1) to provide a probabilistic information stream t, which consti-
tutes the likelihood term for t and it corresponds to the double integral in Equation (1). To make the double integral in
Equation (1) tractable, both the predictive distribution p(mtjDt�1) and likelihood p(Dtjxt) are approximated by Gaussian dis-
tributions. The predictive distribution p(mtjDt�1) is approximated by N(mtjmm, vm) where mm and vm are mean and variance,

respectively, of an ensemble of predicted values mt, which is the selected flow or state variable before adding model noise.
Likewise, likelihood p(Dtjxt) is approximated by N(xtjmx, vx), where mx and vx are estimated by linearizing via linear
regression the relation between predicted Qt and xt

Qt ¼ mQ,pred þ c(xt � mx,pred) or xt ¼
Qt � mQ,pred

c
þ mx,pred:

The last equation is then used to translate mean Dt and variance vQ for the likelihood of Qt into mean and variance of xt:

mx ¼
Dt � mQ,pred

c
þ mx,pred (2)

Vx ¼ vQ
c2 (3)

where mQ,pred and mx,pred (ensemble) means of are predicted Qt and xt, respectively, and c is the linear regression coefficient

Figure 2 | Schematic diagram of the deterministic (black color) and stochastic (red color) components of the modified Hymod model. Please
refer to the online version of this paper to see this figure in color: http://dx.doi.org/10.2166/hydro.2022.009.
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between the two ensembles. With these Gaussian approximations, we can rewrite Equation (1) in the following form:

p(tjDt)ap(tjDt�1)
ð
xt

ð
mt

N(mtjmm, vm)N(xtjmt, t
�1)N(xtjmx, vx)dmtdxt (4)

As all terms under the integral are now Gaussian, the double integral can be easily computed (see Appendix A). While this

yields a closed-form formula for the posterior, the resulting density does not correspond to a known parametric density. To
have an interactive recursive estimation algorithm, i.e., one that makes fast posterior sampling and eliminates the need to
repurpose data and likelihoods from specified time measures, it recommends estimating the posterior by a new Gamma den-

sity. Under such estimation, the posterior will increase in complexity every time step, for each time steps an additional
possibility term is introduced that transforms the posterior into a non-standard dimension. Therefore, the mathematical
expression for the posterior increases in complexity even as the posterior is one-dimensional. The Gamma approximation
avoids and preserves a reliable estimation of the posterior, and therefore enables recursive updating rather than going

back to different results, while still making it simple to analyze the form.
Hence, at each time step, the posterior t is represented by a Gamma distribution: p(tjDt�1) � Ga(tjat�1, bt�1)

and p(tjDt) � Ga(tjat, bt). The distributor allows us to derive closed-form recursive update equations for at and bt

bt ¼ at�1 � t2
d2 log f(t)

dt2
(5)

bt ¼ bt�1 �
d log f(t)

dt
� (at � at�1)t�1 (6)

t ¼ at � 0:5
bt

(7)

where expressions for log f and its derivatives are given in the appendix. Since at andbt in Equations (5) and (6) depend on t,
update t in Equation (7), and recomputed at andbt again with Equations (5) and (6). The update in Equation (7) sets t to a
value that lies in between the mean (at=bt) and the mode ((at � 1)=bt) of the new Gamma density approximation. At each
time t, these three equations are iterated 10 times to yield a Gamma approximation of the posterior of τ for that time step.

Iterate 10 times but typically observe convergence after 2–5 iterations. The iteration could be made more sophisticated by
monitoring convergence of the iterations and using a stopping criterion, but the computational cost of 10 iterations is
small. As new data come in, these update equations result in an automatic tuning of the amount of model noise t so that

the resulting probabilistic prediction is neither too wide nor too narrow. The use of gamma approximation calculates the
time between independent events that occur at a constant average rate. Using this approximation, analysts specify the
number of events, such as modeling the time until the nth accident occurs.

3.1.2. Sequential updating of the Hymod state and parameter posteriors

The states and parameter posteriors are expressed by ensembles, which are produced in the prediction phase illustrated
above. The ensemble Kalman Filter (EnKF) is used to modify the actual flow observation of an ensemble participant

which is ideal for systems that are continuously changing. The advantages of EnKF are it is light on memory, thus there is
no need to keep any history other than the previous state; and very fast, making it well suited for real-time problems and
embedded systems than the particle filter.

(St, ujDt)i ¼ (St, ujDt�1)i þ Kt(eDt �Qt)i i ¼ 1, 2, . . . ::N (8)

where eDt represents randomly perturbed observed discharge (with perturbation variance vQ). On the right-hand side of

Equation (8), predicted values for states St and discharge Qt are generated by the sampling process described in the predict
step. Finally, Kt Equation (8) is the Kalman gain vector and is written as:

Kt ¼ V(St ,u),Qt (vQ,pred þ vQ)
�1 (9)
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where V(St ,u),Qt is a vector of ensemble cross-covariance between states-parameters (St, u) and predicted discharge

Qt and vQ,pred is the ensemble variance of predicted discharge Qt.

[St] . 0 (10)

Ib , [u] , ub (11)

SMc ,
Cmax

(bþ 1)
(12)

An upgrade to EnKF values for states and parameters outside their physical range may result in Equation (8). With the pur-
pose of preceding the EnKF update, the accompanying restrictions are extended to states and the model parameters with
better optimization in the gamma distribution. Furthermore, to approximate the penetration and runoff level the system inte-

grates a prophetic multilayer network which is concise in the following section.

3.2. Prophetic multilayer network

The paper explores whether linking soil moisture and urban runoff will facilitate model simulations that overtake fixed per-

centage runoff. A modern approach to modeling infiltration and runoff levels across urban surfaces is implemented for the
purpose, which directly considers the relationship between infiltration and soil moisture through a collection of parsimonious
computational parameters. The models of infiltration are incorporated within a framework of uniform rainfall–runoff. The

prophetic multilayer network allows for probability-based predictions and the classification of items into multiple labels.
The advantages of a prophetic multilayer network are capability to learn nonlinear models and models in real-time.

The prophetic multilayer network is trained by a back-propagation algorithm, which is fast and easy to program and it does

not require additional parameters to tune apart from the numbers of input, nor does it require prior knowledge about the
network. Back-propagation ANN is used to model the relationship between experimentally obtained scattering coefficient
data and the degree of ground unevenness, and the soil moisture content of the field. As a system of linked layers of artificial

neurons, the BP network is structured, input, hidden, and output layers are shown in Figure 3 as a simple representation of
such a network. When data are provided to a neural group through the input layers, the input layer neurons spread the
weighted data and randomly draw bias via the hidden layers. The output at each node of the hidden layer is then calculated
consuming a transmission purpose. Afterward, the generated signals are transferred either to the next hidden layer or the

output layer.
The prophetic multilayer network incorporates a deterministic, continuous-time, lumped, computational rainfall–runoff

model intended to simulate catchment runoff like the urban land-cover model (URMOD) for sustainable development. A

Figure 3 | The network layer.
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lumped model doesn’t break down catchments into different sub-catchments but takes into consideration a single catchment

with only one outlet. The hydrological implications of urbanization are directly accounted for by dividing a catchment into a
rural and an urban portion, with specific infiltration (and therefore runoff) and routing features allocated to each segment.
URMOD has nine parameters requiring calibration of the observed precipitation, possible evaporation, and river flow.

Figure 4 shows the processes of infiltration and runoff with the conceptual soil column and three sectors, sector 2 with field
capability but exceeding the rooting depth (R,m, F), and sector 3 with soil moisture below rooting depth (m,R) where
soil moisture regulates infiltration and runoff generation.

3.2.1. Infiltration and runoff line of attack

A soil column-based approach is used to model the surface runoff and infiltration. The water which does not enter into the
column of the soil is transformed into a direct runoff. The proportion of precipitation that turns into either runoff or absorp-

tion depends on the amount of soil moisture, and soil moisture characteristics differ according to the rural or urban
component of the model. In the rural region, the temporal increase in soil moisture is induced by three processes: (i) infiltra-
tion, (ii) runoff, and (iii) evaporation. When the urban land-cover is present then two inputs will influence the infiltration

through the catchment; infiltration from rural areas and industrial areas, respectively. The cumulative infiltration from the
two land-cover classifications is expressed as a weighted average infiltration ( f) of:

f ¼ i(1� u)frur þ iufurb (13)

U is the fraction of the total catchment area covered by urban land-cover where there rainfall frur represents rural infiltra-
tion and is defined in Equation (14), and they signify infiltration in urban areas furb. The rural infiltration indicated in Equation
(14) is based on the PDM model.

frur ¼ 1�m
s

� �1=2
(14)

where m is the soil moisture content (mm), and S is the soil column capacity (mm), thus 0 � m=S � 1. When the column of
the soil reaches saturation (m=S � 1), the infiltration is poor and the rest of the rain is turned into a direct runoff. It is assumed

that the conceptual soil column has three separate zones reflecting soil moisture levels, all of which are balanced parameters,
controlled by field ability (F) and rooting depth (R). Drainage and soil column evaporation depend on the degree of soil moist-
ure as shown in Figure 4.

Section 1, near the soil surface, is defined as if soil moisture is above the capacity of the field (m. F). In this case, the poss-
ible rate of evaporation (Ep) is assumed, and drainage to deeper storage depends on moisture content (m) and a calibrated
drainage coefficient (k) so drainage from the column occurs at a rate of k (m� F). Then, the equation for the region is

Figure 4 | Visual representation of the URMOD model.
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shown in Equation (15).

dm
dt

¼ i(1� u) 1�m
S

� �1
2

zfflfflfflfflfflffl}|fflfflfflfflfflffl{frur

þiufurb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Infiltration

�k(m� F)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Drainage

� Ep|{z}
Evaporation

(15)

Sector 2 is where the soil moisture does not exceed the potential of the field but exceeds the rooting depth (R,m, F), the
evaporation is again at the highest rate (Ep) but no drainage takes place. Then, the equation for the region is shown in
Equation (16).

dm
dt

¼ i(1� u) 1�m
S

� �1
2

zfflfflfflfflfflffl}|fflfflfflfflfflffl{frur

þiufurb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Infiltration

� Ep|{z}
Evaporation

(16)

In sector 3, when soil moisture is below the rooting depth (m,R), there is again no drainage, and evaporation reduces
linearly with depth E ¼ Ep(m=R) until it reaches E¼ 0 form¼ 0. Three different differential equations explain the distribution

of soil moisture in each of the three different regions. The definition of infiltration does not alter in any of these equations and
is defined by Equation (14). Therefore, the zone equation is shown in Equation (17).

dm
dt

¼ i(1� u) 1�m
S

� �1
2

zfflfflfflfflfflffl}|fflfflfflfflfflffl{frur

þiufurb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Infiltration

� Ep
m
R|ffl{zffl}

Evaporation

(17)

A leveling concept for the amount of evaporation occurring in urban areas is applied. Although there is no agreement on
the importance of evaporation in urban areas in modeling studies, importance is agreed to be lower than the total in rural
areas and greater than no evaporation. The first urban extension assumes a fixed percentage of infiltrated rainfall, thus

de-coupling the hydrological cycle on urban surfaces with soil moisture. The second extension presumes the generation of
runoff and infiltration in urban areas are dependent on a scaling term denoted g, the urban surface infiltration depends on
the soil moisture content of the rural areas but is decreased by a factor (1� g). It thus links urban infiltration directly to

soil humidity levels.

3.2.2. Urban enlargement 1: fixed percentage runoff

Urban enlargement 1 assumes a fixed proportion of runoff from the metropolitan region, and typically runoff is independent

of soil moisture. The fixed percentage runoff will be denoted v. Comparing v the runoff generated for the rural areas it is
obvious that at v a threshold would be defined since there are high levels of soil moisture that the amount of runoff generated
from rural areas exceeds urban runoff rates, which is considered counter-intuitive. The threshold for soil moisture m/s at

which the shift occurs is derived as:

1� 1�m
S

� �1
2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
rural

. v|{z}
urban

) m
S
. 1� (1� v)2 (18)

For the soil moisture levels above and below the point, therefore, penetration from urban areas must be addressed. When
the amount of soil moisture reaches this threshold, urban area infiltration can return to actions as in rural areas. Therefore,
the infiltration into urban areas is described as:

furb ¼
1� v: 0 � m=S � 1� (1� v)2

1�m
S

� �1
2
: 1� (1� v)2 , m=S � 1

8<
: (19)
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By replacing Equations (14) and (19) with Equation (13), total infiltration can be described as urban and rural.

f ¼
(1� u) 1�m

S

� �1
2 þ iu(1� v): m=S � 1� (1� v)2

1�m
S

� �1
2
: m=S . 1� (1� v)2

8>><
>>: (20)

While v would traditionally be set as a fixed value such as 70 or 100%, evaluating the specific amount of valuation that

depends entirely on urbanization is categorized as a calibrated value for the research.

3.2.3. Extension 2 to urban infiltration: multiplicative impacts on urban areas

Urban extension 2 believes that urban infiltration relies on soil moisture, comparable to rural infiltration but reduced by a
multiplicative factor (1� g). Extension 2 thus prevents the explicit implementation of a threshold as provided in extension 1.
The functional form is defined as:

furb ¼ (1� g) 1�m
S

� �1=2
(21)

The calibration parameter g [ [0, 1] is implemented to account for the variability of infiltration across various urban catch-
ments so that a large one indicates that the urban area is largely impervious and more runoff is generated, while a smaller
value indicates that the urban area has more perennial surfaces and less runoff is produced. If g is zero then penetration

is the same for the impervious area as the rural area, whereas if g is one area then the area will be fully sealed and no intrusion
will occur. In substitution of Equations (14) and (21) into Equation (13), the complete infiltration is derived as:

f ¼ i(1� u) 1�m
S

� �1
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rural

þ iu(1� g) 1�m
S

� �1
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
urban

¼ i(1� ug) 1�m
S

� �1
2

(22)

Equation (22) defined for infiltration can then be replaced by the three soil moisture equations. Thus, the infiltration rate in
the soil moisture and runoff level is determined successfully in the urban and rural areas. Then the effect of steep slopes in the

low depth of hills on the surface water is estimated by the velocity with a novel genetic algorithm, discussed below.

3.3. Well-ordered selective genetic algorithm

The well-ordered selective algorithm evaluates the importance of a mathematical model to determine the velocity profile in a
watershed with rain-induced runoff, using only a displacement rule customized to every disturbance and upwelling regime.
More broadly, for the representation of the velocity field, we describe the speed field in each situation and trust the numerical
model.

The two-dimensional deep ocean models are transformed from the Naiver–Stokes equations with hydrostatic pressure and
standardized vertical velocity statements where the flow is deep and the slope fluctuations are not increasing, certain assump-
tions are accessible which is written as:

@h
@t

þ @hu
@x

þ @hy
@y

¼ R� I

@hu
@t

þ @(hu2 þ (gh2=2))
@y

¼ gh � @z
@y

� S fx

� �
@hy
@t

þ @huy
@x

þ @(hy2 þ (gh2=2))
@y

¼ gh � @z
@y

� S fy

� �

8>>>>>>><
>>>>>>>:

(23)

where t is the time, h is the height of the water, v the velocity of flow in the y-direction, u the velocity of flow in the x-direction
R the strength of the rain, g the gravity constant, z the bottom elevation, and S fx and S fy the friction slope respectively in the x
and y directions.

Journal of Hydroinformatics Vol 24 No 5, 1077

Downloaded from http://iwaponline.com/jh/article-pdf/24/5/1066/1114172/jh0241066.pdf
by guest
on 26 April 2023



3.3.1. Numerical resolution

An unstructured mesh is used to discretize the domain in space. The model enables better adaptation than structured mesh to
a basin’s complex topography by better representing its topography, especially the river and gully shape in the river system.

Also, these meshes lie in the ability to deal with arbitrary complex geometries and the ease with which local refinements of
the grid are to be implemented. At each node of the mesh, a control volume is constructed creating a boundary between each
neighboring node of the mesh, as shown in Figure 5.

The Shallow Water Equation (23) can be solved with a finite volume scheme written as:

Utþ1
i ¼ Ut

i �
X
j[Vi

Dt
Dxij

Ft
ij þ

Dt
Dxij

Stij

� �
(24)

where Ut
i ¼ (ht

i, h
t
iu

t
i, y

t
i) the states at a time t in the node Pi, Vi all the nodes surrounding Pi, Dt the time step, Dxij ¼ Ci=Lij the

space step with Ci the area of the cell constructed around the node Pi andLij the length of the boundary edge between the
cells Ci andCj,Ft

ij is the numerical value at the interface between the cells Ci andCj along nij, the normal vector to the bound-

ary edge and Stij ¼ (Ri � Ii, stijx, s
t
ijy) are the source terms of mass and momentum along the x and y directions. The key

challenge in solving these equations is how to treat the terms slope source stijx and stijy to respect the water depth and hydro-
static balance positivity and, more specifically, for wet/dry transitions and steep slopes. The Shallow Water Equations are

solved by scheme (24).
A fully wet state when the water depth is higher than the bottom difference between two cells, and a partially wet regime

otherwise, are distinguished at the interface of two cells. Consider the non-dimensional number b ¼ h=Dx@xz; if b is inferior to

1 the regime is partially wet and fully wet otherwise. The exact error made on the source term can be estimated. Then the
experimental test cases are to be carried out.

3.3.2. Experimental test cases

Four test cases are selected at different scales and degrees of complexity. The first two laboratory test cases are selected with

simple geometry. The first laboratory case is used to evaluate the effect of the resolution method and the other one to assess
the effect of Friction Law on local velocities. Then on a small plot, the model is applied to a real case to confirm the results of
the two previous test cases. Finally, the model is tested over a watershed of around 1 km2 on which the discharge at the outlet
can be repeated.

The first experiment is a flume with a constant slope on which a constant raindrop is used to measure the error due to the
numerical scheme. The second test case is a furrow-shaped sinusoidal mold reflecting the agricultural land. In comparison
with measurements, the conclusions of these simulated results are then represented using two laboratory experiments

Figure 5 | Representation of the formalism used for the 2D unstructured mesh resolution.
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obtained on this test case. Eventually, the model was applied to a specific catchment in the Laval where only outlet discharge

measurements are available.

3.3.2.1. Flume experiment. A steady stream, with an intensity of 25 or 50 mm/hour depending on the chosen scenario, is

applied with a stream simulator over the domain over 600 s. With a time phase of 0.1 s the temporal evolution of the
discharge at the outlet of the channel is observed. The temporal evolution of the discharge is achieved by measuring the
water that flows from the canal. Once the steady-state is achieved, the water depth and the velocities are also determined
along the canal every 60 cm. These are calculated using a system of salt-tracing. For the three slope values, the dataset is

available: 2, 5, and 25%. All combinations of slope and rain intensity are used except for the case with a slope of 5% and
a rain intensity of 50 mm/hour has no data on the event. This result implies that there is convergence in mesh size
because whatever the slope and the positive water height defined, a mesh size is adapted in the case where depth is large

enough to reduce the error.

3.3.2.2. Sinusoidal molds experiment. The second test case is a laboratory test case describing a real area with several flood-

ratio values. Runoff of water depths from 1 to 3 mm at high speeds is observed at the inlet. The flow is then led to furrows
where the depths of the water can exceed 2 cm. The test case is representative of the hydraulic change that can be seen on an
actual plot with a hydraulic leap between the runoff and the flow in the furrows. The number of furrows ranges from one to

three depending on the slope option and the discharge from the inlet. The data on the test case are calculated in a steady-state
so that they do not change in time. The water depths and the bottom elevation are determined using a laser scanner with a
spatial resolution of 0.5 mm and the experimental water depth uncertainty is 1 mm. Concerning the velocities, they are
measured using the LSPIV process, with a 5 mm spatial resolution and a 0.1 m/s experimental uncertainty. The location

of the hydraulic jump and the flow in the furrows are in good agreement with the experiments. Indeed, the maximum
water depths, as well as the location of the hydraulic jump entrance in the furrows, are very well reproduced. However,
particularly in the experiments with three furrows, the water level is a little overestimated in the furrows that are the

furthest apart.

3.3.2.3. Plot experiment. The plot is 10 m long and 4 m wide. For the domain, a uniform rain is applied using a rain

simulator. Following many rain events that eroded the soil, the mobility of sediments in the soil was considered marginal
and the soil is assumed to be fixed for the time of interest. The soil is composed mainly of sand with a ruggedness scale
that will be called spatially uniform. Measurements of the velocities were taken at 62 separate locations on the map. As in
the first experimental scenario, the measuring technique is salt-tracing. For a plot experiment case, no water level

calculation is required as compared to the previous test case. Some anomalies were found on the topography at the edges,
which can be attributed primarily to measurement errors.

3.3.2.4. Watershed application. The model is then put to the test by measuring the effects of the experiment to observed
discharges on a particular catchment from field observations. The climate is a system of mountains influenced by the
Mediterranean climate, reflected in particular by heavy summer storms and an annual average of 900 mm of rainfall. Its

total area is 0.86 km2 and 58% of the mean slope. The soil consists primarily of black marls, and 68% of the surface is
bare earth. The data are valid for several rainfall events at the catchment source, with a time stage of 60 s. Only the
rainfall is measured every 60 s for each case. The flow rate is measured over a specified fixed section by measuring the

water depth by laser. The basin size and steep slopes make the hydrological response fast. The choice of these events is
motivated by the fact that the initial state of the soil is very different from one to another, but also because they are the
two events that have had the greatest impact on the transport of sediments in one year.

The model highlights well-known difficulties in solving the Shallow Water Equations for steep slopes and low depths of

water. This offers an empirical criterion for determining, in a given situation, the discretization of the term slope source to
prevent the public from erosion. The workflow of the proposed method is given in Figure 6.

Thus, a greater prediction of precipitation is given by the proposed rainfall model-based artificial framework. The method

analyses the errors of the model and decreases the uncertainty for the fine discharge of rainfall. The infiltration regulation also
comes with the runoff level estimation in the soil moisture. Formerly the model analyzes the velocity from the steep slopes to
inhibit the surface water. Thus, the model estimates the predicted total precipitation.
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4. RESULTS AND DISCUSSION

The section clearly explains the feasibility of the proposed method by evaluating and contrasting the experimental results
obtained with traditional methods. Specification tools and the dataset description for implementation are given in the
following.

4.1. Dataset description

The rainfall in India dataset is used for analyzing the rainfall–runoff. It determines the period from 1901 to 2020. Granularity

is represented month-wise as January–February, March–May, June–September, October–December and its location is from
the north-east. The annual rainfall record for each month is also described. The rainfall unit is expressed as millimeters in
the dataset.

4.2. System specification

The proposed technique is described in Section 3, where a detailed explanation and its performance are analyzed. The pro-
posed method is implemented in the working platform of MATLAB with the following system specification.

Figure 6 | Flow chart of the proposed framework.
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Platform MATLAB 2019a

OS Windows 8

Processor Intel core i5

RAM 8 GB RAM

4.3. Simulation results

Simulation analysis of the proposed rainfall prognostic artificial model framework is presented in the section. Simulated
results show the model errors, infiltration rate with runoff level, and steep slopes of the velocity field using the posterior
fire-breathing network, prophetic multilayer network, and well-ordered selective genetic algorithm. The several parameters

are taken to estimate the performance of the proposed framework such as precision probabilistic discharge with and without
error, infiltration rate of soil, velocity of water in different bend areas. Those parameters are considered to estimate accurate
day-by-day prediction as well as month-wise prediction. The infiltration rate affects the runoff prediction so that the soil infil-

tration rate and discharge is estimated.
Figure 7 states the rainfall flow region between the years 1900 and 2020. The proposed rainfall prognostic model-based

artificial framework predicts the rainfall in the year range from 1900 to 2020.

From the year 1900 to 1920, the average predicted rainfall level gradually increased from 1,025 to 1,500 mm. This is the
highest rainfall level marked to date in the dataset. Then the rainfall value is 1,400 mm predicted and gets constant for several
years including 1935, 1960, and 1990. The marked average rainfall value for a couple of years is less compared to the early
stage. The predicted rainfall value in the prognostic network of the proposed model is approximately 915–930 mm.

Figure 8 states the month-wise rainfall–runoff, i.e., January, February, March, April, May, June, July, August, September,
October, November, and December. Each month’s rainfall level in India between the years 1900 and 2020 is represented
in Figure 8. The predicted rainfall and measured rainfall are given in Table 1.

Figure 9 compares the actual posterior to a specific time step, together with the Gamma approximation obtained by iteration:
the iteration starts from the prior for that time step and iteratively moves the posterior approximation closer to the actual pos-
terior. Thus, it obtains a good posterior approximation with the posterior fire-breathing network because the precision of the

prior density moves towards posterior approximation. Also, the gamma density from the prior network reaches a maximum
of 15% probability precision. Due the presence of gamma approximation, the network is tuned for new values.

Figure 10 shows the evolution of its estimated posterior, with the posterior fire-breathing network which is updated recur-

sively with each new measurement. The posterior t fluctuates through time in response to the mismatch between predicted
and observed discharge: the value t increases during periods of small error and decreases during periods of large error. The

Figure 7 | The rainfall region.
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behavior corresponds to an automatic EnKF deflation to ensure the discharge of the rainfall without the model errors in pre-

dictive and observation distributions. Figure 11 shows without model error the predictive distribution is already quite good,
and the predictive distribution with model error becomes too wide when compared to the likelihood. The results in a shift of
the posterior t find smaller model noise. In the model, without error, the probability is one.

Figure 8 | Month-wise rainfall–runoff in India.

Table 1 | Predicted rainfall vs. measured rainfall

Year Predicted rainfall (mm) Measured rainfall (mm)

1988 375 376.3

2002 950.2 936.4

2005 215 212.2

2009 975.9 974.9

2019 1,285 1,284

2020 1,170.5 1,177

Figure 9 | Approximating the actual posterior of t, a Gamma density by iterating, starting from the prior.
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Figure 12 shows with model error in the rainfall–runoff region. Adding model errors widens the predictive distribution, and

the posterior of t shifts further, increasing model errors and overlapping with the likelihood function. The posterior of shifts in
the proposed method maintains the formal wave form from discharge 0 to 10 m3/s. The posterior shift increases to maximum
at 6.5 m3/s. In the model with error, the obtained probability is 2 because of the EnKF that filters the history of states rather

than the previous state.

Figure 10 | One-day-ahead probabilistic discharge prediction.

Figure 11 | Without model error.

Figure 12 | With model error.
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Figure 13 shows the infiltration rate and runoff level of the proposed network; the larger the rainfall intensity of 1.5 cm/

hour, the higher the initial and steady infiltration rates from 6 to 8, and the cumulative infiltration increased faster with
time and the runoff level is from 0 to 0.5 cm. Infiltration rate increased due to the layers present in the proposed prophetic
multilayer network which estimates infiltration rate using the URMODwhich does not separate the catchment for estimation.

Figure 14 shows the measured velocity in terms of position, velocity, and acceleration by the well-ordered selective genetic
algorithm. The genetic algorithm measures the velocity with bend areas thus avoiding the low depth steep slopes in the hill.
The highest velocities are better represented by the model by 0.45 m/s. The highest velocity was obtained in the proposed
method by using well order selective genetic algorithm for unstructured mesh which deals with arbitrary complex geometries.

4.4. Comparison graph

There are three statistical metrics (root mean square error (RMSE), performance coefficient, coefficient of determination)
taken to evaluate the performance of the proposed method that allows term-by-term comparison to identify the actual differ-

ence between the estimated and measured value to provide information on a model’s short-term performance.
To determine the superiority of the proposed method a comparison is performed with various recent hybrid AI framework

methods for runoff regions, i.e., hydro-climatic, hydro-climaticþNDVI, hydro-climaticþ illumination condition (IC) [24],

Figure 13 | Infiltration rate in runoff.

Figure 14 | Simulated velocity.
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hydro-climaticþNDVIþ IC for the Calliope River catchment [24] and the Haughton River Catchment [24]. The Haughton

River Catchment is utilized in this study because it is one of the largest wetland rivers (316 km2 or 122 square miles).

4.4.1. Root mean square error

RMSE is the standard deviation of the residuals (prediction errors). RMSE measures the data points from the regression line
and the residuals which grouped the data in the most relevant axis.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( f � o)2

q
(25)

Figure 15 shows the comparison graph for RMSE in the Calliope River Catchment with runoff regions, where for the hydro-
climatic method, the RMSE value is 28 mm and for the NDVI method, the obtained value is 26 mm, for the IC method, it is
slighter than the NDVIþ IC method and the measured value of RMSE is 23 mm. From these observations, it is clear that the

proposed rainfall prognostic model-based artificial framework achieves less RMSE of 20 mm than the compared methods in
the Calliope River Catchment region.

Figure 16 shows the comparison graph for RMSE in the Haughton River Catchment with runoff regions in which for the

hydro-climatic method, the RMSE value is 10 mm and for the NDVI method, the obtained value is 9 mm, while for the IC and
NDVIþ IC method, an identical value of 8 mm was obtained. The suggested artificial system based on the rainfall prognostic
model has a root average square of 6 mm lower than the comparable methods in the catchment area in the Haughton River.

4.4.2. Performance coefficient

The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator, or air conditioning system is a
ratio of useful heating or cooling provided to work required. COP equates to lower operating costs and it exceeds 1 to pump

Figure 15 | Comparison graph for RMSE in the Calliope River Catchment.
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additional heat from a heat source to the point where heat is required.

COP ¼ Q
W

(26)

where Q is the heat supplied to or removed from the reservoir; W is the work done by the heat pump.

Figure 17 shows the comparison graph for performance coefficient in the Calliope River Catchment with runoff regions,
where for the hydro-climatic method, the obtained value of performance coefficient is 0.81 mm and for the NDVI
method, the obtained value is 0.85 mm, then for the IC method the coefficient value is 0.91 and for the NDVIþ IC

method, the obtained value is 0.87 mm. It can be found from these experiments that the suggested artificial system based
on the rainfall prognostic model achieves a coefficient of performance greater than the compared approaches in the Haugh-
ton River catchment area by 0.93.

Figure 18 shows the comparison graph for performance coefficient in the Haughton River Catchment with runoff regions,

where for the hydro-climatic method, the attained value of performance coefficient is 0.77 mm and for the NDVI method, the
value obtained is 0.82 mm, then for the IC method the coefficient value is 0.85 and for the NDVIþ IC method, the obtained

Figure 16 | Comparison graph for RMSE in the Haughton River Catchment.

Figure 17 | Comparison graph for performance coefficient in the Calliope River Catchment.
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value is 0.83 mm. These results indicate that the suggested artificial system based on rainfall prognostic is 0.89 higher than the
comparable approaches in the Haughton River catchment area.

4.4.3. Coefficient of determination

The determination coefficient, in statistics, is R2 (or r2), a measure that evaluates a model’s ability to predict or explain an
outcome in the linear regression setting. R2 displays the proportion of variance in the dependent variable and the predictor

variable, explained by linear regression.

R2 ¼ MSS
TSS

¼ (TSS� RSS)
TSS

(27)

where RSS is the sum of squares of residuals and TSS is the total sum of squares.
Figure 19 shows the comparison graph for coefficient determination in the Calliope River Catchment with runoff regions,

where for the hydro-climatic method, the determination of coefficient is 0.81 mm and for the NDVI method, the obtained
value is 0.89 mm; then, in the IC method, the coefficient value is 0.91 and further for the NDVIþ IC, the determination

Figure 18 | Comparison graph for performance coefficient in the Haughton River Catchment.

Figure 19 | Comparison graph for coefficient determination in the Calliope River Catchment.
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value is 0.89 mm. These observations demonstrated a more obvious performance coefficient of 0.94 mm compared to the
comparative methods in the river catchment area in the proposed framework.

Figure 20 shows the comparison graph for coefficient determination in the Haughton River Catchment with runoff regions,
where for the hydro-climatic method, the determination of coefficient is 0.7 mm and for the NDVI method, the obtained
value is 0.75 mm, then, for the IC method, the coefficient value is 0.8 and further for the NDVIþ IC method, the determi-

nation value is 0.75 mm. From these interpretations, it is clear that the proposed framework achieves a greater
performance coefficient of 0.89 than the compared methods in the Haughton River Catchment region.

Thus it is inferred from the above findings that the proposed approach provides a better prediction in the range of the rain-

fall–runoff model with the infiltration rate and the runoff level. Accordingly, it concludes that the rainfall prognostic artificial
model framework effectively predicts model errors, runoff levels with infiltration rate, and velocity calculation the assistance
for the prediction of rainfall in various temperatures.

5. CONCLUSION

Despite the progress made in recent years, modeling hydrological reactions to rainfall prediction remains a complex task in

runoff modeling. Thus, the presented paper effectively introduced a rainfall prognostic artificial model framework for the pre-
diction of rainfall. The framework applied a posterior fire-breathing network to estimate model errors with random noise to
reduce the uncertainty. Further, to regulate the infiltration rate, the system suggested a prophetic multilayer network that ana-

lyses the runoff levels with the soil moisture in urban and rural areas. In addition, to tackle the numerical challenge, the
model integrates a well-ordered selective genetic algorithm to forecast different bend zones at low water depths on steep
slopes. As a result of the rainfall model, everyday rainfall can be accurately anticipated to avoid environmental problems.

Experimental results reveal that the framework surpasses existing runoff models with a better infiltration rate of 1.5 cm/
hour, runoff level of 0.05 cm, achieved a velocity of 0.45 mm, and has the highest prediction range of 12–20 mm with subjec-
tive results.

6. FUTURE PERSPECTIVES

• In the future, uncertainty of rainfall–runoff model error shall be estimated using a screening method to extract values from

stage measurements and conversions of stage ratings. Also, the noise parameter of the model errors may have been calcu-
lated by normality and deviation methods to obtain more accurate estimation.

• Unscented EnKF-based measurement of the nonlinear function may be developed to measure the values even from the non-

linear dynamic model.

• Further rainfall–runoff estimation may be developed with some deep learning methods with optimization technique and run
off levels of catchment estimated by using the dataset values to evaluate the performance of the method.

Figure 20 | Comparison graph for coefficient determination in the Haughton River Catchment.
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• In the future, steep slope run off velocity has to be calculated with various velocity measurement components as well as

decision algorithms to find the probability of run off velocity for better prediction results.
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