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Chapter 7 

In-phase and anti-phase synchronization between 

fractional order chaotic systems with uncertainties and 

external disturbances1

During the last few decades, study of nonlinear phenomena occurring in 

various areas of scientific fields has gained immense popularity amongst the 

scientists and engineers for the development of the models using non-linear 

differential equations. Introduction of fractional order time derivative in 

nonlinear models has rendered a differenrt dimension to the existing 

problems. Nowadays fractional order derivative has become one of the potent 

areas of research to the scientists and engineers since fractional order system 

response ultimately converges to the integer order system. For high accuracy, 

fractional order derivatives are used to describe the dynamics of systems. A 

wide range of problems in different branches of science and engineering have 

already been studied by a number of researchers of different parts of the 

world to explore the potential of the fractional derivative. The usage of first 

order time derivative with a fractional order time derivative is not only 

applicable for non-Gaussian but also for Non-Markovian systems. The 

attribute of fractional order derivative in linear and non-linear dynamical 

systems is the increased degrees of flexibilities in the model. The fractional 

order differential operator is non local for which it takes into account the fact 

that the future state not only depends upon the present state but also upon all 

 

7.1 Introduction  
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of the history of its previous states. For this realistic property, the fractional 

order systems are being attractive to the researchers.  

Chaos is an interesting nonlinear phenomenon which has tremendous 

applications in different areas of science and engineering. Synchronization is 

an important phenomenon in chaotic system that may occur when two or 

more chaotic systems are coupled or one chaotic system drives the other. The 

pioneering work of Pecore and Corrall (1990) on synchronization between the 

drive (master) and response (slave) systems of two identical or non identical 

systems with different initial conditions,  has attracted a great deal of interest 

to the researchers in various fields due to its important applications in 

ecological systems, physical systems, chemical systems, modeling brain 

activity, system identification, pattern recognition phenomena and secure 

communications etc. (Blasius et al. (1999), Lakshmanan and Murali (1996), 

Han et al. (1995), Cuomo and Oppenheim (1993), Kocarev and Parlitz (1995), 

Murali and Lakshmanan (2003)). In recent years various synchronization 

schemes, such as linear and nonlinear feedback synchronization, time delay 

feedback approach, adaptive control, active control etc. (Chen and Lu (2002), 

Huang et al. (2004), Park and Kwon (2005), Park (2005), Ho et al. (2005), 

Huang et al.  (2009))  have been successfully applied to chaos synchronization. 

Chaos synchronization using active control method is an efficient technique. 

In 1999, Park et al. (1999) have studied the phase synchronization in the forced 

Lorenz system. Ho et al. (2002) designed the phase and anti-phase 

synchronization of two chaotic systems by using the same method. Bai and 

Lonngren (1997) have presented synchronization of two Lorenz systems and 

Austin et al. (2009) have studied chaos synchronization between the Genesio 

system and the unified system using this effective method. 

The important feature of the synchronization is that the difference of states of 

chaotic systems converges to zero for large time, while during anti-
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synchronization the state vectors have the same absolute values but opposite 

in sign. Mathematically, the synchronization is achieved when 

0)()(lim 21 txtx
t  

and anti-synchronization is obtained when 

,0)()(lim 21 txtx
t

where )(1 tx and )(2 tx are the state vectors of the drive and 

response systems respectively. In 2009, Al-sawalha and Noorani (2009) have 

investigated anti-synchronization between two different hyperchaotic 

systems. Al-sawalha and Noorani (2009) have proposed anti-synchronization 

of chaotic systems with uncertain parameters via adaptive control. In 2007, Li 

and Zhou (2007) have studied anti-synchronization in different chaotic 

systems. 

From the literature survey it is seen that synchronization and anti-

synchronization between fractional order systems are few in numbers and 

therefore, this are of research is yet to be explored. Synchronization between 

fractional order chaotic systems is already being investigated in the research 

article of Yan and Li (2007), Deng and Li (2005), Li and Yan (2007), Xu et al. 

(2008). Yan and Li (2007) have proposed on chaos synchronization of 

fractional differential equations. Erjaee and Taghvafard (2011) have designed 

phase and anti-phase synchronizations of fractional order chaotic systems via 

active control. Bhalekar and Gejji (2011) have done anti-synchronization of 

non identical fractional-order chaotic systems using active control method.  

Initially researchers involve only in doing synchronization and anti-

synchronization between identical and non-identical chaotic systems using 

various methods viz., Active, Adaptive and Sliding mode methods, but later 

the influences of the uncertainties during synchronization and anti-

synchronization are been considered. In the real world applications e.g., in 

secure communication, the receiver plants suffer from the various 

uncertainties including parameter perturbation and external disturbance, 



CHAPTER 7

 145  

 

which may influence the accuracy of the communication. Thus, the 

synchronization between chaotic systems with uncertainties and disturbances 

are tough jobs for researchers since there are always possibilities of 

destroying synchronization with the effects of those parameters especially for 

fractional order systems. Aghababa (2012) designed robust stabilization and 

synchronization of a class of fractional-order chaotic systems via a novel 

fractional sliding mode controller. Chen et al. (2012) have studied 

disturbance-observer-based robust synchronization control of uncertain 

chaotic systems. Jawaadaa et al. (2012) have done robust active sliding mode 

anti-synchronization of hyperchaotic systems with uncertainties and external 

disturbances. Yang et al. (2009) proposed the robust synchronization of 

fractional chaotic systems via adaptive sliding mode control. Fu and Li (2011) 

have studied robust adaptive anti-synchronization of two different 

hyperchaotic systems with external uncertainties. But to the best of author’s 

knowledge the synchronization and anti-synchronization between non-

identical fractional order Gensio-Tesi and Qi systems with parametric 

uncertainties and external disturbances using active control method have not 

yet been studied by any researcher.  

In the present chapter, a sincere attempt has been taken to study phase and 

anti-phase synchronizations between non-identical fractional order chaotic 

systems viz., Genesio-Tesi and Qi chaotic systems using active control 

method in the presence of parametric uncertainties and external disturbances. 

Numerical simulation results are carried out using Adams–Bashforth–

Moulton method (Diethelm et al. (2004), Diethelm and Ford (2004)) and are 

displayed graphically, which clearly exhibit that the active control method is 

effective, easy to implement and reliable for both the phase and anti-phase 

synchronizations of two nonlinear fractional order uncertain chaotic systems.  
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7.2 System description and Problem formulation 

7.2.1 System description 

The fractional-order Qi system (Yang et al. (2009)) is described as 

          
,

)(

yxb zzD

x zyxcyD

zyxyax=D

t

t

t

                                                                                      (7.1) 

where  ( 10 ) is the fractional order time derivative. The largest 

Lyapunov exponent of Qi system (Wu and Yang (2010)) is .2134.4  This 

system has large chaotic region when the parameters are varied. The lowest 

value of for which the system remains chaotic is 915.0 . The chaotic attractor 

in x-y-z space is depicted through Fig. 7.1 for 9150. at 

.80,3/8,35 cba  

 

 

Fig. 7.1. Phase portrait of Qi system for 915.0= . 



CHAPTER 7

 147  

 

The fractional-order Genesio–Tesi system (Faieghi and Delavari (2011)) is 

described as 

          
.2xmzryqxpzD

zyD

yxD

t

t

t

                                                                      (7.2) 

The largest Lyapunov exponent of Genesio–Tesi system is .0022.0  Lowest 

value of for which the system remains chaotic is 93.0 . The chaotic attractors 

in x-y-z space is depicted through Fig. 7.2 for 930.  at 

.1and2.1,92.2,6 mrqp  

 

 

Fig. 7.2. Phase portrait of Genesio-Tesi system for 93.0= . 
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7.2.2 Problem Formulation 

Consider an uncertain fractional order chaotic system as the master system as   

          
10),()()( 1111 tdxfxAAx=Dt                                         (7.3) 

and another uncertain fractional order chaotic system as the response system 

as 

          ,10),()()()( 2222 ttdyfyAAy=Dt                           (7.4) 

where nRtytx )(),( , nnRAA 21 , is a known constant matrices with proper 

dimension, nn RRff :, 21 are the nonlinear part of the system, 

nnRAA 21 , are parametric uncertainties of chaotic systems with 

,21A ,22A  1 , 2  are positive constants and )(,)( 21 tdtd are the 

external disturbances of uncertain chaotic systems with ,)( 11 td ,)( 22 td  

0, 21  and 
nRt)(  is the control input vector of the uncertain chaotic 

system (7.4). Now controller )(t is to be designed in such a way that the 

states of the master and response systems are synchronized.  

The corresponding error dynamics can be obtained as  

),()(),()()(

)()()()()()()(

12122

11112222

ttdyxFtdeAAA

ttdxfxAAtdyfyAAe=Dt

                

(7.5) 

where xye  and .))(()()(),( 112212 yAxAAAxfyfyxF  Next 

design an appropriate feedback control )(t which stabilizes the system so 

that the error system (7.5)  converges to zero as time t tends to infinity, i.e., 

.0lim e
t

 This implies that the systems (7.3) and (7.4) are synchronized. 
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If there is any eigen value of the error system is equal to zero, then another 

type of synchronization phenomenon called phase synchronization may 

occur, in which the difference between various states of synchronized 

systems may not necessarily converge to zero, but is less than or equal to a 

constant.  The same procedure may be used for anti-phase synchronization 

process, in which the state vectors have the same absolute values but opposite 

in sign. 

7.3 Phase synchronization between fractional order uncertain 

Genesio-Tesi and uncertain Qi systems using active control 

method 

In this section, the phase synchronization between two different fractional 

order uncertain Genesio-Tesi and Qi systems is studied. It is assumed that 

uncertain Genesio-Tesi system drives the uncertain Qi system. We define the 

Genesio-Tesi as a drive system as 

          ),100(sin1.05.0

)100(sin1.03.0

)100(cos1.05.0

1

2

11111

111

111

txxmzryqxpzD

tyzyD

txyxD

t

t

t

                            (7.6) 

where uncertain parameter 

005.0

03.00

005.0

1A  and disturbance term 

.

)100(sin1.0

)100(sin1.0

)100(cos1.0

)(1

t

t

t

td  

Fig. 7.3 shows the chaotic attractor of the Genesio-Tesi system with 

uncertainties and disturbances for the order of the derivative .950.=   
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Fig. 7.3. Phase portrait of uncertain Genesio-Tesi system for .95.0  

The Qi-system is defined as the response system as 

          
),()10(cos5.02

)()10(sin5.002.0

)()10(cos5.0)(

322222

22222222

1222222

ttyyxb zzD

ttxz zxyxcyD

ttzzyxya=xD

t

t

t

                      (7.7) 

where 

020

02.001

100

2A is uncertain parameter 

)10(cos5.0

)10(sin5.0

)10(cos5.0

)(2

t

t

t

td  

is disturbance term and Ttttt )](),(),([)( 321 is the controller to be 

designed. The chaotic attractor of the Qi-system with uncertainties and 

disturbances is depicted through Fig. 7.4. 
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Fig. 7.4. Phase portrait of uncertain chaotic Qi system for .93.0  

To investigate the synchronization of systems (7.6) and (7.7), the error states 

are defined as 121 xxe , 122 yye  and 123 zze . 

).()100(sin1.0)10(cos5.0

)()2()5.0(2

)()100(sin1.0)10(sin5.0

02.17.0)1(02.0)1(

)()100(cos1.0)10(cos5.0

)1()5.0()(

3

2

122

111233

222

1113212

1

221113121

t+ttxmyx+

zbryqxpeeb=eD

tttzx

zyxceeec=eD

ttt

zyzayaxeeea=eD

t

t

t

The corresponding 

error dynamics are obtained by subtracting equation (7.6) from equation (7.7), 

which is given by 

                                    (7.8) 

Choosing the control functions as 

),()100(sin1.0

)10(cos5.0)()2()5.0()(

)()100(sin1.0)10(sin5.002.17.0)1()(

)()100(cos1.0)10(cos5.0)1()5.0()(

3

2

1221113

2221112

1221111

tV+t

txmyxzbryqxp=t

tVttzxzyxc=t

tVttzyzaya=xt

  (7.9) 

equation (7.8) reduces to  
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)(02.0)1(
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23212

13121

tVeeb=eD
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t

t

t

                                                         (7.10) 

where )(),(),( 321 tVtVtV are the linear control inputs, which are defined as 

                          3

2

1

3

2

1

)(

)(

)(

e

e

e

M

tV

tV

tV

, 

where M  is a 33 constant matrix. In order to make the closed loop system 

stable, the matrix M  should be selected in such a way that the eigenvalues i

3,2,1,
2

)arg( ii

 

of error dynamical system satisfy the control . Choosing 

the matrix M as 

          
020

02.00)1(

10

c

a

M , 

the error system is reduced to 

          
.33

22

11

be=eD

e=eD

ae=eD

t

t

t

                                                                                               (7.11) 

Here all the three eigenvalues of the system are negative which clearly shows 

that the error system (7.11) is stable and thus the chaotic systems (7.6) and 

(7.7) are synchronized. 
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(a) State trajectories between 1x  and 2x . 

 

(b) State trajectories between 1y  and 2y . 

 

(c) State trajectories between 1z  and 2z . 

Fig. 7.5. Phase synchronization for fractional order .950.=  
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Fig. 7.6. The evolution of the error functions of uncertain chaotic systems.      

 

Fig. 7.7. The evolution of the error functions of chaotic systems. 

7.4 Anti-phase synchronization between fractional order 

uncertain Qi and Genesio-Tesi systems using active control 

method 

Here the fractional order uncertain Qi system is taken as the drive system as 

          
,)10(cos5.02

)10(sin5.002.0

)10(cos5.0)(

11111

1111111

111111

tyyxb zzD

txz zxyxcyD

tzzyxya=xD

t

t

t

                                   (7.12) 

where uncertain parameters  and disturbance terms are defined in the Section 

7.3 
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The fractional order uncertain Genesio-Tesi system is considered as the 

response system as 

          ,)()10(sin2.010

)()10(sin5.05.0

)()10(cos1.01.002.0

32

2

22222

2222

12222

ttxxmzryqxpzD
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t

t
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              (7.13) 

where uncertain parameter ,

0010

05.00

1.0002.0

2A disturbance term 

.

)10(cos2.0

)10(sin5.0

)10(cos1.0

)(2

t

t

t

td  Defining the error states as ,+= 121 xxe ,+= 122 yye  

123 += zze  and choosing the control functions as 

),()10(cos7.0)()2()10()(

)()10(sin02.15.0)1()(

)()10(cos6.09.0)02.0()1()(
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2

21113

2111112

1111111
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tVt zxzyxct

tVtzyzxaya=t

 (7.14) 

where the linear control inputs are expressed as 

           3

2

1

3

2

1

0)10(
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, 

we get the error system as 

          
.

5.0

02.0

33

22

11

er=eD

e=eD

e=eD

t

t

t

                                                                                         (7.15) 

Thus the error system (7.15) is stable and anti-synchronization between the 

systems (7.12) and (7.13) is achieved.  
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(a) State trajectories between 1x  and 2x . 

 

(b) State trajectories between 1y  and 2y . 

 

(b) State trajectories between 1z  and 2z . 

Fig. 7.8. Anti-phase synchronization for fractional-order .950.=  
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Fig. 7.9. The evolution of the error functions of uncertain chaotic systems. 

 

Fig. 7.10. The evolution of the error functions of chaotic systems. 

7.5 Numerical simulation and results 

In numerical simulation the parameters of the Genesio-Tesi and Qi systems 

are taken as 2.1,92.2,6 rqp  and 1=m  and 80,3/8,35 cba  

respectively and time step size is taken as 0.005. The initial values of the drive 

and response systems are taken as )5,3,2( and )2,1,1( respectively. Thus 

the initial errors are )7,4,1( . Now choosing ,,1,0 321 b  the 

control function is obtained and phase synchronization between signals 

1x and 2x is achieved. It should be noted that, when ,,1,0 321 b  
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signals 1y and 2y , and 1z and 2z become synchronized. If ,0, 21 a  

b3  and 0,1, 321 a are taken, phase synchronizations 

between signals 1y and 2y , and 1z and 2z  are also been obtained. State 

trajectories of the phase synchronization of drive and response systems are 

depicted through Fig. 7.5 for the order of the derivative .950.=  

During anti-synchronization, the initial values of the drive and response 

systems are taken as (-2, 3, 8) and (3, -12, -1) respectively. Thus the initial 

errors are (5, -15, -9). Now proceeding as before, with proper choices of eigen 

values, the obtained state trajectories during the anti-phase synchronizations 

of drive and response systems are displayed through Fig. 7.8 at .950.=  

Fig. 7.6 shows that time taken for synchronization of uncertain chaotic 

systems is less after removing the uncertainty parameters and disturbances as 

compared to that of the simple chaotic systems depicted in Fig. 7.7. While 

during anti-synchronization of uncertain chaotic systems it is found that it 

takes more time during the first one Fig. 7.9 than the later one Fig. 7.10. 

7.6 Conclusion  

In the present chapter three important objectives are achieved during the 

study of phase and anti-phase synchronizations between non-identical 

fractional order chaotic systems using active control method in presence of 

parametric uncertainties and external disturbances. First one, using stability 

analysis suitable conditions for phase and anti-phase synchronization of 

fractional order chaotic systems through linear controller input parameters on 

the respective systems have been achieved. Second one is the successful 

implementation of the powerful active control method which provides a 

simple way for phase synchronization and anti-phase synchronization 

between a pair of fractional order uncertain chaotic systems. Third one is the 
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comparison of time for synchronization and anti-synchronization with and 

without the presence of uncertain and disturbance parameters. Numerical 

simulation results show that the method is easy to implement and reliable for 

the phase and anti-phase synchronization of the nonlinear fractional order 

chaotic systems.  

 


