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The contents of this chapter have been communicated in Nonlinear Dynamics. 

 

6.1 Introduction  

Study and analysis of non-linear dynamics have gained immense popularity 

during the last few decades due to its important feature of any real-time 

dynamical system. In non-linear systems, a small change in a parameter can 

lead to sudden and dramatic changes in both the qualitative and quantitative 

behaviour of the system. Chaos is an interesting phenomenon of nonlinear 

systems. Thus a chaotic system is applied to deterministic systems that are 

aperiodic and exhibit sensitive dependence on initial conditions and 

parameter variations. This sensitivity is popularly known as the butterfly 

effect. The field of chaos has grabbed the attention of the researchers and this 

contributes to a significant amount of the ongoing research. 

In 1963, American mathematician and meteorologist Edward Norton Lorenz 

developed a simplified three dimensional dynamical system that exhibits 

lemniscates type shaped chaotic  flow which shows how the state of a 

dynamical system evolves over time in a complex, non-repeating pattern. The 

system deals with the stability of fluid flows in the atmosphere. In addition to 

its interest in the field of nonlinear mathematics, the Lorenz model has 

important implications for climate and weather prediction.  
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T-system first studied by the Romanian mathematician Gheorghe Tigan in the 

year 2005, belongs to the class of Lorenz system (Lorenz (1963)), which is a 

three-dimensional autonomous nonlinear system having potential 

applications in secure communications. The beauty of the system is that it is a 

relatively simple system exhibiting a rich variety of behaviours due to the 

presence of three system parameters. 

After the invention of the chaotic attractor in the year 1963 by the eminent 

scientist E. N. Lorenz, considerable research interests have been made in 

searching for new chaotic attractors. Recently, studying chaotic attractors in 

fractional order systems has become an active research area. The study of 

chaotic behaviour of fractional order dynamical systems viz., Chen system, 

Chua system, Rössler system, Lorenz system etc have given the area a new 

dimension. 

Introduction of fractional calculus in the nonlinear systems especially those 

which are chaotic in nature have rendered a new dimension to the existing 

problems. Fractional order derivative has become a growing field of research 

since fractional order system response ultimately converges to the integer 

order system (Jafari et al. (2012) Jafari and Daftardar-Gejji (2006)). The 

fractional derivatives are used to describe the dynamics of systems due to its 

high accuracy. Another important point is that fractional order systems have 

gained popularity in the investigation of dynamical systems since they allow 

a greater flexibility in the model. This area of research has garnered a lot of 

attention and appreciation recently due to their ability to provide an exact 

description of different nonlinear phenomena and also they possess memory 

and display much more sophisticated dynamics compared to its integral 

order counterpart, which is of great significance in secure communication and 

control systems. 
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The applications of fractional calculus are growing rapidly. During last few 

years the applications can be found in physics and engineering (Hifer (2000), 

Podlubny (1999)). It was found that many systems in interdisciplinary fields 

could be described by the fractional differential equations, such as viscoelastic 

systems, dielectric polarization, electrode-electrolyte polarization and so on 

(Koeller (1984), Sun et al. (1984), Ichise et al. (1971)). 

Synchronization of fractional order chaotic systems is one of the potent 

research areas due to its extensive applications in communication theory and 

control processing. The idea of synchronizing chaotic systems was first 

introduced by Pecora and Carroll (1990) in 1990, where they expressed that it 

is possible to synchronize chaotic systems through a simple coupling. 

Synchronization of chaotic dynamical systems has been intensively studied 

by many researchers and has attracted a great deal of interest in various field 

due to its important applications in ecological, physical, chemical systems 

and also in secure communications (Blasius et al (1999), Lakshmanan and 

Murali (1996), Han et al. (1995), Murali and Lakshmanan (2003)) etc. A variety 

of approaches of synchronization phenomena have been proposed to 

investigate chaos synchronization such as active control (Srivastava et al. 

(2012)), adaptive control (Agrawal and Das (2013)), sliding mode control 

(Hosseinnia (2010)) and so on, have been successfully applied to chaos 

synchronization. The concept of synchronization can be extended to complete 

synchronization (Agrawal et al. (2012)), anti-synchronization (Srivastava et al. 

(2014)), Projective synchronization (Ansari and Das (2013)), Function 

projective synchronization (Zhou and Zhu (2011)) etc. Chaos control and 

chaotic synchronization of fractional order differential systems have become 

one of the most interesting subjects in chaos theory. Recently, various 

effective techniques have been successfully applied to achieve chaos control 

and synchronization (Razminia et al. (2011), Abd-Elouahab et al. (2010), 
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Hegazi et al. (2013), Wang et al. (2009)). Chaos control refers to manipulating 

the dynamical behavior of a chaotic system, in which the purpose is to 

enhance or create chaos when it is needed (González-Miranda (2004)). 

In the present chapter, the author has investigated the necessary conditions 

for the existence of chaotic attractors in the commensurate and 

incommensurate fractional-order T-system applying the stability theory of 

fractional-order systems, chaos control of the commensurate fractional order 

T-system with proper feedback control method and also the synchronization 

between identical T-system and non-identical chaotic systems viz., T-system 

and Lorenz system of fractional orders using function projective 

synchronization (FPS) based on tracking control method. The beauty of FPS 

system is that drive and response systems could be synchronized up to a 

scaling function, but not a constant. Thus, FPS is considered to be more 

general case of projective synchronization (PS), and it is used to obtain higher 

unpredictability of the error dynamical system which can enhance the 

security of communications. This proportional feature can be used to extend 

binary digital to M-nary digital communication (Chee and Xu (2005)) for 

achieving fast communication compared to projective synchronization. Here 

numerical simulations are carried out using Adams-Bashforth-Moulton 

method (Diethelm et al. (2004), Diethelm and Ford (2004)) for different 

fractional order derivatives which are displayed graphically to demonstrate 

the efficiency of the proposed approach for different particular cases.  

6.2 Stability analysis of fractional order T-system 

The fractional-order T-system is defined by 
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where 10 i , 3,2,1i  and zyx ,,  are state variables of the system. For the 

parameters )30,6.0,1.2(),,( cba  the system exhibits chaos.  

To find the necessary conditions for the existence of chaotic attractors in 

fractional-order system, the three equilibrium points of the system (6.1) as 

0and0)(,0)( yxb zzxaxacxya  are obtained. Substituting 

the values of ),,( cba , we get the equilibrium points of the system (6.1) as 

),0,0,0(0E ),2857.13,823.2,823.2(1E ).2857.13,823.2,823.2(2E  For 

these equilibrium points, the corresponding eigenvalues of Jacobian matrix 

are )60.0,6761.6,7761.8( , )5132.43647.0,4294.3( i  and 

)5132.43647.0,4294.3( i  respectively. It is seen that equilibrium point 0E  is 

a saddle point of index 1, 1E  and 2E  are saddle points of index 2. In chaotic 

systems, it is proved that scrolls are generated only around the saddle points 

of index 2. Moreover, saddle points of index 1 are responsible only for 

connecting scrolls (Chua et al. (1986), Silva (1993), Cafagna and Grassi (2003), 

Lu et al. (2004), Tavazoei and Haeri (2007), Mohammad and Delavari (2012)). 

The necessary condition of existence of chaos in fractional-order system is 

that the eigenvalues  of Jacobian matrix of the system lies in the unstable 

region
2

)(arg , as shown in (Matignon (1996), Ahmed et al. (2007)). 

Through calculation, it may be shown that the lowest fractional order at 

which T-system shows the regular chaotic behavior for the commensurate 

case when 95.0321 . Thus the order of the system (6.1) is sum of 

all fractional orders derivatives in the system i.e., 2.85 for which T-system 
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exhibits chaotic behavior. Fig. 6.1(a) displays the chaotic attractor for the same 

values of parameters for the standard order system and Fig. 6.1(b) shows that 

fractional-order T-system system is not chaotic at the commensurate 

fractional orders ).92.0,92.0,92.0(),,( 321  

  

(a)                                                                        (b) 

Fig.6.1. Phase portraits of the fractional-order T-system for commensurate fractional 

orders (a) )95.0,95.0,95.0(),,( 321  (b) )92.0,92.0,92.0(),,( 321  
in x-y-z 

space.
 

It is known that for incommensurate fractional order system, ,/ iii mk  

,1),( ii mk  ,, INmk ii  3,2,1i . Let m be the least common multiple of the 

denominators  smi '  of si ' . Then the equilibrium point E of a nonlinear 

fractional order system is asymptotically stable if all the roots  of the 

equation 

          ,0)),.,(det( 321

E

mmm
Jdiag  

satisfy 
m2

)(arg  (Tavazoei and Haeri (2009)). 

For incommensurate one, the following four different cases are considered. 
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 Case 1:  If 90.0,1,1 321 , we get 

 ,0))()(det( 1

91010 EJdiag for 10m , which gives  

 03094.70000063.0181.26.0 910192029 .  

Thus, 050.00042462)arg(min
20

i
i

, which clearly shows that the system 

is chaotic as shown in Fig. 6.2 (a). 

Case 2: If 91.0,99.0,93.0 321 , we obtain as in Case 1, 

100.mfor,0))()(det( 1

919993 EJdiag   

i.e., .03094.70000063.07403.1626.11.26.0 919399190192283  

Now, 0
200

)arg(min
200

i
i

 shows that the chaotic attractor occurs and 

is depicted through Fig. 6.2 (b). 

Case 3: If ,96.0,95.0,93.0 321  we have 

,03094.70000063.07403.1626.11.26.0 969395191188284  

which gives 0.
200

)arg(min
200

i
i

 The chaotic attractor for this case is 

shown through Fig. 6.2 (c). 

Case 4: If 70.0,1,1 321 ,  

.03094.70000063.0181.26.0 710172027  

Thus 0,0.0175357)arg(min
20

i
i

which implies that system is 

asymptotically stable and it does not exhibit chaos as shown in Fig. 6.2 (d). 



CHAPTER 6

 132  

 

   

        (a) .90.0,1,1 321                       (b) .91.0,99.0,93.0 321  

 

            

     (c) .96.0,95.0,93.0 321                          (d) .70.0,1,1 321  

Fig. 6.2. Phase portraits of the fractional-order T-system system with 

incommensurate fractional orders at (a) )90.0,1,1(),,( 321  
(b) 

)91,.99.0,93.0(),,( 321  
(c) ),,( 321 )96.0,95.0,93.0(   and (d) asymptotic 

stable at ).70.0,1,1(),,( 321  
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6.3 The control of fractional order chaotic T-System 

In this section, the control law is applied to the commensurate fractional 

order chaotic T-system. In this method, controller output is directly exerted to 

the fractional order chaotic system as 

          
),(

)()(
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2

1

tyxb zzD

tzxaxacyD

xyax=D

t

t

t

                                                                       (6.2) 

where )(1 t and )(2 t are control functions.  For suitable stabilization, we use 

the control functions as zkykxkt 3211 )(  and ,)( 3212 zgygxgt  so 

that the system (6.2) becomes asymptotically stable, where 321321 ,,,,, gggkkk  

are all positive feedback control gains. 

Using the above control laws in equations (6.2), we get 

          
.

)(

)(

321

321

zgygxgyxb zzD

zkykxkzxaxacyD

xyax=D

t

t

t

                                                       (6.3) 

Now, the Jacobian matrix of equation (6.3) can be written as 

          .

1

1)(

0

bxy

axazac

aa

J  

Taking the values of control parameters as ,0,1,0 321 kkk  

.1,0,0 321 ggg  For the equlibrium point E1 or E2 i the eigenvalues  of 

the matrix J of the feedback system are i44699.451172.0   and ,67656.3  

which satisfy the condition .3,2,1,
2

)arg( ii Thus the system (6.3) is 
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asymptotically stable. From Fig. 6.3, it is clear that the feedback controllers 

have stabilized the chaotic systems. 

 

Fig. 6.3. State trajectories of the controlled chaotic system (6.3). 

6.4 Fractional order function projective synchronization between 

identical chaotic systems 

Consider fractional order T-system as the drive system as 

          

2133

3112

121
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xxb xxD

xxaxacxD
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t

t

t

                                                                             (6.4)
    

 

and fractional order T-system as response system as 

          
,
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t

                                                                     (6.5) 

where 321 ,, uuu are control functions. Then, the error states become 

          ,),,( 321 iiii xxxxkye  3,2,1i .                                                             (6.6) 
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With the suitable controller, we can get the fractional order error dynamical 

system as 

          ,)),(),(( eyxNyxMeDt                                                                           (6.7) 

where ,][ 321

Teeee  

bxky

xakayac

aa

yxM

112

113 0)(

0

),(

 

 and  .

000

)1(10

0

),( 11

23

xka

yayc

yxN  

Choosing real symmetric positive definite matrix ),1,1,1(diagP  we obtain 

           ,)],(),([)],(),([ QyxNyxMPPyxNyxM T                                  (6.8) 

where )2,2,2( badiagQ  is also a real symmetric positive definite matrix. 

Thus, two identical chaotic T-system for different fractional order derivatives 

achieves the FPS. 

6.4.1 Numerical simulation and results 

Taking 30,6.0,1.2 cba , we obtain  

.

6.0

11.29.27

1.29.271.2

),(),(

112

113

23

xky

xky

yy

yxNyxM    

Considering, 96.0  and 97.0  for drive and response systems 

respectively, the scaling function becomes ),,(),,( 321321 kkkdiagxxxK  

)1,2,( 22131 xxxxxdiag . The initial values of the drive and the response 

systems are taken as )5.0,2.1,1.0(  and )3.0,2.0,7.0( respectively. The error 

states between drive and response systems are shown in Figs. 6.4. Next we 
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compute the root mean square error (RMSE) e as  
2

1

3

1

2))((
i

iii xxkye  to 

predict the magnitude of all errors given in Figs. 6.4 in a single measure, 

which seems to be a good measure of accuracy and this is displayed through 

Fig. 6.5. Taking the same values of parameters, initial conditions and scaling 

functions for synchronization of the considered systems for standard order 

( 1 and 1 ), it is seen from Fig. 6.6 and Fig. 6.7 that it takes more time to 

synchronize as compared to the fractional order systems. 

 

Fig. 6.4. The error states of the FPS between the systems (6.4) and (6.5) for 96.0  
and 97.0 . 

 

Fig. 6.5. Root mean square error (RMSE) for 96.0  and 97.0 . 
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Fig. 6.6. The error states of the FPS between the systems (6.4) and (6.5) for 1 and 

1 . 

 

Fig. 6.7. Root mean square error (RMSE) for 1 and 1 . 

6.5 Function projective synchronization between different 

fractional order chaotic systems 

Consider fractional order T-system as a drive system as given in equation 

(6.4) and also taking the fractional order Lorenz system (Zhou and Zhu 

(2011)) as a response system as 
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The system (6.9) shows the chaotic behavior for the parameter values l=10, 

m=28 and n=8/3. Using the equation (6.6) with the suitable control functions, 

we get the fractional order error dynamical system as 

          ,)),(),(( eyxNyxMeDt  

where ,][ 321

Teeee  

nxxky

xxkym

ll

yxM

112

113

)(

)(1

0

),(    and  .

000

000

)(0
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23 yyml

yxN  

Choosing real symmetric positive definite matrix ),1,1,1(diagP  we obtain 

          ,)],(),([)],(),([ QyxNyxMPPyxNyxM T  

where )2,2,2( nldiagQ  real symmetric positive definite matrix, which 

clearly exhibits that the chaotic T-system and Lorenz system for different 

fractional orders achieve the FPS. 

6.5.1 Numerical simulation and results 

In this section, taking l=10, m=28, n=8/3 and 96.0  for drive system and 

995.0  for response systems, we get scaling function 

as ),,(),,( 321321 kkkdiagxxxK  ),2,( 32131 xxxxxdiag . The initial values of 

the drive and response systems are taken as )1,2,1(  and 

)5,2,5( respectively. The numerical results of different combination of 

error states between the systems and also the RMSE for good measure of 
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accuracy are depicted through Figs. 6.8 and 6.9 Synchronization for the 

standard order case i.e., for 1,1 for considered chaotic systems are 

depicted through Figs. 6.10 and 6.11. 

 

Fig. 6.8. The error states of the FPS between the systems (6.4) and (6.9) for 96.0  
and 995.0 . 

 

Fig. 6.9. Root mean square error (RMSE) for 96.0  and 995.0 . 
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Fig. 6.10. The error states of the FPS between the systems (6.4) and (6.9) for 1 
and 1 . 

 

Fig. 6.11. Root mean square error (RMSE) for 1 and 1 . 

6.6 Conclusion 

Three important goals are achieved through the present study. First one is the 

successful presentation of the stability criterion for commensurate and 

incommensurate fractional-order T-system based on the stability theory of 

fractional-order systems. Second one, control laws are proposed to stabilize 

the fractional order chaotic T-system with proper feedback control method. 

Third one is the successful graphical presentations of synchronization 

between identical T-system and also between non-identical T-system & 
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Lorenz system in fractional order case using numerical simulations. The 

author is optimist that the simulation results of the present research work will 

be appreciated and utilized by the researchers involved in the field of 

mathematical modelling of fractional order nonlinear dynamical systems. The 

salient feature of the article is the graphical presentations of less time 

requirement for synchronization of identical and non-identical chaotic 

systems when it approaches from standard order to fractional order. 


