
 

 

 

 

 

 

 

 

CHAPTER-5 

A New Modified Adaptive 

Function Projective 

Synchronization Method to 

Synchronize the Time-Delayed 

Chaotic Systems 



Chapter 5 

A new modified adaptive function projective 

synchronization method to synchronize the time-

delayed chaotic systems1

 Synchronization of chaotic systems is carried out when two or more systems 

are coupled or one system drives the other. It is a difficult phenomenon due 

to the extreme dependence on initial conditions. During coupling the 

trajectories of the systems emerging from two different initial conditions will 

spread exponentially with time caused due to the transition between system 

variables, which encourages researchers to take challenges for the study of 

synchronization of coupled chaotic systems. There are different types of 

synchronization schemes viz., complete, hybrid, phase, anti-phase, projective 

synchronizations etc. (Sudheer and Sabir (2011), Fujisaka and Yamada (1983a, 

1983), Pecora and Carroll (1990), Mahmoud and Mahmoud (2010), Liu (2006), 

Rosenblum et al. (1997), Agrawal et al. (2012a, 2012), Das et al. (2013), Ghosh 

and Bhattacharya (2010)). Function projective synchronization between two 

systems is a generalization of projective synchronization, which is 

synchronized upto a scaling factor. This interesting phenomenon is firstly 

handled by Mainieri and Rehacek (1999). Delay differential equations have 

potential applications in science and engineering (Mackey and Glass (1997), 

Ikeda et al. (1980), Bunner et al. (1998), Yongzhen et al. (2011), Liao et al. 

(2007), Kwon et al. (2011)) due to the presence of factors like process time 

 

5.1 Introduction 

                                                           

The contents of this chapter have been communicated in Pramana - Journal of 

Physics. 
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existence of some stage structure, modelling via high dimensional 

compartmental models, estimation of parameters involved in the models etc. 

Research on synchronization of time delayed chaotic systems (Pyragas (1998), 

He and Vaidya (1999)) has received considerable attention of the researchers 

working in population dynamics, laser physics, physiological model, neural 

networks, control theory etc. (Sahaverdiev and Shore (2002), Sahaverdiev et 

al. (2002), Banerjee et al. (2013), Zhan et al. (2003), Senthilkumar et al. (2006)) 

due to their natural relation to the systems with memory. In 2011, Sudheer 

and Sabir (2011) have proposed adaptive function projective synchronization 

with some modifications to synchronize the time-delayed chaotic systems. 

They considered estimated parameters in response system. During 

stabilization of error system, they have used Lyapunov stability theory while 

in the present article the author has designed controller function with 

appropriate estimated parameters and used Lyapunov-Krasovskii Functional 

approach (Krasovskii and Brenner (1963)) to stabilize the error system. 

During comparison of effectiveness of the methods, the Rossler system 

having the same parameters’ values and scaling function factors as in 

Sudheer and Sabir (2011) are taken for Function Projective Synchronization. It 

is seen that the time of synchronization through numerical simulation, which 

are carried out using Raunga-Kutta method for delay differential equation for 

the proposed method, is less as compared to the exiting method (Sudheer and 

Sabir (2011)). To validate the proposed method another two cases for different 

initial conditions are accomplished with graphical plots along with the 

demonstrations of graphs obtained using the method described in Sudheer 

and Sabir (2011), which also establishes the fact that the proposed method 

gives the faster synchronization for different considered cases. 
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5.2 Proposed modified adaptive function projective 

synchronization method (PMAFPS) 

Consider the drive system in the form 

          0),()(

,0,))(())(())(()('

tttx

tBtxhAtxgtxftx

                                   (5.1) 

and the response system in the form 

          ,0),()(

,0,))(())(())(()('

ttty

tUBtyhAtygtyfty

                              (5.2) 

where nRyx, are the state vectors of systems (5.1) and (5.2), respectively; 

1mRA and 2mRB are the unknown parameter vectors of the systems; 

nRyfxf )(),( , 1)(),(
mn

Rygxg , and 2))(()),((
mn

Rtyhtxh  are 

nonlinear functions; )(t  and )(t represent the trajectories of the solutions in 

the past; is the time delay; and nRU  is the controller. 

Let, )()()()( tytxtte  represents the synchronization error vector, where 

)(t is the scaling function matrix. The error dynamical system is 
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          (5.3) 

Let us design the nonlinear controller function and adaptive update laws as 

 
0),()2/1()(ˆ)))(())(((

)(ˆ)))(())(()(()))(())(()(()(')('
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                (5.4)            

and 
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                                            (5.5) 

where vectors )(ˆ tA  and )(ˆ tB  are the estimated values of unknown parameters 

A and B respectively, )(ˆ)( tAAtA and )(ˆ)( tBBtB are estimate errors. 

Using equation (5.4), the error dynamical system (5.3) is reduced to 

).()2/1(

))(ˆ)))((())((())(ˆ)))((())(()(()('

tek

tBBtyhtxhtAAtygtxgtte
    (5.6) 

Let us consider the Lyapunov-Krasovskii Functional (Krasovskii and Brenner 

(1963)) to carry out stability analysis as 
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          (5.7) 

The time derivative of V along the trajectory of error dynamical system is 

given by 

)),()(')()('())()()()((
2

1
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where TT AA 'ˆ' and TT BB 'ˆ' .  

Now 
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Using adaptive parameters update laws, we get 

,0)()(
2

1
)()(' BBAAtetetetkeV TTTT                                         (5.8) 
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where nRV  is positive definite function and nRV '  is negative definite 

function. Thus 0)(tei  as .3,2,1, it  Therefore, the error system is 

asymptotically stable which means that PMAFPS between the systems (5.1) 

and (5.2) is achieved and it is also seen that the parameters’ estimation errors 

)(tA  and )(tB  decay to zero as time goes to infinity. 

5.3 Systems’ Descriptions 

A double delayed Rössler System is given by (Sudheer and Sabir (2011), 

Ghosh et al. (2008)) 

           ),()()()('

)()()('

)()()()()('

33123

2112

212111321

tcxtxtxbtx

txbtxtx

txatxatxtxtx

                                       (5.9) 

where 21 ,aa  are the geometric factors, while b1, b2

1

 and c are the usual 

parameters of a classical Rössler system,  and 2  are time delays. The 

double delayed Rössler system exhibits the chaotic trajectories for the 

parameter values a1 = 0.2, a2 = 0.5, b1 = b2 0.11 = 0.2, c = 5.7, and 0.22  

with initial condition )5.1,1,5.0())(),(),(( 321 txtxtx  with 0t  as shown 

in Fig. 5.1. 

 

Fig. 5.1. Phase portraits of Rössler system in )()()( 321 txtxtx  space. 
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5.4 Proposed modified adaptive function projective 

synchronization between identical Rössler systems 

In order to achieve PMAFPS behaviour the drive system is taken as (5.9) and 

the response system is given by 

          ),()()()()('

)()()()(

)()()()()()('
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                          (5.10) 

where )(),(),( 321 tututu  are controllers and the parameters ),,,,( 2121 cbbaa  of 

drive and response systems are unknown.  

Defining the error states as 3,2,1),()()()( itytxtte iiii , we get 
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(5.11)

 
According to our PMAFPS method, we take the synchronization controller as 
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(5.12) 

and the estimated parameters as 
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which helps to accomplish the error system as 

).()2/1())(ˆ))(()()(())(ˆ)(1)(()('
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                                                                                                                                (5.14) 

Now proceeding as section 5.2 with proper choices of controller and 

estimation of unknown parameters using parameter update laws, it may be 

concluded that the PMAFPS between systems (5.9) and (5.10) is achieved. 

5.4.1 Numerical Simulation and Results 

To demonstrate the effectiveness of PMAFPS method, during the numerical 

simulation, the initial conditions of state vectors of drive and response 

systems are taken as (0.5, 1, 1.5) and (2.5, 2, 2.5) respectively. The true values 

of unknown parameter vectors are selected as ,2.0,5.0,2.0 121 baa  

7.5,2.02 cb . The initial value of estimated unknown parameter vector is 

chosen as ))(ˆ),(ˆ),(ˆ),(ˆ),(ˆ( 2121 tctbtbtata  )0,0,0,0,0( . To compare the results 

with the result proposed by Sudheer and Sabir (2011), the parametric values 

of Rössler system are chosen as given in section 5.3, the scaling function 

factors are taken as ),35(sin2)(1 tt  )(sin5.1)(2 tt and 

)(cos2)(3 tt  and the control input as )2,2,2(),,( 321 kkk  as considered in 

(Sudheer and Sabir (2011)). Figs. 5.2(a) and 5.2(b) represent that the errors 
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3,2,1,0)( itei  and the convergence of estimated parameters to the 

original values after small duration of time, which clearly show that in both 

the occasions it takes much lesser time in comparison with the results as 

obtained in Figs. 5.3(a) and 5.3(b) through the method described in (Sudheer 

and Sabir (2011)). This validates the feasibility and effectiveness of the new 

proposed method. Figs. 5.4(a), 5.4(b), 5.5(a) and 5.5(b) depict the numerical 

simulation results of errors and estimated parameters using the proposed 

method and the existing method respectively for the initial conditions as (1, 1, 

1) and (1.5, 1.5, 1.5) and also for scaling function factors ),35(sin2)(1 tt  

)(sin5.1)(2 tt and )(cos2)(3 tt . Figs. 5.6(a), 5.6(b), 5.7(a) and 5.7(b) 

describe those for initial conditions of drive and response systems as (2.5, 2, 

2.5) and (0.5, 1, 1.5) respectively and for scaling function factors 

),05.0(cos1)(1 tt  )(sin2)(2 tt  and )10(cos3)(3 tt . 
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(a) 

 

(b) 

Fig. 5.2. (a) State trajectories of errors system and (b) The estimated parameters 

obtained by using the proposed method for the initial conditions of drive and 

response systems as (0.5, 1, 1.5) and (2.5, 2, 2.5) respectively. 



CHAPTER 5

 119  

 

 

(a) 

 

(b) 

Fig. 5.3. (a) State trajectories of errors system and (b) The estimated parameters 

obtained by using the method described by Sudheer and Sabir (2011) for the initial 

conditions of drive and response systems as (0.5, 1, 1.5) and (2.5, 2, 2.5) respectively. 
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(a) 

 

(b) 

Fig. 5.4. (a) State trajectories of errors system and (b) The estimated parameters 

obtained by using the proposed method for the initial conditions of drive and 

response systems as (1, 1, 1) and (1.5, 1.5, 1.5) respectively. 



CHAPTER 5

 121  

 

 

(a) 

 

(b) 

Fig. 5.5. (a) State trajectories of errors system and (b) The estimated parameters 

obtained by using the method described by Sudheer and Sabir (2011) for the initial 

conditions of drive and response systems as (1, 1, 1) and (1.5, 1.5, 1.5) respectively. 
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(a) 

 

(b) 

Fig. 5.6. (a) State trajectories of errors system and (b) The estimated parameters 

obtained by using the proposed method for scaling functions ),05.0(cos1)(1 tt  

)(sin2)(2 tt  and )10(cos3)(3 tt  and the initial conditions of drive and 

response systems as (2.5, 2, 2.5) and (0.5, 1, 1.5) respectively. 
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(a) 

 

(b) 

Fig. 5.7. (a) State trajectories of errors system and (b) The estimated parameters 

obtained by using the method described by Sudheer and Sabir (2011) for scaling 

functions ),05.0(cos1)(1 tt  )(sin2)(2 tt  and )10(cos3)(3 tt  and 

the initial conditions of drive and response systems as (2.5, 2, 2.5) and (0.5, 1, 1.5) 

respectively. 
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5.5 Conclusion 

In the present chapter the author has developed a new method for function 

projective synchronization of time-delayed chaotic systems through proper 

design of controller functions with corresponding parameter identification 

laws based on Lyapunov-Krasovskii stability theory. During numerical 

simulation the method is applied for function projective synchronization of 

identical Rössler system and compared the results with the results described 

in (Sudheer and Sabir (2011)). The main feature of the chapter is the 

demonstration of minimum time requirement for synchronization by 

applying the new method as compared to the earlier results for three different 

cases. The author is optimist that the new proposed method will be useful to 

the engineers and scientists working in the field of dynamical system 

especially those involved in synchronization of time-delayed chaotic systems. 


