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Chapter 4 

Projective synchronization of time-delayed chaotic 

systems with unknown parameters using adaptive 

control method1

Inspired by the seminal works of Fujisaka and Yamada (1983a, 1983) and of 

Pecora and Carroll (1990) on chaos synchronization, several types of 

synchronization phenomena have been demonstrated and identified, such as 

complete synchronization, phase synchronization, anti-phase 

synchronization, lag synchronization, generalized synchronization, 

anticipatory synchronization, projective synchronization (Fujisaka and 

Yamada (1983a, 1983), Pecora and Carroll (1990), Mahmoud and Mahmoud 

(2010), Liu (2006), Rosenblum et al. (1997), Yang and Juan (1998), Ghosh and 

Bhattacharya (2010)) and so on. Amongst all kinds of chaos synchronization, 

projective synchronization, which is characterized by a scaling factor that 

helps two systems to be synchronized proportionally, is the most interesting 

one. The identical systems could be synchronized up to a scaling factor as 

affirmed by Mainieri and Rehacek (1999), and the phenomenon is known as 

projective synchronization. This type of synchronization is an attractive field 

due to its proportionality between the synchronized dynamical states. Many 

approaches are proposed to appreciate chaotic synchronization such as active 

control, adaptive control, feedback control, sliding mode control, optimal 

control, back stepping control and so on. 

 

4.1 Introduction  

                                                           

The contents of this chapter have been published in Mathematical Methods in the 

Applied Sciences, DOI: 10.1002/mma.3103 
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Firstly, the synchronization of low-dimensional chaotic systems is studied, 

and later on, the synchronization in high-dimensional systems has become an 

active field of research both from the theoretical and the applied perspectives. 

In this regard, the research on synchronization of time-delayed chaotic 

systems (Pyragas (1998), He and Vaidya (1999)) has received considerable 

attention. Time-delayed chaotic systems are naturally related to the systems 

with memory that prevails for most of the physical and scientific systems 

such as blood production in patients with leukaemia (Mackey–Glass model), 

dynamics of optical systems (e.g. Ikeda system), laser physics, population 

dynamics, physiological model, neural networks, control system (Mackey and 

Glass (1977), Ikeda et al. (1980), Bunner et al. (1998), Yongzhen et al. (2011), 

Liao et al. (2007), Kwon et al. (2011)) and so on. 

However, the theory of synchronization in chaotic systems has been 

intensively reviewed and studied in the last two decades; where as the better 

understanding of synchronization in time-delay chaotic systems is developed 

recently. The first study on synchronization of chaos in time-delayed system 

has been reported by Pyragas (1998). Later, several types of synchronization 

in time-delay systems have been reported, for example, lag and anticipatory 

synchronization, complete and generalized synchronization, phase 

synchronization (Sahaverdiev and Shore (2002), Sahaverdiev et al. (2002), 

Banerjee et al. (2013), Zhan et al. (2003), Senthilkumar et al. (2006)) and so on. 

A good amount of effort has been made to deal with the stability problem in 

delay-differential equations (DDE) system (Hale (1977)), and also to deal with 

the DDE problem, some of well-established tools of ordinary differential 

equations are used. Among these tools, the extension of the Lyapunov 

stability theory for DDE systems has much importance. Such extensions are 

known as Lyapunov–Krasovskii (Krasovskii and Brenner (1963)) and the 

Lyapunov–Razumikhin stability theorems, and they give the basis for the 
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development of sufficient criteria that can be used to determine the stability 

of motion for DDE systems. 

Adaptive control synchronization method was proposed by H. Zhang (Zhang 

et al. (2006)) in 2006 for the synchronization of two non-identical chaotic 

systems. In their article, an adaptive synchronization controller was 

developed and analytic expression of the controller and the adaptive laws of 

parameters are given on the basis of Lyapunov stability theory. Later the 

method was extended by Wang (2010), who presented the projective 

synchronization between hyperchaotic Lü system and Liu system with 

known or unknown parameters. He translated the problem of 

synchronization of chaotic systems with different orders into the projective 

synchronization of the systems with identical orders by using add-order 

method. Different controllers are designed for the projective synchronization 

of the two non-identical chaotic systems using active control when 

parameters are known, while the controller function and the parameter 

update laws are derived via adaptive control method for the unknown 

parameters. Recently, Agrawal et al. (2013) have developed a technique for 

serving the purpose of synchronization of fractional order as well as integer 

order chaotic systems. In the article, they have made some modifications on 

the adaptive synchronization and parameter identification method with 

unknown parameters for using it in fractional order chaotic systems and 

designed the appropriate adaptive synchronization controller and parameter 

identification based on Lyapunov stability method. Although all the methods 

mentioned earlier are appropriate to achieve the synchronization between 

standard and fractional order chaotic systems, the techniques are unable to 

synchronize the time-delayed chaotic systems. To the best of author’s 

knowledge, the projective synchronization between time-delayed chaotic 
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systems with unknown parameters have not yet been studied by any 

researcher. 

In the present endeavour, a new analytic treatment of projective 

synchronization of a time-delay system is investigated using adaptive control 

method. Some results for the particular class of time-delayed chaotic systems 

are achieved. Either because of the intrinsic characteristic of adaptive laws of 

parameters or because of the dynamics of controller, the effect of time delay 

on dynamical behavior of system are quite remarkable. In this research field, 

some attempts have been reported in recent years. Jinde Cao et al. (2009) 

studied projective synchronization of a class of delayed chaotic systems. 

Grassi and Miller (2007) introduced projective synchronization of time-delay, 

continuous-time and discrete-time systems via a linear observer. Cun-Fang 

Feng (Feng (2010), Feng et al. (2008)) presented the analytic investigation of 

projective synchronization and generalized projective synchronization 

between time-delayed chaotic systems. For other results reported in the 

literature, see (Ghosh (2009), Feng and Wang (2012), Feng et al. (2006)). 

Criteria for global and asymptotical stability of error system are obtained by 

consideration of a suitable Lyapunov–Krasovskii functional. Theoretical 

results are illustrated through numerical simulations of examples, namely, 

advanced Lorenz system, multiple delay Rössler system and time-delayed 

Chua’s oscillator. The numerical simulation results which are depicted 

through graphs for different particular cases exhibit the flexibility and 

effectiveness of the proposed scheme. 

4.2 Problem formulation 

Consider the drive system in the form of 
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          0),()(

,0,))(())(())(()(' 111

tttx

tBtxhAtxgtxftx

                              (4.1) 

and the response system in the form of 

          ,0),()(

,0,))(())(())(()(' 222

ttty

tUDtyhCtygtyfty
                     (4.2) 

where nRyx, are the state vectors of systems (4.1) and (4.2), respectively; 

,1mRA ,2mRB 3mRC and 4mRD  are the parameter vectors of the 

systems; 321 )(,))((,)(,)(),( 21121

mnmnmnn RygRtxhRxgRyfxf  and 

4))((2

mn
Rtyh  are nonlinear functions; )(t  and )(t represent the 

trajectories of the solutions in the past; is the time delay; and U is the 

controller. 

It is known that two time-delayed chaotic systems coupled in a drive and 

response configuration can exhibit projective synchronization if there exists 

an error vector e such that 

          
,0)()(lim)(lim txtyte

tt
 

where ),...,( 21 ndiag is a scaling constant matrix such that si ' are 

constants for all Ni . 

Considering )()()( txtyte  as the synchronization error vector, the error 

dynamical system becomes 

.))(())(())(())(())(())((

)(')(')('

121212 UBtxhDtyhAtxgCtygtxftyf

txtyte

                                                                                                                                  (4.3) 
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Next aim is to find a suitable and effective control function U and parameter 

estimation update laws to ensure that the drive and response systems with 

uncertain parameters approach towards the projective synchronization. 

Theorem 4.1 If the nonlinear controller is designed as 

)()2/1(

ˆ))((ˆ))((ˆ))((ˆ))(())(())(( 121212

tek

BtxhDtyhAtxgCtygtxftyfU
                 

and the adaptive laws of parameters are taken as 

          

,)())]((['ˆ

)())]((['ˆ

)())]((['ˆ

)())]((['ˆ

2

2

1

1

DtetyhD

CtetygC

BtetxhB

AtetxgA

T

T

T

T

 

where parameter error vectors are ,ˆ AAA ,ˆ BBB CCC ˆ and 

,ˆ DDD then the response system will be synchronized by the drive 

system globally and asymptotically, and satisfies ,0)ˆ(lim AA
t

 

,0)ˆ(lim BB
t

 0)ˆ(lim CC
t

and 0)ˆ(lim DD
t

for any positive constant k, 

the vectors Â , B̂ , Ĉ and D̂ are the estimations of parameters A, B, C and D, 

respectively. 

Proof: The error dynamical system is given by 

.))(())(())(())(())(())(()(' 121212 UBtxhDtyhAtxgCtygtxftyfte

 

Now using the controller as designed in the preceding text, we obtain 

).()2/1(

)ˆ))((()ˆ))((()ˆ))((()ˆ))((()(' 2211

tek

DDtyhCCtygBBtxhAAtxgte
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According to Lyapunov stability theorem, the error system is asymptotically 

stable. In other words, if the error system becomes zero, drive and response 

systems are regarded as projective synchronized. Let us construct the 

Lyapunov–Krasovskii functional V to carry out stability analysis as 

          
).(

2

1
)()(

2

1
)()(

2

1
V

0

DDCCBBAAdtetetete TTTTTT  

The derivative of V along the trajectory of error dynamic system is 

),''''())()()()((
2

1
)(')(V' DDCCBBAAtetetetetete TTTTTTT

 

where ,'ˆ' TT AA ,'ˆ' TT BB TT CC 'ˆ' and .'ˆ' TT DD  

Now 

          

).'ˆ'ˆ'ˆ'ˆ(

))()()()((
2

1
))()2/1()ˆ))(((

)ˆ))((()ˆ))((()ˆ))((()((V'

2

211

DDCCBBAA

tetetetetekDDtyh

CCtygBBtxhAAtxgte

TTTT

TT

T

        
 

Using adaptive update laws, we obtain 

          .0)()(
2

1
)()(' DDCCBBAAtetetetkeV TTTTTT  

Thus, it may be concluded that if only the control parameter k > 0, RV is 

positive definite function and RV ' is negative definite function, the error 

systemis globally and asymptotically stable according to Lyapunov–

Krasovskii stability theory (Hale (1977), Krasovskii and Brenner (1963)). 

Consequently, the state of response and drive systems will be synchronized 

globally and asymptotically. It is also seen that the synchronization error e 
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and the parameters’ estimation errors Â , B̂ , Ĉ  and D̂  decay to zero as time 

becomes large. This completes the proof. 

Again for the case of projective synchronization when the drive and response 

systems are identical, the systems are defined as 

          0),()(

,0,))(())(())(()('

tttx

tBtxhAtxgtxftx
                                       (4.4) 

and  

          .0),()(

,0,))(())(())(()('

ttty

tUBtyhAtygtyfty

                            (4.5) 

Theorem 4.2 If the nonlinear controller is chosen as 

)()2/1(

ˆ)))(())(((ˆ)))(())((()))(())(((

tek

BtxhtyhAtxgtygtxftyfU
 

and the adaptive laws of parameters are taken as 

          
,)())](())((['ˆ

)())](())((['ˆ

BtetxhtyhB

AtetxgtygA

T

T

 

where AAA ˆ and ,ˆ BBB then the response system will be synchronized 

by the drive system globally and asymptotically, and satisfies 0)ˆ(lim AA
t

 

and ,0)ˆ(lim BB
t

 for any positive constant k, the vectors Â  and B̂ are the 

estimations of parameters A and B, respectively. 

Proof: It can be proved proceeding as Theorem 1 through considering A = C, 

B = D, f1 = f2, g1 = g2 and h1 = h2

 

. 
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4.3 Systems’ descriptions 

4.3.1 Advanced Lorenz system 

The advanced Lorenz system given in (Zhang et al. (2009)) is described as 

          ),()()('

)()()()()('

)())()(()('

2 tdztxtz

tcytbxtztxty

tpxtxtyatx

                                                                  (4.6) 

where a, b, c, d and p are the parameters. For the parameters’ values a=20, 

b=14, c=10.6, p=3 and time delay ,001.0 the aforementioned system shows 

the chaotic behaviour at initial values (x(t), y(t), z(t)) = (-20, 8, 20) where 

0t . The chaotic behaviour of system (4.6) is depicted through Fig. 4.1. 

 

 

Fig. 4.1. Phase portraits of Advanced Lorenz system in x-y-z space. 
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4.3.2 Multiple delay Rössler system 

A double delayed Rössler system (Ghosh et al. (2008)) is given by 

          ),()()()('

)()()('

)()()()()('

12

1

2211

tzctztxbtz

tybtxty

txatxatztytx

                                                (4.7) 

where a1, a2 are the geometric factors, while b1, b2

1

 and c are the usual 

parameters of a classical Rössler system,  and 2  are time delays. The 

double delayed Rössler system exhibits the chaotic trajectories for the 

parameter values a1 = 0.2, a2 = 0.5, b1 = b2 0.11 = 0.2, c = 5.7, and 0.22  

with initial condition. (x(t), y(t), z(t)) = (0.5, 1, 1.5) where 0t  and 

shown through Fig. 4.2. 

 

 

Fig. 4.2. Phase portraits of Multiple delay Rössler system in x-y-z space. 
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4.3.3 Time-delay Chua’s oscillator 

Time-delay feedback Chua’s oscillator (Cruz-Hernández (2004)) is given by 

          )),(sin()()()('

)()()()('

)))(()()(()('

txtztytz

tztytxty

txftxtytx

                                                      (4.8) 

where the nonlinear function is described as 

          
).1)(1)()((

2

1
)())(( txtxbatbxtxf  

Taking the values of parameters are 53.19,1636.0,53.19,10  

,4325.1a 7831.0b  and time delay ,001.0  chaotic behaviour of the 

system (4.8) is depicted through Fig. 4.3 for the initial condition (x(t), y(t), z(t)) 

= (-1, -0.1, 1) where 0t and also for different sets of parameters  and 

. 

 

 

(a)                                                                            (b) 
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(c)                                                                       (d) 

Fig. 4.3. Phase portrait of time-delayed feedback Chua’s oscillator in x-y-z space for 

different sets of parameters: (a) 07.0  and 4.0 , (b) 2.0  and 2 , (c) 

5.0  and 3  and (d) 1  and 1. 

4.4 Projective synchronization between identical systems 

In this section, an example of projective synchronization between two 

identical advanced Lorenz systems is presented. 

4.4.1 Projective synchronization between identical time-delayed advanced 

Lorenz systems 

The drive system is described as 

          )()()('

)()()()()('

)())()(()('

1

2
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11111

1111

tdztxtz

tcytbxtztxty

tpxtxtyatx

                                                               (4.9) 

and the response system as 

          ),()()()('

)()()()()()('

)()())()(()('
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2
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222222

12222
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tutcytbxtztxty

tutpxtxtyatx

                                               (4.10) 



CHAPTER 4

 97  

 

where )(),(),( 321 tututu are controllers to be designed so that both the systems 

are synchronized. According to projective synchronization technique, 

consider the constant scaling matrix ),,( 321diag , such that the error 

states are defined as ),()( 1121 txtxe  ),()( 1222 tytye  and 

).()( 1323 tztze  The corresponding error dynamical system is obtained as 

).())()(()()()('

)())()(())()(()()()()()('

)())()(()))()(()()(()('

3132

2

13

2

23

2122122112222

1112111221

tudtztztxtxte

tuctytybtxtxtztxtztxte

tuptxtxatxtytxtyte

 

According to Theorem 2, the synchronous controller functions are 

)()2/1(ˆ))()(())()(()(

)()2/1(ˆ))()((ˆ))()(()()()()()(

)()2/1(ˆ))()((ˆ)))()(()()(()(
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2

13

2

23

2122122112222

1112111221

tekdtztztxtxtu

tekctytybtxtxtztxtztxtu

tekptxtxatxtytxtytu

 

and the adaptive laws of parameters are 

).ˆ()())()((ˆ

)ˆ()())()((ˆ

)ˆ()())()((ˆ

)ˆ()())()((ˆ

)ˆ()()))()(()()((ˆ

1112

3132
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111122

pptetxtxp

ddtetztzd

cctetytyc

bbtetxtxb
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Finally, to accomplish the projective synchronization, the error system is 

given by 

)()2/1()ˆ))(()(()('

)()2/1()ˆ))(()(()ˆ))(()(()('

)()2/1(

)ˆ))(()(()ˆ)))(()(()()(()('

31323

21221222

1

112111221

tekddtztzte

tekcctytybbtxtxte

tek

pptxtxaatxtytxtyte
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Numerical simulation and results 

To verify and demonstrate the effectiveness of the proposed method, the 

simulation result for the projective synchronization between identical time-

delayed Lorenz systems is discussed. For the purpose of numerical 

simulations, parameters are taken as in Section 4.3.1. The initial values of 

estimated unknown parameters are chosen as )0,0,0,0,0()ˆ,ˆ,ˆ,ˆ,ˆ( pdcba . The 

initial values of state trajectories of drive and response systems are taken as 

)20,8,20())(),(),(( 111 tztytx and )8,6,10())(),(),(( 222 tztytx , respectively. 

The time delay, control input and constant scaling matrix are considered as 

,001.0 1k  and ),3,2,4(diag  respectively. The simulation results are 

depicted through Fig. 4.3 and Fig. 4.4. Figs. 4.3(a) – (c) show the state vectors 

of drive and response systems. Fig. 4.3(d) ensures that the synchronization 

error vector tends to zero as t becomes large, and as a result, the projective 

synchronization between systems (4.9) and (4.10) is achieved. Fig. 4.4 shows 

the variations of estimated values of unknown parameters 

panddcba ˆˆ,ˆ,ˆ,ˆ converge to the original values a, b, c, d and p. 

 

(a) State trajectories between state vectors )(1 tx and )(2 tx . 
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(b) State trajectories between state vectors )(1 ty and )(2 ty . 

   

(d) State trajectories between state vectors )(1 tz and )(2 tz . 

 

(d) The evolution of errors state )).(),(,)(( 321 tetete  

Fig. 4.4. State trajectories of drive system (4.9) and response system (4.10) between 

state vectors and evolution of error vectors. 
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Fig. 4.5. The estimated parameter vectors of time-delayed advanced Lorenz systems. 

4.5. Projective synchronization between non-identical systems 

This section presents two examples to show projective synchronization 

between a pair of non-identical systems. 

4.5.1. Projective synchronization between advanced Lorenz system and 

Rössler system 

The drive system is described as 

          )()()('

)()()()()('
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                                                             (4.11) 

and the response system as 

          ).()()()()('

)()()()('

)()()()()()('

3212222

22122
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                        (4.12) 

Similar to the previous section, we define state errors that yield the following 

error dynamics as 
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The controllers are calculated as follows 
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and the estimated parameters are taken as 
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which helps to obtain the error dynamical system as follows to achieve the 

projective synchronization. 

).()2/1()ˆ)(()ˆ()ˆ)(()('
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Numerical simulation and results 

In the present section, the numerical simulation for the projective 

synchronization of time-delayed Lorenz system and multiple delay Rössler 

system is studied. The time delay and parameters are chosen same as given in 

sections 4.3.1 and 4.3.2. The initial values of estimated unknown parameter 

vectors are )0,0,0,0,0()ˆ,ˆ,ˆ,ˆ,ˆ( pdcba  and )0,0,0,0,0()ˆ,ˆ,ˆ,ˆ,ˆ( 12121 cbbaa . The 

constant scaling matrix and control input are chosen as )3,2,4(diag  and 

1k  respectively. Numerical simulations show that the proposed controller 

provides an adaptive projective synchronization between drive and response 

systems as shown in Figs. 4.6(a) – (c), and thus, synchronization error vector 

asymptotically converge to zero which are displayed through Fig. 4.6(d). Figs. 

4.7(a) and 4.7 (b) show that the estimated values of unknown parameter 

vectors )ˆ,ˆ,ˆ,ˆ,ˆ( pdcba  and )ˆ,ˆ,ˆ,ˆ,ˆ( 12121 cbbaa converge to the original vectors 

),,,,( pdcba  and ),,,,( 12121 cbbaa  for both the drive and response systems. 

 

(a) State trajectories between state vectors )(1 tx and )(2 tx . 
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(b) State trajectories between state vectors )(1 ty and )(2 ty . 

 

(c) State trajectories between state vectors )(1 tz and )(2 tz . 

 

(d) The evolution of the errors )).(),(,)(( 321 tetete  

Fig. 4.6. State trajectories of drive system (4.11) and response system (4.12) between 

state vectors and evolution of error vectors. 
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(a) The estimated parameter vectors of advanced Lorenz system. 

 

(b) The estimated parameter vectors of multiple delay Rössler system. 

Fig. 4.7. State trajectories of estimated parameter vectors drive system (4.11) and 

response system (4.12). 

4.5.2 Projective synchronization between advanced Lorenz system and 

time-delay feedback Chua’s oscillator 

In order to observe the projective synchronization behaviour between 

advanced Lorenz systems and Chua system, the drive and response systems 

are defined as 
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                                                             (4.13) 

and 
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where 
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1
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The corresponding error dynamical system is obtained as 
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Applying Theorem 1, we obtain the synchronization controller as 
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and the adaptive parameters as 
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Thus, the error dynamic is reduced to 

).()2/1(
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Numerical simulation and results 

During the simulations, the parameters and initial conditions of the time-

delayed Lorenz systems and time-delayed feedback Chua’s Oscillator are 

taken as before. Here the synchronization behaviour is measured for the 

values of control input and constant scaling matrix as 1k  and 

)3,2,4(diag  respectively. The initial values of estimated parameter vectors 

of both systems are considered as )0,0,0,0,0()ˆ,ˆ,ˆ,ˆ,ˆ( pdcba  and 

)0,0,0,0()ˆ,ˆ,ˆ,ˆ( . The state vectors of drive and response systems are 

depicted through Fig. 4.8(a) – (c), and the error dynamics is shown through 

Fig. 4.8(d). The estimated values of unknown parameter vectors )ˆ,ˆ,ˆ,ˆ,ˆ( pdcba  

and )ˆ,ˆ,ˆ,ˆ(  tend to the original values ),,,,( pdcba  and ),,,( , 

respectively, which are shown through Fig. 4.9(a) and 4.9(b). This ensures 

that the error states asymptotically converge to zero as t  and as a 

consequence, adaptive projective synchronization between the systems (4.13) 

and (4.14) is obtained. 
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(a) State trajectories between state vectors )(1 tx and )(2 tx . 

 

(b) State trajectories between state vectors )(1 ty and )(2 ty . 

 

(c) State trajectories between state vectors )(1 tz and )(2 tz . 
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(d) The evolution of the errors )).(),(,)(( 321 tetete  

Fig. 4.8. State trajectories of drive system (4.13) and response system (4.14) between 

state vectors and evolution of error vectors. 

 

(a) The estimated parameter vectors of advanced Lorenz system. 

 

(b) The estimated parameter vectors of time-delayed Chua’s oscillator. 

Fig. 4.9. State trajectories of estimated parameter vectors of drive system (4.13) and 

response system (4.14). 
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4.6 Conclusion 

The present chapter achieves three important goals. The first one is the 

successful investigation of synchronization scenario of time-delayed chaotic 

systems via adaptive control approach. The second one is finding necessary 

condition for adaptive projective synchronization of identical/non-identical 

chaotic systems with time delay. The third one is the proper design of 

adaptive synchronization controller and adaptive laws of parameters that are 

developed using Lyapunov–Krasovskii stability theory so that the 

components of error system and parameter estimation error decay towards 

zero as time becomes large for achieving global and asymptotic adaptive 

projective synchronization, which are demonstrated through graphical 

presentations.   


