
 

 

 

 

 

 

 

 

CHAPTER-3 

Study of Stability Analysis and 

Synchronization of Fractional-

Order Biological Models Using 

Active Control Method 

 



Chapter 3.1 

Stability analysis of fractional-order generalized chaotic 

susceptible-infected-recovered epidemic model and its 

synchronization using active control method1

Mathematical modeling is widely used to analyze and gain inside into the 

process of spread of infectious diseases which can eventually be used to 

predict the future course of outbreak and to evaluate strategies to control an 

epidemic. Mathematical epidemiology and population dynamics are some of 

the suitable forms of describing the biological systems using the language of 

dynamical systems theory. In this connection we may refer to Buonomo et al. 

(2008), who stated the usefulness of mathematical epidemiology in revealing 

valuable information regarding the spread and control of infectious diseases. 

In a given model a person contracting the disease and then becoming 

immune to future infection after recovery is called susceptible-infected-

recovered (SIR). This phenomenon of biological systems is directly connected 

to time evolution of population density of interacting species or individuals 

in different states (say, susceptible and infected). Due to complexity of 

interactions amongst species, it is difficult to solve the models describing such 

systems analytically. Therefore, once model is formulated mathematically, it 

is necessary to solve numerically using computer simulations to predict the 

response of biological systems. The study of dynamic implications of 

information dependent vaccination for SIR vaccine used in preventable 

childhood diseases can be found in the article of D’Onofrio et al. (2007a). 

 

3.1.1 Introduction 

                                                           

The contents of this chapter have been accepted in Pramana - Journal of Physics.  
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Simple epidemiological models with information dependent vaccination 

functions gives rise to sustained oscillations via Holf bifurcation as found in 

D’Onofrio et al. (2007). Recently, the local and global stability of epidemic 

equilibrium has been well studied by Kar and Mondal (2011). 

Fractional order modeling has been an active field of research nowadays both 

from the theoretical and the applied perspectives. A wide range of problems 

in different branches of engineering and biology have already been studied 

by a number of researchers from different parts of the world to explore the 

potential of the fractional derivative. The usage of first order time derivative 

with a fractional order time derivative is not only applicable for non-Gaussian 

but also for Non-Markovian systems. Fractional SIR epidemic model 

equations are obtained from the classical SIR epidemic equations in 

mathematical modeling by replacing first order derivatives by fractional 

derivative of order )10( . Several universal phenomena can be 

modeled to a great degree of accuracy by using the property of these 

evolution equations. In contrast to integer order differential operators, which 

are local operator, a fractional order differential operator is non-local in the 

sense that it takes into account the fact that the future state not only depends 

upon the present state but also upon all of the history of its previous states. 

For this realistic property, the usage of fractional order systems is becoming 

popular to model the behaviour of real systems in various fields of science 

and engineering. It is to be noted that the present states of any real life 

dynamic system are dependent upon the history of its past states. Such 

circumstances have motivated the author to study the SIR epidemic model 

which has a great physical relevance from the perspective of public health 

policies and its consideration as fractional order system in allied problems is 

valid. 
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Synchronization is a vital phenomenon of chaos that may occur when two or 

more chaotic systems are coupled with or one chaotic system derives the 

other. Synchronization between two structurally identical/non-identical 

systems with different initial conditions have attracted a great deal of interest 

in various fields due to its important applications in secure communication, 

system identification, pattern reorganization, vibration technology, 

economical system, ecological system, biology and biotechnology. After the 

pioneering investigation of Pecore and Corrall (1990), that chaotic systems 

can be made to synchronize by linking them with common signals, lot of 

research works for synchronizing chaotic systems using linear and nonlinear 

feedback control, adaptive control, active control, time delay feedback 

control, tracking control, sliding mode control methods have already been 

done (Ho and Hung (2002), Park (2006), Vincent (2008) Ansari and Das (2013), 

Yassen (2005)), out of which active control method is very efficient and easy 

to use for the synchronization of a pair of identical or non-identical chaotic 

systems. Synchronization of fractional order chaotic system has been first 

studied by Li at al. (2003). Synchronization between fractional order chaotic 

systems is also being widely investigated in (Deng and Li (2005), Li and Yan 

(2007), Yan and Li (2007), Agrawal and Das (2013), Srivastava et al. (2012), 

Srivastava et al. (2014)). In 2012, Agrawal et al. (2012) have successfully 

applied the active control method for synchronization of different pair of 

fractional order chaotic systems. To the best of author’s knowledge the 

occurrences of chaotic attractors for a fractional order SIR model have not yet 

been explored by any researcher. 

In this chapter the synchronization between a pair of identical fractional 

order chaotic SIR model using the active control method is studied. 

Numerical simulations have been carried out for different order fractional 

derivatives close to the standard one which are depicted through graphs for 
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different particular cases. The aim of the study is to investigate the minimum 

time required for synchronization when the fractional order time derivative 

approaches the standard order. 

3.1.2 System description 

Let us consider the following SIR epidemic model 
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                                                                       (3.1.1) 

where ,10  S is the density of susceptible within the population, I is the 

density of infected within the population, R is the density of recovered within 

the population, and the parameters viz., r is the intrinsic growth rate of 

susceptible, k is the carrying capacity of susceptible, a is the saturation factor 

that measures the inhibitory effect,  is the transmission or contact rate, is 

the rate of recovery from infection,  

          

 are the death rates. We consider a 

new variable Z, 

dtKISgtZ

t

)())(),(()( ,                                                                 (3.1.2) 

known as information variable (Buonomo et al. (2008), D’Onofrio et al. (2007a, 

2007), Kar and Mondal (2011)), which depends on current values of state 

variables and also summarizes information about past values of state 

variables. Here K(t ) is the delaying kernel,  is the distributed delay with 

t . Assuming that  g(S, I) =S and )),(
1

exp(
1

)( t
TT

tK  where T is the 

average delay of the collected information on the disease, as well as the 



CHAPTER 3.1

 62  

 

average length of the historical memory concerning the disease, the model 

(3.1.1) reduces to   
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 (3.1.3) 

The last equation of (3.1.3) can be ignored since here the dynamics of R 

depends only on the dynamics of I. Therefore, we will concentrate in the 

study of the following fractional order nonlinear system: 
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where r, k, a, , 1

3.1.2.1 Equilibrium points and their asymptotic stability 

, , T > 0. 

To evaluate the equilibrium points, let 

          
0SDt , 0IDt , .0ZDt                                                                      (3.1.5) 

The system (3.1.4) has trivial equilibrium at ),0,0,0(0E disease free 

equilibrium at E1 ),,,(2 ZISE= (k, 0, k) and endemic equilibrium at point  

where 
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Jacobian Matrix of the system (3.1.4) is given by 
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The eigenvalues of the equilibrium points can be determined by solving the 

characteristic equation 

          
0IJ                                                                                                    (3.1.8) 

i.e., 032

2

1

3 aaa .                                                                                 (3.1.9) 

The equi

of Jacobian matrix J(E) satisfy the following condition (Matignon (1996), 

Ahmed et al. (2007)) 

          
.

2
)arg(                                                                                            (3.1.10) 

At trivial equilibrium point E0
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Characteristic equation is given by 
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Characteristic equation is given by 
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At endemic equilibrium point ),,(2 ZISE ,   
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It is known that an equilibrium point E is said to be a saddle point of index 1 

if the jacobian matrix at E has one eigen value with a non-negative real part 

and a saddle point of index 2 if the jacobian matrix at E has two unstable 

eigenvalues. It is noticed that the scrolls are generated only around the saddle 

points of index 2, whereas saddle points of index 1 are responsible only for 

connecting scrolls (Chua et al. (1986), Silva (1993), Cafagna and Grassi (2003), 

Lu et al. (2004), Tavazoei and Haeri (2007)). With this idea we proceed to find 

the eigen values for predicting that a point to be stable or unstable taking the 

58.0,2.0,3.0,5.0,01.0,5,2 Takrparameters as . It is seen 

that at the point E0 = (0, 0, 0), the eigen values are 2, -0.5000, -1.7647, which 

clearly shows that the point E0 is unstable. At point E1 = (k, 0, k) = (5, 0, 5), the 

eigen values are 1.8810, -1.7647, -2, which implies that the point E1

1.0101),3.22416,(1.0101,),,(2 ZISE

 is 

unstable. At the point  the eigen 

values are 0.75354i,-0.034420.75354i,+0.034421.63339,-  which clearly 

exhibits that E2 9704.0 is a saddle point of index 2 for  satisfying the 

condition (3.1.10). At this point the chaotic attractors of the system (3.1.4) for 

different values of  are depicted through Fig. 3.1.1. 

 

(a)                                                                  (b) 

Fig.3.1.1. The chaotic attractors of the generalized SIR model (3.1.4): (a) for fractional 

order ;99.0  (b) for .597.0   
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3.1.3 Synchronization of the fractional order SIR model using 

active control method 

Here the drive system is described by equation (3.1.4) as  
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and the response system as 
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where Ttttt )](),(),([)( 321 is the controller to be designed. To 

investigate the synchronization of systems (3.1.11) and (3.1.12), the error 

states are defined as 121 SSe ,  ,122 IIe
   .123 ZZe

 The corresponding 

error dynamics system can be obtained by subtracting equation (3.1.11) from 

equation (3.1.12), which is given by 
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The two systems (3.1.11) and (3.1.12) are realized to synchronize if the system 

(3.1.13) is globally asymptotically stable under a suitable controller. Defining 

active control functions  )3,2,1()( iti  as 
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which leads to the error functions as 
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where )(),(),( 321 tVtVtV are the linear control inputs chosen such that the 

system (3.1.15) becomes stable. Now, consider 
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where M  is a 33 constant matrix. In order to make the closed loop system 

stable, the matrix M  should be selected in such a way that the error 

dynamical i

3,2,1,
2

)arg( ii

 which satisfy the condition 

. There is not a unique choice for such matrix ,M  a good 

choice can be as fallows 
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which reduces the error system to 
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Here all eigenvalues i  are -1, which satisfy the condition ,2/)arg( i  

for 10 . Therefore, the linear system (3.1.16) is stable and thus the 

required synchronization is obtained. 

3.1.3.1 Numerical simulations and results 

In numerical simulation the parameters of the SIR system are taken as 

58.0,2.0,3.0,5.0,01.0,5,2 1 Takr . Time step size is taken as 

0.005. State trajectories of drive system (3.1.11) and response system (3.1.12) 

are shown in the Fig 3.1.2 and Fig 3.1.3 demonstrate that the systems are 

synchronized after small duration of time for the considered fractional order 

time derivatives 990.=  and .9750.=  It is also seen from the figures that the 

time taken for synchronization of system decreases with the increase of 

fractional order approaching towards standard order system.  
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(a) State trajectories between S1 and S2. 

 

 (b) State trajectories between I1 and I2. 

 

 (c) State trajectories between Z1 and Z2.  
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 (d) The evolution of the error states )(),(),( 321 tetete . 

Fig.3.1.2 The state trajectories of systems (3.1.11) and (3.1.12) between state vectors 

and evolution of error vectors for the fractional-order 990.= . 

 

(a) State trajectories between S1 and S2. 

 

(b) State trajectories between I1 and I2. 
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(c) State trajectories between Z1 and Z2.  

 

 (d) The evolution of the error states )(),(),( 321 tetete . 

Fig.3.1.3. The state trajectories of systems (3.1.11) and (3.1.12) between state vectors 

and evolution of error vectors for the fractional-order 9750.=  

3.1.4 Conclusion 

In a nut shell, the author has achieved four important goals in the present 

article. First one is the study of stability analysis of fractional order SIR 

model. Second one is the study of dynamical behavior of two identical 

fractional order chaotic systems. Third one is the successful implementation 

of the powerful active control method which provides us a simple way to 
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synchronize coupled chaotic systems. Fourth, the observation that the 

synchronization time increases when the system pair approaches the 

standard order from fractional order, is a major outcome of the study. 

Numerical simulation results demonstrate the ease of implementation, the 

reliability and effectiveness of the proposed control technique even for the 

synchronization of fractional order chaotic systems. The author believes that 

the present study will be appreciated and can be utilized by the researchers 

involved in the field of mathematical modeling of fractional order dynamical 

systems. 



Chapter 3.2 

Stability analysis of fractional-order water-borne 

epidemic model1

Water-Borne diseases have become one of the attractive areas of research in 

epidemiology and public health. The diseases are caused by bacteria, virus 

and parasites. The most serious disease of public health concern observed in 

the developing countries and treated as the universally infectious one is the 

Diarrhoea, one of the important forms due to infection from water borne 

pathogens. Other severe water borne diseases named as Zimbabwe cholera 

epidemic causes lot of casualties every year (WHO (2009)). Therefore, 

prevention of long range spreading of these infectious diseases is challenging. 

Nowadays, mathematicians are involved to present some physical models 

 

3.2.1 Introduction  

Modelling of biological systems is a significant task of systems biology and 

mathematical biology. Mathematical language is very helpful in designing 

the precise description of the complicated systems arising in biological 

sciences. Biological systems are inherently complex. Interaction of numerous 

molecular components, biochemical reactions, cell structure and 

compartmentalization of random effect makes the system more complicated. 

Due to these complexities, it is hard to solve the models describing biological 

systems analytically. Therefore, once model is formulated mathematically, it 

is needed to solve numerically using computer simulations and predict the 

response of biological system.  

                                                           

The contents of this chapter have been published in Communication in Fractional 

Calculus, 4(1) (2013) 25-31. 
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through which it can be understood how various transmission pathways 

affect disease dynamics by extending classical epidemic theory to SIR type 

model which include a water compartment. The SIR (Susceptible-Infected-

Recovered) model is on described by first order ordinary differential 

equations and has been used in several epidemiological diseases (Hethcote 

(2000), Lu et al. (2002), Piccolo and Billings (2005), Smith (1983), Misra and 

Singh (2004)). For diseases with long incubation and infectivity times, the host 

populations' vital dynamics, i.e., birth and death rates have to be taken into 

account. This has been shown to change the system behavior qualitatively. 

While in the classic Kermack and McKendrick's model (Kermack and 

McKendrick (2006)), the disease dies out or become endemic if the basic 

reproductive ratio is less or greater than one, respectively. The infection can 

also become endemic in models incorporating vital dynamics Brauer and 

Castillo-Chavez (2001). Makinde (2007) used Adomian decomposition 

method successfully to solve a SIR epidemic model with constant vaccination 

strategy. In 2010, Tien and Earn (2010) considered a simple extension of the 

classical SIR model which is globally stable. They have also shown how the 

parameters viz., reproduction number, epidemic growth rate and final 

outbreak depend upon the transmission parameter for the different 

pathways. This has motivated the authors to present a model introducing a 

new information variable to the existing standard SIR model in fractional 

order system. To the best of the author’s knowledge, this Water-Borne disease 

model in fractional order system has not yet been done by any researcher.  

Fractional order differential equations which are generalizations of classical 

differential equations (Podlubny (1999)) have gained popularity in the 

investigation of dynamical systems since they allow greater flexibility in the 

model and have ability to provide an exact description of different nonlinear 

phenomena. It has been extensively applied for modelling of many real 
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problems such as viscoelasticity, power-law phenomenon in fluid mechanics, 

dielectric polarization, electromagnetic waves, quantum evolution of complex 

systems, fractional kinetics, etc. and also in biology, ecology, and medical 

sciences (Saichev and G.M. Zaslavsky (1997), He (1998), Chechkin et al. (2003), 

Das (2009), Das et al. (2010), Wu (2011), Das and Kumar (2011), Wu (2012)). In 

last few decades, fractional order modelling has been an active field of 

research both from the theoretical and the applied perspectives since they are 

naturally related to the systems with memory effects which prevail for most 

of the physical and scientific system models. The fractional order derivative 

of a function depends on the values of the function over the entire interval. 

Thus it is suitable for modelling of the systems with long range interaction 

both in space and time. In general, fractional calculus is considered as a super 

set of integer order calculus. Sabatier et al. (2007) have rightly stated that 

fractional calculus has the potential to accomplish what integer order calculus 

can not. 

In this chapter the stability analysis of fractional order SIWR model is 

studied. The intention of the author is to show numerically the variations of 

considered variables viz., susceptible (S), infected (I) and pathogen 

concentration compartment (W) due to the introduction of information 

variable (Z) for different fractional Brownian motions and also for standard 

motion. The numerical results are depicted through figures for different 

values of parameters. 

3.2.2 Mathematical model 

Firstly, the fractional order integro differential operator which is the 

extension of integer order integro differential operator is defined. There are 

mainly three ways to define fractional integral and derivative namely 

GrÄunwald-Letnikov derivative, Riemann Liouville Fractional derivative and 
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the Caputo derivative. In the present article, the Caputo's definition is used 

which has the advantage to deal with initial value problems. The Caputo 

derivative of  order is given by 
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                         (3.2.1) 

Fractional calculus is more suitable in describing complex adaptive system 

since they naturally represent fractals, memory and non locality effects. 

Let us consider the fractional SIR model with the assumption of constant 

population size and a compartment W that measures pathogen concentration 

in a water source. Infectious agents have a number of options for their 

transmission. In general these are either by contact with infected individuals 

or spread via contamination of the water. Infected individuals can in turn 

contaminate the water compartment by shedding the pathogen into water 

source. Thus an infected individual originates secondary infections in two 

ways: through direct contact with susceptible individuals and by shedding 

the pathogen into the water compartment which susceptible individuals 

subsequently come into contact with it. The following differential equations 

are used to describe the Water-bone disease dynamics in fractional order 

system. 
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where S, I and R are respectively the densities of susceptible, infected and 

recovered within the population, W represents the pathogen concentration in 

water reservoir and the parameters viz., W and I  are the transmission rate 
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parameters for person-water-person and person-to-person contact 

respectively,  is birth and non-disease-related death rate,  represents 

disease induced death rate of human population and  shows the decay rate 

of pathogen in the water. 

Let us introduce a new variable Z, 

          
dtKISgtZ

t

)())(),(()( ,                                                                (3.2.3) 

known as information variable (Buonomo et al. (2008), D'Onofrio et al. (2007a, 

(2007), Kar and Mondal (2011)), which summarizes information about current 

values of state variables and past values of state variables. Here )(tK  is the 

delaying kernel,  is the distributed delay with .t  Assuming that 

)())(),(( tSISg and )),exp(
1

(
1

)( t
TT

tK  where T is the average 

delay of the collected information on the disease, as well as the average 

length of the historical memory concerning the disease, the model (3.2.2) 

reduces to 
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The third equation of system (3.2.4) can be ignored since here the dynamics of 

R depends only on the dynamics of I. Therefore, we will concentrate on the 

following fractional order nonlinear system 
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3.2.3 Equilibrium points and their asymptotic stability 

To evaluate the equilibrium points, let 

          .0,0,0,0 ZDWDIDSD tttt
                                                   (3.2.6)  

The system (3.2.4) has disease free equilibrium at )1,0,0,1(0E  and endemic 

equilibrium at point ),,,(1 ZWISE , where 
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Jacobian Matrix of the system (3.2.5) is given by 
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The eigenvalues of these equilibrium points can be calculated by solving the 

characteristic equation 
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where the coefficients can be determined as 
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The equilibrium point is locally asymptotically stable if all the eigenvalues  

of Jacobian matrix J(E) satisfy the following condition (Matignon (1996)) 

          .
2

)arg(                                                                                              (3.2.9) 

Now we discuss the local stability of fractional order water borne system for 

both the disease free and endemic steady state. For the disease free 

equilibrium at ),1,0,0,1(0E  the characteristic equation is given by 
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Thus all the eigenvalues for disease free equilibrium are 
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From the above results, it is clear that for each value of , disease free 

equilibrium is locally asymptotically stability for 10R and ,0  where 

IWR0 is basic reproduction number. So it can be concluded that if 



CHAPTER 3.2

 80  

 

,10R then the disease will die out. Finally, if ,10R the disease free 

equilibrium is unstable and the disease persists in the population and 

becomes endemic. 

At endemic equilibrium point ),,,(1 ZWISE with the parameter 

values ,7.0,333.0,1340.0,6217.0,6217.0,1 TIW  the Jacobian 

matrix J(E) has all the eigenvalues with negative real part  (-1.57394, -

0.906396±0.179585i, -0.0400016). Thus we can conclude from the result of 

Matignon that the endemic equilibrium at point ),,,(1 ZWISE is 

asymptotically stable for every .10  

3.2.4 Numerical results and discussion 

In this section numerical results are carried out using Adams-Bashforth-

Moulton algorithm (Diethelm et al. (2004a, 2004)) to find the probability 

density functions of susceptible, infected populations for different fractional 

Brownian motions ,9.0,8.0  for the standard motion 1 for various 

values of the parameters ,333.0,1340.0,6217.0,6217.0,2,1 IW  

7.0T and 1,9.0,8.0  in Fig. 3.2.1 and Fig. 3.2.2. 

Figs. 3.2.1 – 3.2.2 illustrate the typical behavior of susceptible population, 

infected population and pathogen concentration in water reservoir. If 

,10R then the levels of infected population and water pathogen 

concentration will monotonically decrease and ultimately become zero. It is 

clear from the figures that in order to control the disease, we have to reduce 

reproduction number below than one. It is also observed from the figures that 

the disease will take more time to die out as the order of the fractional 

derivatives decreases. 
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In case when some population are infected and pathogen concentration is 

present in water reservoir, the infected population and water pathogen 

concentration will monotonically decrease and the trajectories of system 

approach to steady state and disease become stable after a certain time, which 

are clearly observed from Fig. 3.2.2. The effect of fractional order exhibits the 

fact that the realistic biphasic decline behavior of model but at a slower rate. 

Therefore it is clear from graphical presentations that even for fractional 

orders the considered model is similar to classical epidemiological model 

having two steady states where for uninfected steady state, infected 

population and pathogen concentration in water reservoir disappear but for 

infected one i.e., for endemically infected steady state it becomes different 

where susceptible, infected population and pathogen concentration density 

functions of the model are maintained.  

 

(a) The trajectories of susceptible with respect to time t at the equilibrium point E0

.1,9.0,8.0

 

for the fractional order  
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(b) The trajectories of infected with respect to time t at the equilibrium point E0

.1,9.0,8.0

 for 

the fractional order  

 

(c) The trajectories of pathogen concentration with respect to time t at the 

equilibrium point E0 .1,9.0,8.0 for the fractional order  

Fig. 3.2.1. The trajectories of susceptible, infected and pathogen concentration with 

respect to time t for ,6217.0,6217.0,2 IW and .1,9.0,8.0  
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(a) The trajectories of susceptible with respect to time t at the equilibrium point E0

.1,9.0,8.0

 

for the fractional order  

 

 

 

(b) The trajectories of infected with respect to time t at the equilibrium point E0

.1,9.0,8.0

 for 

the fractional order  
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(c) The trajectories of pathogen concentration with respect to time t at the 

equilibrium point E0 .1,9.0,8.0 for the fractional order  

Fig. 3.2.2. The trajectories of susceptible, infected and pathogen concentration with 

respect to time t for 7.0,333.0,1340.0,6217.0,6217.0,1 TIW  

and .1,9.0,8.0  

3.2.5 Conclusions 

Three important goals are obtained during the present study. First one is the 

modification of a simple ODE Water-borne model suggested by Tien and 

Earn (2010) into a system of fractional order differential equations. Second 

one is the stability analysis of the fractional order water borne disease model 

with a new information variable. It is shown that the evolution model exhibits 

two equilibria, namely, disease free equilibrium and the endemic equilibrium 

points. The disease free equilibrium point is locally asymptotically stable for 

10R  and for ,10R a unique endemic equilibrium point exists and is 

asymptotically stable under certain conditions of the parameters. The most 

remarkable part of the study is the analysis of time requirements for the 

stability of the different population density functions as the system 

approaches to the standard order from the fractional order. 


