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Chapter 2 

Anti-synchronization between identical and non-

identical fractional-order chaotic systems using active 

control method1

The applications of dynamical systems have nowadays spread to a wide 

spectrum of disciplines including science, engineering, biology, sociology, etc. 

The introduction of fractional calculus in nonlinear dynamical systems has 

rendered a new dimension to the existing problems. Fractional differential 

equations have garnered a lot of attention and appreciation recently due to 

their ability to provide a more accurate description of different nonlinear 

phenomena. The advantage of using fractional order is to allow greater 

flexibilities in the model. The applications of fractional calculus are growing 

rapidly. During last few years, the applications can be found in physics and 

engineering, visco-elastic systems, dielectric polarization, electrode–

electrolyte polarization, electromagnetic waves, quantitative finance, 

quantum evolution of complex system, the control of fractional-order 

dynamic systems, etc. (Hifer (2001), Podlubny (1999), Koeller (1984), Sun et al. 

(1984), Ichise et al. (1971), Heaviside (1971), Laskin (2000), Kunsezov et al. 

(1999), Hartley and Lorenzo (2002)). Analysis of fractional-order dynamical 

systems involving Riemann-Liouville as well as Caputo derivatives have been 

found in the scientific contribution of Daftardar-Gejji and Babakhani (2004). 

 

2.1 Introduction  

                                                           

The contents of this chapter have been published in Nonlinear Dynamics, V.76,  
905–914, 2014 
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The field of chaos has grabbed the attention of the researchers and this 

contributes to a significant amount of the ongoing research these days.  

Stability is a fundamental concept of dynamical system which is extended to 

fractional-order system later on. The main purpose of developing stability 

theory is to examine the dynamic response of a system’s disturbances as time 

approaches to infinity. The problem of stability is very essential and crucial 

for fractional-order dynamical system, due to complexity of the relations, 

which have been investigated and studied by many researchers working in 

mathematics and engineering for last few decades. Some stability results in 

fractional-order systems are found in Matignon (1996), Deng et al. (2007), 

Ahmed et al. (2007). 

Synchronization of chaotic systems is very active topic in nonlinear sciences, 

which has already been studied in various fields of science and engineering 

for last few decades. This is the phenomenon that may occur when two or 

more chaotic oscillators are coupled. The most familiar synchronization 

phenomenon is the complete synchronization associated with the vanishing 

of the differences of states of the synchronized systems. The pioneering work 

of Pecore and Corrall (1990) introduced a method about synchronization 

between the drive (master) and response (slave) systems of two identical or 

non-identical systems with different initial conditions, which have attracted a 

great deal of interest in various fields due to its important applications in 

ecological system, physical system, chemical system, modeling brain activity, 

system identification, pattern recognition phenomena and secure 

communications ( Blasius et al. (1999), Lakshmanan and Murali (1996), Han et 

al. (1995), Cuomo and Oppenheim (1993), Murali and Lakshmanan (2003)) 

etc. Balasubramaniam and Vembarasan (2012) have shown the asymptotic 

stability of error system while solving the synchronization problem for two 

identical recurrent neural networks through novel output feedback controller 
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using Lyapunov stability theory. The same authors in their article 

(Vembarasan and Balasubramaniam (2013)) have studied the synchronization 

between two identical Rikitake system using T-S fuzzy control techniques, 

which is one of the powerful techniques for synchronizing the complex 

nonlinear systems. Theesar et al. (2012) proposed the synchronization 

between identical Lur’e systems using sampled data controller introduced by 

Yang and Chua (1997, 1998). Recently, different types of synchronization 

between chaotic systems with time delay are considered by researchers and 

the evidence can be found in the scientific contributions of Sahaverdiev and 

Shore (2002), Sahaverdiev et al. (2002), Zhan et al. (2003) and Senthilkumar et 

al. (2006). In 2012, Theesar et al. (2012) used time-delayed feedback control 

during adaptive synchronization between identical Lorenz-Stenflo systems 

where noise perturbation is considered in the response system. 

In the recent years various synchronization schemes, such as linear and 

nonlinear feedback synchronization, time delay feedback approach, adaptive 

control, active control, back-stepping design method, sliding mode control 

etc. (Huang et al. (2004), Park and Kwon (2005), Chen and Lu (2002), Al-

sawalha and Noorani (2009), Yassen (2005), Wu and Lü (2003), Fang (2013), 

Yau (2004)), have been successfully applied to chaos synchronization. The 

concept of synchronization has been extended to the scope such as 

generalized synchronization, complete synchronization, lag synchronization, 

phase synchronization, anti-phase synchronization etc. (Yang and Duan 

(1998), Yu and Liu (2003), Rosenblum et al. (1997), Erjaee and Taghvafard 

(2011), Liu (2006), Liu et al. (2000)). Anti synchronization is a phenomenon to 

use the output of the drive system to control the response system so that the 

output of the second one has the same amplitude but opposite in sign to the 

first one. Therefore, the sum of two outputs of drive and response systems are 

expected to converge to zero when anti-synchronization occurs.  



CHAPTER 2

 43  

 

Mathematically, the anti-synchronization of two systems is achieved 

when ,0)()(lim 21 txtx
t

 where )(1 tx  and )(2 tx  are the state vectors of the 

drive and response systems respectively.  In 2005, Hu et al. proposed an 

adaptive control method for anti- synchronization of uncertain Chua’s chaotic 

system. In 2004, Zhang and Sun (2004) investigated the complete 

synchronization and anti-synchronization of chaotic systems based on a 

suitable separation of systems using the Lyapunov stability theory and 

Matrix measure.  Mossa et al. (2009) studied anti-synchronization of two 

identical and different hyperchaotic systems using active control method. 

Recently, Al-Sawalha and Noorani (2012) have given the concept of the 

reduced-order anti-synchronization of uncertain chaotic systems. But anti-

synchronization between two fractional-order chaotic systems is less in 

number. The study of anti-synchronization between two standard order 

chaotic systems has invoked the interest in the author to investigate the time 

required for anti-synchronization between fractional-order chaotic systems.  

Active control method proposed by Bai and Lonngren (1997) is simple and 

easy to implement in practical applications of synchronization of coupling of 

a pair of systems and has received huge attention during last few years 

(Agrawal et al. (2012, 2013a, 2013)). Anti-synchronization between identical 

and non-identical chaotic systems using active control method in both 

standard order and fractional-order systems are already been studied (Wang 

and Shi (2009), Al-sawalha et al. (2001), Bhalekar and Gejji (2011)).  

Keeping in view, the challenges for detecting transformation of dynamical 

variables between the identical or non-identical systems during 

synchronization and anti-synchronization, tremendous applications of 

fractional calculus in various areas of science & engineering and effectiveness 

of the Active Control Method, the author is motivated to make an attempt to 



CHAPTER 2

 44  

 

do a coupling of identical and non-identical fractional-order chaotic systems 

to receive different types of information from the systems due to its memory 

effect and greater flexibilities. 

In this chapter, the anti-synchronization between two identical and non-

identical fractional-order chaotic systems using active control method have 

been studied. Using the Adams-Boshforth-Moulton method (Diethelm et al. 

(2004), Diethelm and Ford (2004)), computer simulations are carried out for 

different order fractional time derivatives and are displayed graphically to 

demonstrate the efficiency of the proposed approach. The author is optimist 

that the present chapter will be a useful contribution to the scientific literature 

on the methods of control for nonlinear dynamical systems.   

2.2 Systems’ descriptions 

2.2.1 Fractional-Order Qi System 

The Fractional-order Qi chaotic system (Wu and Yang (2010)) is described by 

          
,

)(

yxq zzD

x zyxryD

zyxypx=D

t

t

t

                                                                              (2.1)      

where )10(  is the fractional-order time derivative and for the 

parameter values 80,3/8,35 rqp the system yields chaotic trajectory. 

The system has large chaotic region when the parameters are varied. The 

lowest value of  for which the system remains chaotic is 915.0 . The chaotic 

attractors in the x-y-z space and the x-y, y-z, z-x planes are depicted through 

Figs. 2.1 (a) – (d) respectively for .930.  
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(a) x-y-z space                                                       (b) x-y plane 

   

(c) y-z plane                                                (d) x-z plane 

Fig. 2.1. Projections of phase portraits of Qi attractor for 93.0  and 

)80,3/8,35(),,( rqp . 

2.2.2 Fractional-Order Genesio–Tesi System 

The fractional-order Genesio–Tesi chaotic system (Faieghi and Delavari 

(2011)) is governed by 
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                                                                  (2.2) 

When 6, 2.92, 1.2 and 1a b c m , the system yields chaotic trajectory.  

The lowest value of for which the system remains chaotic is 93.0 . The 

chaotic attractors in the x-y-z space and x-y, y-z, z-x planes are shown through 

Figs. 2.2(a) – (d) respectively for .960.     

    

(a) x-y-z space                                                             (b) x-y plane 

     

(c) y-z plane                                                            (d) x-z plane 

Fig. 2.2. Projections of phase portraits of Genesio-Tesi attractor for 96.0  at 

)1,2.1,92.2,6(=),,,( mcba . 
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2.3 Anti-synchronization of two identical fractional-order Qi 

systems  

In this section, the fractional-order chaotic Qi system is considered as the 

drive system as 
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                                                                            (2.3) 

and also as the response system as 
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                                                      (2.4) 

where Ttttt )](),(),([)( 321
is the controller to be designed. To 

investigate the anti-synchronization of the systems (2.3) and (2.4), we define 

the error states as 

         
121 xxe , 122 yye , .123 zze  

The corresponding error dynamic system obtained by adding equations (2.3) 

and (2.4) is 
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                                                   (2.5) 

Choosing the control functions as 

          
,)()(
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                                                         (2.6) 
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the error  system is found as 

          
,)(

)(

)()(

333

2212

1121

tVeq=eD

tVeer=eD

tVeep=eD

t

t

t

                                                                            (2.7) 

where )(),(),( 321 tVtVtV are the linear control inputs chosen such that the 

system (2.7) becomes stable. Next we consider  

           ,
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where M  is a 33 constant matrix. In order to make the closed loop system 

stable, the matrix M  should be selected in such a way that eigenvalues i  of 

the error dynamical system satisfy the condition .3,2,1,2/)arg( ii  

Consider the following choice of the matrix M as 

          ,

100

00

01

q

r

pp

M  

the error system is changed to  

          .3,2,1, ie=eD iit                                                                                     (2.8) 

Here all the three eigen values of the system (2.8) are 1, which satisfy 

)3,2,1=(,2/>)arg( ii  for .10 Thus the error system converges to 

zero as t and therefore, anti-synchronization between the systems (2.3) 

and (2.4) is achieved. 
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2.3.1 Numerical simulation and results 

For the numerical simulation, the parameters of the fractional-order Qi-

system are taken as 80,3/8,35 rqp . The Adams-Bashforth-Moulton 

method is used to solve the systems with time step size 0.005 for the 

fractional-order .92.0  The initial states of the drive and the response 

systems are taken as )4,3,2(  and )27,17,50( respectively. Thus, the initial 

errors are )31,14,48( . Figs. 2.3(a) – 2.3 (c) show the anti-synchronization 

between state vectors and Fig. 2.3(d) represents the convergent of error 

system towards zero as time becomes large.  

 

(a) State trajectories between 1x  and 2x . 

 

(b) State trajectories between 1y  and 2y . 
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(c) State trajectories between 1z  and 2z . 

 

(d) The evolution of error state )).(),(,)(( 321 tetete  

Fig. 2.3. State trajectories of drive system (2.3) and response system (2.4) between 

state vectors and evolution of error vectors for the fractional-order .920.=
 

2.4 Anti-synchronization of two identical fractional-order 

Genesio-Tesi systems  

In this section, the fractional-order Genesio-Tesi systems is considered as the 

drive system as 
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                                                      (2.9) 

and also as the response system as 
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                                                    (2.10) 

where Ttttt )](),(),([)( 321
is the controller to be designed. To 

investigate the anti-synchronization of systems (2.9) and (2.10), we define the 

error states as 121 += xxe , 122 += yye ,   123 += zze . 
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                                    (2.11) 

Choosing the control functions as 
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                                                                  (2.12) 

we find 
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                                                             (2.13) 

Representing the control inputs )(),(),( 321 tVtVtV as  
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the error system is reduced to .3,2,1, ie=eD iit  

Proceeding as the previous case, since all the eigen values are -1, it may be 

concluded that the above error system is stable which clearly demonstrates 

that the anti-synchronization between the systems (2.9) and (2.10) is achieved.  

2.4.1 Numerical simulation and results 

During the simulation to demonstrate anti-synchronization behavior of the 

two identical fractional-order Genesio system, the parameters are considered 

as 6, 2.92, 1.2a b c   and 1m , the time step size is taken as 0.005. The 

initial states of the drive and the response systems are taken as )4,3,2(  and 

)6,6,1(  so that the initial errors are )2,3,1( . Figs. 2.4(a) – (c) and 2.4 (d) 

respectively depict the state vectors and the error state for the fractional-order 

derivative .96.0   

 

(b) State trajectories between 1x  and 2x .  
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(a) State trajectories between 1y  and 2y . 

 

(c) State trajectories between 1z  and 2z . 

 

(d) The evolution of error state )).(),(,)(( 321 tetete  

Fig. 2.4. State trajectories of systems (2.9) and (2.10) between state vectors and 

evolution of error vectors for the fractional-order .960.=  



CHAPTER 2

 54  

 

2.5 Anti-synchronization between fractional-order Genesio-Tesi 

and Qi system  

In this section, the anti-synchronization behavior between two different 

fractional-order systems viz., Genesio-Tesi and Qi systems is studied. It is 

assumed that Genesio-Tesi system drives the Qi system. Therefore, the 

fractional-order Genesio-Tesi system is defined as a drive system as given in 

(2.9) and fractional-order Qi system as a response system described in (2.4). 

For investigation of the anti-synchronization of the systems (2.9) and (2.4), 

defining the error states as ,121 xxe  ,122 yye  ,123 zze we get 

the error system as  
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                                                                             (2.14) 

where the linear control inputs )(),(),( 321 tVtVtV are related to the control 

functions as 
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                                  (2.15) 

We consider 
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so that the error system reduces to a stable system .iit e=eD Thus the anti-

synchronization between the systems (2.9) and (2.4) is achieved. 
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2.5.1 Numerical simulation and results 

To demonstrate the effectiveness of the proposed method and the simulation 

results for the anti-synchronization between fractional-order Genesio and Qi  

systems, the parameters of Genesio and Qi systems are chosen 

as 2.1,92.2,6 cba and ,1m  and 80,3/8,35 rqp  respectively, so 

that the fractional-order systems exhibit chaotic behaviors. Time step size is 

taken as 0.005. The initial states of the drive and the response systems are 

taken as )5,3,2(  and )2,1,1(  respectively. Thus, the initial errors 

are )3,2,3( . Figs. 2.5(a) – (c) represent the variations of state vectors and 

2.5(d) represents the error system converges to zero as time becomes large for 

the order of the derivative .960.=  

 

(a) State trajectories between 1x  and 2x  
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(b) State trajectories between 1y  and 2y . 

 

(c) State trajectories between 1z  and 2z . 

 

(d) State trajectories of error system. 

Fig. 2.5. Plots of state trajectories of systems (2.9) and (2.4) between state vectors and 

evolution of error vectors for the fractional-order .960.=
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2.6 Conclusion   

In the present chapter, the anti-synchronizations between identical and non-

identical fractional-orders chaotic systems using active control method based 

on fractional-order stability theory have been investigated. The author has 

succeeded in achieving three important objectives. First one is the exhibitions 

of dynamic nature of chaotic systems for fractional-order time derivative. 

Second one, using stability analysis, suitable conditions for anti-

synchronization of fractional-order chaotic systems through linear controller 

input parameters on the respective systems have been established. The most 

important part of the analysis is the proper design of control function so that 

error states decay to zero for large time which helps to find the time required 

for anti-synchronization between the fractional-order chaotic systems. It is 

worth noting that the active control method clearly exhibits its simplicity, 

suitability, effectiveness and reliability during applications and 

implementation in anti-synchronizing the fractional-order chaotic systems, 

the outcome will surely be appreciated by the researchers working in the area 

of dynamical system. It is also believed that the method can be extended to 

the various existing chaotic systems for anti-synchronization, which may 

have applications in different fields of engineering including secure 

communication, encryption, control process etc. in fractional-order systems 

when those posses memory and much more sophisticated dynamics 

compared to their integral counterpart. 

 


