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Chapter 1 

Introduction 

1.1 Delay Differential Equation 

Isaac Newton and Gottfried Leibniz investigated differential and integral 

calculus in the seventeenth century; numerous problems in biology, physics 

and engineering have been analyzed using ordinary differential equations. In 

many applications, it is assumed that the systems under consideration satisfy 

the principle of causality; that is, the rate of change of the state of system is 

independent of the past and is determined solely by the present inputs. But 

one should analyze that this is only a first approximation to the true situation. 

A more realistic model depicts that the rate of variation in the system’s state 

depends not only on its current value, but also on the past history of the 

system. When a system is governed by an equation which does not 

incorporate a dependence on its past history, it generally consists of either 

ordinary or partial differential equations. However, in many processes time 

delays are not negligible; such models incorporating past history generally 

include functional differential equations (FDEs) or delay differential 

equations (DDEs). 

A delay differential equation (DDE) is a type of functional differential 

equation 

 

where the the highest order derivative of the unknown function at a 

certain time depends on the solution of the function at previous times. DDEs 

are also referred as retarded functional differential equations, hereditary 

differential equation, equations with aftereffect or dead-time, differential-

difference equations  or in control theory as time-delay systems. 
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Mathematically, the delay differential equations can be expressed in the form 

          ,,)),(,()( 0

' ttxtxtftx t                                                                      (1.1.1) 

with the initial history        

          ,),()( 00 tttttx                                                                          (1.1.2) 

where nRtx )(  is the state of the system at time t, }:)({ ttxxt  

representing the state of solution in the pas Instead 

of a simple initial condition, an initial history function )(t  needs to be 

specified on the entire interval ],[ 00 tt . This initial function is usually taken 

to be continuous which is an infinite set of values, making the DDE problem 

inherently infinite-dimensional. This infinite dimensional nature of DDE is 

apparent in the study of dynamical system.  

More general delay equations might be considered: constants time delays( j  

are positive constant), time-dependent delays ( )(tjj ), state-dependent 

delays ( ))(,( txtjj ), continuously distributed delays, and higher 

derivatives all occur in applications and lead to more complicated evolution 

equations. However, equations of the form (1.1.1) and (1.1.2) constitute a 

sufficiently broad class of systems arise in practice for a variety of reasons, 

and provide an important category of dynamical systems.  

The theories of ODEs and DDEs are very much similar. One can similarly 

define the ideas of linear, nonlinear and homogeneous equations for DDEs as 

defined for ODEs. The analytical and numerical techniquies developed for 

ODEs have been extended for DDEs. There are important differences as well, 

while the phase space for an ODE is always finite dimensional; a DDE shows 

an infinite dimensional dynamical system. This feature results from the fact 
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that instead of an initial value, an initial function is provided to determine the 

solution.  

In the eighteenth century, Leonhard Euler, Joseph Lagrange and Pierre-Simon 

Laplace studied DDEs in connection to different geometrical issues. In an 

International Congress of Mathematicians held in 1908, Emile Picard 

underlined the criticalness of hereditary effects in display of physical 

frameworks.  

Vito Volterra (1909, 1928) talked about the integro differential equations those 

model viscoelasticity. In 1931, he composed a book on the role of hereditary 

effects on models for the interaction of species and he was the first to study 

such equations efficiently. 

After 1940, the subject gained much momentum due to the consideration of 

significant models of engineering systems and control. It is most likely 

genuine that most engineers were well aware of the fact that hereditary 

effects happen in physical systems, yet this impact was frequently ignored 

due to the fact that there was inadequate hypothesis to discuss such models 

in point of interest. 

During 1950's, there was significant movement in the subject through the 

valuable research contributions by Myshkis (1951), Krasovskii (1959), Bellman 

and Cooke (1963), Halanay (1966). Their contributions give an acceptable 

picture of the subject up to the early 1960's. 

This has been known for some time, however the theory for such systems has 

widely been created currently. There were some extremely interesting 

improvements concerning the closure of the set of exponential results of 

linear equations and the extension of solutions regarding these special 
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solutions. Then again, there appeared to be little worry around a qualitative 

theory in the same spirit with respect to ordinary differential equations.  

Likewise with all such equations describing system dynamics, stability is an 

essential concern. In the book on stability theory, Krasovskii and Brenner 

(1963) introduced the theory of Lyapunov functional highlighting the 

important fact that some issues in such systems are more serious and 

manageable to solve if one considers the motion in a function space despite 

the fact that the state variable is a finite-dimensional vector. New applications 

also continue to arise and require modifications of even the definition of the 

basic equations. 

Basic theories describing time-delay systems established in the 1950s and 

1960s; when the topics related to existence and uniqueness of solutions, 

continuous dependence, stability methods and numerical approximation to 

study the behavior of  solutions, etc. where developed which are the 

foundation for the later analysis of time-delay systems. The sensitivity and 

variational equations (sensitive to the initial history) for DDEs  have also 

attracted the interest to the researchers.  

The concept of delay differential equations is abundant in nature, developed 

extensively and has become part of the vocabulary of researchers dealing 

with wide range of applications including physics, engineering, economics, 

chemistry, mechanics, nuclear reactors, heat flow, distributed & neural 

networks,  microbiology, epidemiology, physiology, sociology, ecology,  

nonlinear optics as well as many others certainly adding volume to its own 

merit. 
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1.2 Fractional Calculus 

The concept of fractional calculus may be considered an old and yet novel 

topic. It is an old topic since, starting from some speculations of G.W. Leibniz 

(1695, 1697) and L. Euler (1730), it has been developed up to nowadays. The 

motivation of fractional calculus lies in the question that whether the 

meaning of derivative of an integer order n can be extended when n  is not an 

integer. In a letter dated September 30th

xxf )(

, 1695, L'Hospital curiously asked to 

Leibniz about a particular notation he had used in his publication for the nth-

derivative of the linear function . L'Hospital posed the question to 

Leibniz, "What if n be 1/2?". Leibniz responded that, "It will lead to a 

paradox." But he added prophetically, from this apparent paradox, one day 

useful consequences will be drawn. 

Fractional order derivative has proven to be a very suitable tool for the 

description of memory and hereditary properties of various processes. 

Nowadays, the theoretical analysis and practical applications of these 

operators are well established, and their applications to science and 

engineering are being considered as an attractive topic. 

Some mathematical functions and definitions (Podlubny (1999), Miller and 

Ross (1993), Kilbas et al. (2006)) which are inherently tied to fractional 

calculus and will commonly be required are discussed herewith for the 

development of the further work.  

1.2.1 Gamma function 

Euler’s gamma function is one of the most common functions used in the 

fractional calculus. The Gamma function )(z is defined by the integral 

          
0

1)( dttez zt ,                                                                                      (1.2.1) 
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which converges in the right half of the complex plane .0)Re(z  One of the 

basic properties of the Gamma function is the following reduction formula: 

          )()1( zzz .                                                                                         (1.2.2) 

Clearly, 1)1( , using the aforementioned property, we get 

          !)1( nn    for Nn .                                                                 

Thus, the simplest notation of gamma function is simply the generalization of 

factorial for all real numbers. 

1.2.2 Beta function 

The Beta-function and its relation with gamma function is defined as  

          

1

0

11 ,)1(),( dxxxqpB qp                                                              (1.2.3) 

where 0)Re(,0)Re( wz  and 

          
.

)(

)()(
),(

qp

qp
qpB                                                                                   (1.2.4) 

1.2.3 Mittag-Leffler function 

The Mittag-Leffler function (Mittag-Leffler, 1903) )(zE defined by 

          0)Re(,
)1(

)(
0k

k

k

z
zE ,                                                      (1.2.5) 

which is known as Mittag-Leffler function of the first kind. The Mittag-Leffler 

function of the second kind )(, zE has the following form  

          
0)Re(),Re(,

)(
)(

0

,

k

k

k

z
zE .                                    (1.2.6) 
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Obviously when 1 , one can see that both functions are same i.e., 

          
)()(1, zEzE .                                                                                         (1.2.7) 

Definition 1.2.1 A real function 0,)( xxf , is said to be in the space 

,,C  if there exists a real number p , such that )()( 1 xfxxf p , 

where ),0[)(1 Cxf . 

Definition 1.2.2 A function 0,)( xxf  is said to be in the space 

}0{, 0 NNnC n  iff  Cf n)( . 

In 1819, S. F. Lacroix became the first mathematician to present an article that 

mentioned fractional derivative (Ross (1975)). He expressed the n-th 

derivative of the function mxxf )( , where m is the positive integer as 

          

nmm

n

n

x
nm

m
x

dx

d

!)(

!
.                                                                              (1.2.8) 

Using the symbol , which denotes the generalized factorial, one can see that 

the generalization for a power function can also be extended to real numbers 

as 

          
xx

dx

d

)1(

)1(
.                                                                       (1.2.9) 

This shows the visualization of fractional calculus mathematically.  

1.2.4 Grünwald-Letnikove fractional integral 

In 1867, A. K. Grünwald proposed perhaps the most difficult, yet in some 

way the most natural approach for fractional differentiation. His method was 

based on the generalization of the finite difference quotients for fractional 

derivatives, obtaining the formula (Miller (1995)), 
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           .)()1(lim)(
0

jhtf
j

hxfD
h

at

j

j

h
xa                                             (1.2.10) 

1.2.5 Riemann-Liouville fractional integral 

The Riemann-Liouville fractional integral operator of order 0  of a 

function )(xf  is defined as 

          
,)()(

)(

1
)(

0

1 dfxxfJ
x

x ,0,0 x                                 (1.2.11) 

          .)()(0 xfxfJ x  

1.2.6 Riemann-Liouville fractional derivative 

The Riemann-Liouville fractional derivative operator of order 0  of a 

function )(xf  is defined as  

          .
)(

)(

)(

1

,1,))(()(

0

1
d

t

f

ndt

d

nnnxfJDxfD

t

nn

n

n

x

n

tx

                                     (1.2.12) 

1.2.7 Properties of the Riemann-Liouville operator 

The followings are basic properties of the Riemann-Liouville fractional 

integral operator xJ  for 0,,1,nCf  and 1 . 

(i) ,)()( xfJxfJJ xxx  

(ii) ,)()( xfJJxfJJ xxxx  

(iii) xxJ x
)1(

)1(
. 
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1.2.8 Caputo fractional derivative 

Caputo (1967) introduced the definition of fractional derivative of 0,)( xxf  

as 

          
.,1,)()(

)(

1

))(()(

)(

0

1 nnndfx
n

xfDJxfD

n
x

n

n

t

n

xx

c

     (1.2.13)    

1.2.9 Properties of the Caputo fractional derivative 

The properties of the Caputo fractional order derivative are given by  

(i) Let 01 , NnCf n
, then nxfDx

c 0),(  is well defined and 

1)( CxfDx
c . 

(ii) Let Nnnn ,1 and 1,nCf ,  then 

.0,
!

)0()()()(
1

0

)( x
k

x
fxfxfDJ

n

k

k
k

x

c

x  

In this thesis Caputo definition of fractional derivatives and integrals are 

considered. The important reason of choosing Caputo derivatives for solving 

initial value problem of fractional order differential equations is that it holds 

for both homogeneous and non-homogeneous conditions. Another 

importance of Caputo definition is that the Caputo derivative of a constant is 

zero, whereas in the case of a finite value of the lower terminal at the 

Riemann- Liouville fractional derivative of constant is not equal to zero but 

)1(
tCC

t
D . 
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1.3 Dynamical System 

A dynamical system is a concept in mathematics where a fixed rule describes 

the time dependence of a point in a geometrical space (wikipedia). To 

describe a dynamical system one needs to explain phase space or state space, 

whose coordinates describe exactly the state of some real or hypothetical 

system at any instant and a dynamical rule that specifies the immediate 

future of all state variables, given the current state of those same state 

variables.  In mathematical language, the dynamical rule is based on 

a function mapping that takes as its input the state of the system at one time 

and gives as its output the state of the system at the next time. Dynamical 

systems are deterministic if for a given time interval a unique future state 

follows from the current state, or stochastic or random 

1.4 Stability 

if there is a probability 

distribution of possible consequents. Mathematically, a dynamical system is 

described by an initial value problem. In this way, dynamical system can be 

considered to be a model describing the temporal evolution of a system. 

Modelling is a powerful analytical tool for understanding and predicting 

behavior of physical and artificial systems that changes over time and it has 

had a history of success.  

In the theory of dynamical system, stability analysis allows us to determine 

the stability of solutions of differential equations and of trajectories of 

dynamical systems under small perturbations of initial conditions. This is 

vital in an extensive variety of applications since much behaviour observed in 

the real world can be described using differential equations. 

Let us consider the autonomous system of ODE as  
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          ),,(

),,(

yxgyD

yxfxD

t

t
                                                                                           (1.4.1) 

where x  and y  are the state variables of the system, and f  and g  are 

specified nonlinear functions. The concepts equilibrium point and stability 

are motivated by the desire to keep a dynamical system in, or at least close to, 

some desirable state. The equilibrium point of a dynamical system is utilized 

for a state of the system that does not change in the process of time, i.e., if the 

system is in equilibrium at time t0, and afterward it will stay there for all 

times t > t0

),( ** yx

. A typical starting point for the analysis of (1.4.1) is to find out the 

equilibrium (fixed) points and to perform a local stability analysis. The 

equilibrium point, , satisfies 

          0),( yxf , .0),( yxg                                                                             (1.4.2) 

The behavior of solutions near ),( ** yx  can be examined by linearizing (1.4.1) 

at ),( ** yx . Considering *xx   and *yy  as the perturbations, the 

linearized system is given by  

          ,
),( ** yx

J

dt

d
dt

d

                                                                                     (1.4.3) 

where 
),( ** yx

J  is the Jacobian matrix at equlibrium point. The local stability of 

this system can be easily determined from the eigenvalues of the Jacobian 

matrix.  

Let us take an autonomous system of the form 

          )(xfxDt                                                                                                  (1.4.4) 
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Definition 1.4.1: A critical point ex  of the system (1.4.4)  is said to be stable if, 

for all  > 0 there is a  > 0 such that every solution )(tx  satisfying 

ex)0( exists for all positive t and satisfies 
ext)(  for all t  0. 

Definition 1.4.2: A critical point ex  is said to be asymptotically stable if it is 

stable and if there exists a 0, 00 with ,  such that if a solution )(tx  

satisfies 0)0( ex  then (t)  x  as t  . 

                

Fig. 1.1. Stability.                                        Fig. 1.2. Asymptotic stability. 

A geometrical interpretation of stability, and asymptotic stability notions are 

given in Figs. 1.1 and 1.2, respectively. They show typical behaviours of 

different solution trajectories as per the type of stability they possess. This is 

demonstrated geometrically that all solutions that start “sufficiently close” 

(within the distance ) to ex  stay “close” (within the distance ) to ex .  

However, the trajectory of the solution does not have to approach the critical 

point ex  as .t  A critical point which is not stable is said to be unstable. 

For the case of asymptotic stability, trajectories that start “sufficiently close” 

to ex  not only stay “close” but must eventually approach to ex  as t . 
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1.4.1 Lyapunov's Direct Method 

Stability Theory Early results include the work of the Russian mathematician 

A. M. Lyapunov, who, in 1892, gave the first precise definition of stability and 

developed the theory of stability of a motion or solution for a system of 

ordinary differential equations. The use of Lyapunov functions to prove 

stability has become common place and is known alternatively as the 

Lyapunov's direct method or Lyapunov's second method. Lyapunov's direct 

method involves determining a family of closed curves or closed surfaces in 

state space such that the general behavior of nearby trajectories of a 

dynamical system can be inspected. This technique is relevant for examining 

the global stability of nonlinear systems and for deciding trapping regions for 

a dissipative chaotic flow.  

Let us consider an autonomous nonlinear dynamical system 

          0)0()),(()( xxtxftx ,                                                                         (1.4.5) 

where nRDtx )(  is state vector, D is an open set containing the origin, and 

nRDf :  is continuous. Assume that 0x  be an equilibrium point of 

nonlinear system and consider RDV :  be a positive definite continuously 

differentiable function on an open neighborhood D  of the origin, such that 

0)(xV  in D  along the path of the system. Then )(xV  is called a Lyapunov 

function and the equilibrium point is stable in the sense of Lyapunov. 

Furthermore, if 0)(xV  in }0{D , then the equilibrium point is said to be 

asymptotically stable. 

Let 0x  be an equilibrium point of a nonlinear system )(xfx  and let 

RnRV :  be a positive definite continuously differentiable function, such 

that )(xV as x  and 
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0)(xV ,     0x , 

then equilibrium point 0x is globally asymptotically stable. Note that 

Lyapunov functions usually are not unique for a given system. 

1.4.2 Stability of Delay Differential Equations 

The study of stability of systems of differential equations which contain 

delays has been an active area of research in many fields of science and 

engineering. The question of stability of nonlinear functional differential 

equations is complicated by the lack of a complete Lyapunov functional 

structure whose existence is necessary for stability of a general nonlinear 

time-delay system. Lyapunov-Krasovskii stability criterion, introduced by 

Krasovskii (1959), can be interpreted as a natural generalization of the 

classical Lyapunov stability theory for ordinary systems to the case of time-

delay systems (infinite dimensional systems). The choice of an appropriate 

Lyapunov–Krasovskii functional is the key-point for deriving of stability 

criteria. For this reason, he extended the complete theory of Lyapunov by 

using functional RCV : where )],0,([ nRCC    

Theorem 1.4.1: (Krasovskii (1963)) Suppose that ),0[),0[:,, wvu are 

continuous nonnegative nondecreasing functions, )(),( svsu  are positive for 

,0s  .0)0()0( vu  If there is a continuous function RCV : , such that 

          
,),()())0(( CvVu  

          
),)0(()]())(.,([

1
suplim)('

0
wVxV

t
V t

t
 

then equilibrium point of time-delayed system 0x  is stable. If, in addition, 

0)(sw  for ,0s  then equilibrium point 0x  is asymptotically stable. 



CHAPTER 1

 

 15  

 

1.4.3 Stability of Fractional Order Systems 

This section presents the definitions for stability condition of certain class of 

the linear and nonlinear fractional order systems of finite dimension, which is 

of great interest towards the investigation of fractional order dynamical 

systems. It is important to note that the stability and asymptotic behavior of 

fractional order system are not of exponential type however it is in the form 

of power law )( Rt , the so called long memory behavior (Matignon 

(1996), Petras (2009)). 

Consider the n dimensional fractional order system 

          ),,........,,( 21 niit xxxf=xD i                                                                        (1.4.6) 

where ,10 i  is fractional order such that ,/ iii mk  ,1),gcd( ii mk  

,, Nmk ii  .,...,2,1 ni  and let m be the least common multiple of the 

denominators smi '  of si ' . i

tD  is the fractional order time derivative, then 

we have the following results: 

For the case, when the autonomous system (1.4.6) is linear that is 

Axxaxfxfxf n

jiij

T

n 1,21 ][])(),...,(),([  where 
nRx , then 

Matignon (1996) gave the qualitative result that the stability is 

guaranteed iff the roots of some polynomial lie outside the closed 

angular sector .2))arg(  Thus generalizing in an amazing way 

the well known results for the integer case .1  

If n21 ... , then the fractional order system is 

asymptotically stable iff 2))(arg( Aspec  and the system is stable 

iff 2))(arg( Aspec  with those critical eigenvalues which satisfies 
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2))(arg( Aspec  have geometric multiplicity one. In this case the 

components of the state decay towards zero like t . 

Later Deng et al. (2007) observed that that if all roots of the 

characteristic equation have negative real parts, then the equilibrium 

of the incommensurate linear system with fractional order is 

Lyapunov globally asymptotical stable if the equilibrium exists which 

is almost the same as that of classical differential equations. Thus, if 

i ’s are different rational numbers, then the system (1.4.6) is 

asymptotically stable if all roots of the equation 

0)),,,((det 21 A...diag n
mmm

 satisfy /2,>)arg(  where 

./1 m  

Again if the function if  is nonlinear and has second continuous partial 

derivatives in a ball centered at an equilibrium point ),........,( ,2,1 nxxxx  that 

is ,0)........,( ,2,1 ni xxxf  for every ,...,,2,1 ni  then we have interesting 

results: 

(Ahmed et al., (2007)) If n21 ... , then the equilibrium 

point x of the system (1.4.6) is asymptotically stable iff 

2))(arg(
x

Jspec , where the matrix  J  is Jacobian matrix of the 

system (1.33) which is defined by 

n

ji
j

i

x

f
J

1,

 

In the year 2009, Petras (2009) presented a survey paper where he 

reviewed the methods for stability investigation of a certain class of 

fractional order linear and nonlinear systems and illustrated the result 

that if i ’s are different rational numbers, then the equilibrium point 



CHAPTER 1

 

 17  

 

x of the system (1.4.6) is asymptotically stable if all the roots of the 

equation  

          0)),,,((det 21

x

n J...diag
mmm

                                   (1.4.7) 

satisfy .1 where /2,>)arg( /m  Then the condition inequality 

of this condition can be written in another way as 

          
.0)arg(min

2
i

im
                                                                  (1.4.8) 

Thus, equilibrium point of the system (1.4.6) is asymptotically stable if 

the condition (1.4.8) is satisfied. 

Hence, a fundamental condition for fractional order system to exhibit a 

chaotic attractor is  

          .0)arg(min
2

i
im

                                                                           (1.4.9)  

The aforementioned condition is a necessary condition for the existence of 

chaos. It might be utilized as a powerful tool to determine the minimum 

order for which a given fractional order system can’t observe chaotic attractor 

and for what value of fractional order derivative, the system may generate 

chaos (Tavazoei and Haeri (2007)). 

These stability results play an important role during the study of chaos and 

synchronization between fractional order systems. 

1.5 Chaos 

Chaos is derived from the significances a state without 

order or predictability. According to ancient Greek mythology, chaos is the 

“primeval emptiness preceding the genesis of the universe, turbulent and 

disordered, mixing all the elements" (William (1997)). 
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Chaotic dynamics may have had its early development with the work of the 

French mathematical physicist Henri Poincaré in the late 1800's (Poincaré 

(1890)). He attempted to tackle the issue of the motion of three objects in 

mutual gravitational attraction, the so-called three-body problem (Sun, planet 

and moon). Poincaré found that orbits are aperiodic, and yet not increasing 

infinitely (meaning deterministic) nor approaching any fixed points or limit 

cycles. He was able to show that complication in solving the three body 

problem was due to the sensitive dependence on initial conditions making 

long term prediction impossible. Therefore, Poincaré might be considered to 

be the first person to imagine “Chaos”. 

In 1898, Jacques Hadamard remarked general divergence of trajectories in 

spaces of negative curvature. He observed that all trajectories are unstable, in 

that, all particle trajectories separate exponentially from one another, with a 

positive Lyapunov exponent.   

One imperative year was 1963, when the meteorologist E.N. Lorenz 

contributed significantly to chaotic theory while concentrating the dynamics 

of the weather and described a simple mathematical model for forecasting the 

weather behaviour using computer simulations (Lorenz (1963)). Lorenz’s 

model was the first numerical model to analyze chaos in a non-linear 

dynamical system. His discovery planted the seed for the new hypothesis of 

chaos science. He also observed that the trajectory of the system being 

evolving with time in a complex and non-repeating pattern, oscillated in an 

irregular manner, but always remaining in a bounded region. Lorenz 

explained that whenever he started his simulations from two slightly 

different initial conditions, the ensuing result soon got to be entirely 

unexpected. He additionally noticed that the solution settled down in a 

fascinating butterfly shaped set of points, which caused the concept of this 

high level sensitive dependence on initial conditions to become popularly 
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known as the “butterfly effect”. Finally, he concluded that the earth’s weather 

is a chaotic and therefore, a long-range prediction is an impossible task. 

Lorenz’s work had little impact until the 1970’s and later it turned into a boon 

for chaos.  

In 1971, David Ruelle and Floris Takens described a phenomenon in an 

alternative mathematical explanation of the turbulence in fluid dynamics 

based on the existence of so-called "strange attractors" (Ruelle and Takens 

(1971)).  

In 1975, Li and Yorke showed the sustained aperiodic and unpredictable 

behaviors arising in deterministic nonlinear maps. Their research article (Li 

and Yorke (1975)) demonstrated the term chaos for the various phenomena 

that demonstrated aperiodicity along with sensitive dependence on initial 

conditions.  

What Lorenz accomplished for climate, Robert May (May (1976)) did for 

ecology. His work exhibited the logistic map as a plausible population model 

with a period-doubling cascade of bifurcations and chaotic trajectories. 

Some important works were carried out by the physicist Mitchell 

Feigenbaum, who discovered order in disorder and have rekindled interest 

towards low dimensional discrete dynamical systems. David Ruelle, Floris 

Takens and S. E. Newhouse have played an important role in the 

investigation of deterministic chaos in hydrodynamic systems. One of the 

foremost contributors to this area of research was Benoit Mandelbrot. Using a 

home computer, Mandelbrot (1982) spearheaded the mathematics of fractals. 

His fractals (the geometry of fractional dimensions) served to depict the 

actions of chaos, rather than explain it.   
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Currently, chaos theory grabbed the attention of the researchers and 

contributes to a significant amount of the ongoing research concerning 

numerous fields, such as electronic systems, message encryption, Brownian 

motion, change of the weather, evolution of the solar system, behavior of the 

stock markets, fluid dynamics, biological processes in the living organisms, 

control of chemical reactions, fluctuation of the astronomical orbit, 

information theory, etc. Before going for further study in the domain of chaos, 

let us make an attempt to characterize it.  

1.5.1 Definition of chaos 

Despite the fact there is no unified, universally accepted, rigorous definition 

of chaos in the current scientific literature however a commonly used 

definition confines the fundamental nature of chaos, which everyone will 

agree with the following quotation as mentioned by Strogatz (1994). 

“Chaos is aperiodic long-term behaviour, in a deterministic system that 

exhibits sensitive dependence on initial conditions.” 

The three properties of chaos mentioned in the definition might be explained 

as follows: 

"Aperiodic long-term behaviour" means that there are trajectories which do 

not settle down to fixed points, periodic orbits, or quasi-periodic orbits as 

time becomes large. 

"Deterministic" means that the system has no random or noisy inputs or 

parameters. The irregular behaviour arises from the system's nonlinearity, 

rather than from noisy driving forces. 
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"Sensitive dependence on initial conditions" means that nearby trajectories 

separate exponentially fast, i.e., the system has a positive Lyapunov 

exponent. 

Nowadays, chaos theory has four fundamental questions, which are chaos 

synchronization, chaos control, chaotification, and ultimate boundedness. 

Incredible advancement and interest have been attained in these areas. This 

thesis deals with the synchronization of time delayed chaotic systems and the 

synchronization between fractional order chaotic systems. 

1.6 Chaos Synchronization 

Fujisaka and Yamada (1983, 1983a, 1984) paved the way with their pioneering 

studies on chaos synchronization, but it was not until 1990 when Pecora and 

Carroll (1990) introduced their method of chaotic synchronization and 

suggested application to secure communications that  the subject received 

considerable attention within the scientific community. Pecora and Carroll 

wrote that 

“Chaotic systems would seem to be dynamical systems that defy synchronization. 

Two identical autonomous chaotic systems started at nearly the same initial points-in 

phase space have trajectories which quickly become uncorrelated, even though each 

maps out the same attractor in phase space. It is thus practical impossibility to 

construct, identical, chaotic, synchronized system in laboratory.” 

It might seem that the synchronization of chaotic systems is difficult to 

achieve due to their extremely sensitive dependence on initial conditions. The 

synchronization scenario has been of long standing interest and studied 

extensively. Synchronization of chaotic systems is defined as a process 

wherein two (or many) chaotic systems (either identical or nonidentical) 
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adjust a given property of their motion to a common behavior, due to 

coupling or forcing (Boccaletti et al. (2002)).  

This contribution of the present thesis reveals the significant influence of time 

delay and fractional order time derivative on chaos synchronization and has 

suggested a new approach to get the synchronization of chaotic systems. The 

methodologies applied in this thesis include both theoretical analysis and 

numerical simulation. 

1.6.1 Types of chaotic synchronization 

Inspired by the seminal works of Fujisaka and Yamada (1983, 1983a, 1984) 

and of Pecora and Carroll (1990) on synchronization of chaotic systems, 

various types of synchronization scenario have been investigated, viz. 

complete synchronization (Pecora and Carroll (1990)),  phase synchronization 

(Rosenblum et al. (1996)), anti-phase synchronization (Zhang and Sun (2004)), 

hybrid synchronization (Xie and Chen (2002), Sudheer and Sabir (2009)), lag 

synchronization (Rosenblum et al. (1997), Boccaletti et al. (2002)), generalized 

synchronization (Rulkov et al. (1995), Yang and Duan (1998)), projective 

synchronization (Mainieri and Rehacek (1999), Li and D. Xu (2004)), Function 

projective synchronization (Chen and Li (2007)), etc. These different types can 

be grouped into the following categories. 

1.6.1.1 Complete synchronization 

The easiest type of synchronization to detect is complete synchronization; it 

appears as the equality of the state variables while evolving in time. In 

complete synchronization the chaotic trajectories of the coupled systems 

remain in step with each other in the course of time. This is observed in 

coupled chaotic systems with identical elements (i.e., each component having 

the same dynamics and parameter set) and is also referred as  conventional 
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synchronization or identical synchronization. This kind of synchronization 

was first described by Pecora and Carroll (1990).  

Mathematically, two continuous-time chaotic systems 

          ))(()( txftx                                                                                             (1.6.1) 

and 

          )),(),(())(()( tytxtyfty                                                                  (1.6.2) 

where nRyx, are the state vectors, nn RRf : is continuous nonlinear 

vector functions and ),( yx is the vector controller, are said to be completely 

synchronized if ,0)()(lim txty
t

 for any combination of initial states x(0) 

and y(0). 

1.6.1.2 Anti- synchronization  

Anti-synchronization between two chaotic systems is occurred when the 

respective states of chaotic systems have the same magnitude but opposite in 

sign. It may takes place in both the identical and non-identical chaotic 

systems. Mathematically, the anti-synchronization of two chaotic systems 

          ))(()( txftx                                                                                             (1.6.3) 

and 

          )),(),(())(()( tytxtygty                                                                   (1.6.4) 

where nRyx, are the state vectors, nn RRgf :, are continuous nonlinear 

vector functions and ),( yx  is the vector controller, is achieved 

when ,0)()(lim txty
t

  for any combination of initial states )0(x  and )0(y . 
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1.6.1.3 Hybrid Synchronization  

Hybrid synchronization is an attractive case where one part of the system is 

anti- synchronized while the other part is completely synchronized so that 

complete synchronization and anti-synchronization co-exist in the system.  

1.6.1.4 Phase synchronization 

This scenario of the synchronization occurs when the coupled chaotic systems 

keep their phase difference bounded by a constant while their amplitudes 

remain uncorrelated (Rosenblum et al. (1996), Rosa et al. (1998)). This 

phenomenon is mostly achieved in coupled non identical systems. In case of 

phase synchronization, if )(1 t  and )(2 t denote the phases of the two 

coupled chaotic systems, synchronization of the phase is described by the 

relation )()( 21 tmtn , with m  and n  whole numbers.  

1.6.1.5 Projective synchronization 

Projective synchronization was proposed by Mainieri and Rehacek (1999) in 

partially linear systems, where they showed that the responses of two 

identical systems synchronized up to a constant scaling factor.   

Considering the drive and response systems in the form of 

          ))(()( txftx                                                                                              (1.6.5) 

and 

          ))(),(())(()( tytxutygty ,                                                                    (1.6.6) 

the error system is defined as 

          )()()( txtyte ,                                                                                      (1.6.7) 

where is a constant. 
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The systems (1.6.5) and (1.6.6) are said to be projective synchronized, if there 

exists a constant such that 0)(lim te
t

. 

Complete synchronization and anti-phase synchronization can be regarded as 

special cases of projective synchronization characterized by 1  and 1, 

respectively. Xu et al. (2001, 2002) introduced several control schemes based 

on Lyapunov stability theory to manipulate the scaling factor onto a required 

value, and derived a general condition for projective synchronization.  

1.6.1.6 Modified Projective synchronization 

Modified projective synchronization was proposed by Li (2007), where the 

chaotic systems could be synchronized to a constant scaling matrix. In the 

error system (1.13), if we replace  by a constant scaling matrix A  then the 

error system (1.13) becomes  

          )()()( txAtyte ,                                                                                     (1.6.8)  

where ),...,,( 21 naaadiagA is the scaling constant matrix such that si '  are 

constant scaling factors Ni . Then the systems (1.6.5) and (1.6.6) are said to 

be in modified projective synchronization, if there exists a constant scaling 

matrix A  such that 0)(lim te
t

. By choosing the scaling factors in the scaling 

matrix, one can flex the scales of the different states independently.  

1.6.1.7 Generalized synchronization 

Coupled chaotic systems are said to exhibit Generalized synchronization if 

there exists some functional relation between systems, i.e., ))(()( txty , 

means the states of the two interacting systems are functionally synchronized. 

This type of synchronization occurs mainly when the coupled chaotic systems 

are different, although it is also been investigaed between identical chaotic 
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systems. Projective synchronization is a particular case of generalized 

synchronization where one-to-one mapping function is a simple linear 

function )())(( txtx . 

1.6.1.8 Function Projective Synchronization 

Function Projective Synchronization generalizes projective synchronization, 

in which drive and response systems are synchronized up to a scaling 

function )(t , but not a constant. Firstly, Chen and Li (2007) had introduced 

function projective synchronization.  

Considering the drive and response systems as 

          ))(()( txftx                                                                                              (1.6.9) 

and 

          ))(),(())(()( tytxutygty ,                                                                  (1.6.10) 

where 
nRyx, are the state vectors, nn RRgf :, are continuous nonlinear 

vector functions and ),( yxu  is the controller function. The error system is 

written as 

          )()()()( txttyte ,                                                                                (1.6.11)  

where )(t is the continuously differentiable function with  tt 0)( . 

The systems (1.6.9) and (1.6.10) are said to be function projective 

synchronized, if there exists a scaling function )(t such that 0)(lim te
t

. 

The freedom of choosing the scaling function in FPS has advantage and can 

additionally enhance the security of communication.  
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1.6.1.9 Modified Function Projective Synchronization 

Modified Function Projective Synchronization is more general than modified 

projective synchronization and FPS. In this method the responses of the 

synchronized dynamical states synchronize up to a desired scaling function 

matrix. 

In the error system (1.6.11), if we replace )(t  by a function scaling matrix 

)(tA , then the error system becomes  

          )()()()( txtAtyte ,                                                                               (1.6.12) 

where ))(),...,(),(()( 21 tatatadiagtA n  is the function scaling matrix such that 

nitai ,...,2,1,0)(  are the continuously differentiable function for all t. Then 

the systems (1.6.9) and (1.6.10) are said to be in modified function projective 

synchronized, if there exists a function scaling matrix )(tA  such that 

0)(lim te
t

. It is obvious that compared with FPS, the MFPS can provide 

more security in communication. 

1.6.1.10 Anticipating and Lag synchronization 

In these cases, the synchronized state is characterized by a time interval  

such that the dynamical variables of the chaotic systems are related 

by )()( txty , which means that the dynamics of one of the systems follows 

or anticipates the dynamics of the other. These types of synchronization 

0

may 

occur in time-delayed chaotic systems, coupled in a drive-response 

configuration. In case of Anticipating synchronization, , the response 

anticipates the dynamics of the drive. In lag Synchronization, 0 , appears 

as the asymptotic boundedness of the difference between the output of one 

system at time t and the output of the other shifted in time of a lag time.   
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In particular, if the time delay may become zero, i.e., 0 , the anticipating 

synchronization and lag synchronization are further simplified to complete 

synchronization. 

1.6.2 Methodology of chaos synchronization 

In this sub-section, a non exhaustive rapid overview of methods for obtaining 

the synchronization is discussed  in detail. The most  effective and  widely 

studied approach  is discovered by L. M. Pecora and T. L. Carroll where they 

synchronized two identical chaotic systems with different initial conditions 

(Pecora and Carroll (1990, 1991)).  Active control, adaptive control, feedback 

control and tracking control methods have been extensively studied in recent 

literature for obtaining various types of synchronization.  

1.6.2.1   Active control method 

 In 1997, E. W. Bai and K. E. Lonngren proposed the active control method. 

The proposed scheme has received considerable attention during the last few 

decades. The method of synchronizing two identical chaotic systems through 

active control method can be illustrated by using following algorithm.  

Let us consider the chaotic system in the form of 

          )),(()()( txftxAtDx                                                                            (1.6.13) 

where ,)( nRtx  is the state vector, A  is constant matrix and 

nn RRf : defines the non-linear function. For investigating the chaos 

synchronization, the drive and response systems are represented as 

          )),(()()( 111 txftxAtxD

   

                                                                    (1.6.14) 

          

),())(()()( 222 ttxftxAtDx                                                            (1.6.15) 
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where nRt)(  is the active control functions. If we define the error state as  

)()()( 12 txtxte , the error dynamical system becomes 

          

).())(())(()()( 12 ttxftxfteAtDe                                             (1.6.16) 

Design the active controller function )(t  as  

          ),())(())(()( 21 tVtxftxft  

where )(tV  is the linear control function, as a function of )(te . There are many 

possible choices for the linear control function )(tV . We choose, )()( tMetV , 

where M  is a constant matrix, the elements of the matrix M  are properly 

chosen in such a way that the error system will have all eigen values with 

negative real parts. Finally the error dynamical system reduces to 

          ).()()( teMAtDe                                                                               (1.6.17) 

This choise leads to the error system converges to zero as time t tends to 

infinity and thus the synchronization of two chaotic systems is achieved i.e., 

.0)(lim te
t

This method can also be applied for the synchronization of non-

identical chaotic systems. 

1.6.2.2    Adaptive control method 

Most of the analyses in synchronization involve two identical or non-identical 

chaotic systems under the hypotheses that all the parameters of the drive and 

response systems are known a priori. But in practical situations, there exists 

partially or even fully uncertain parameters in either/both drive system 

and/or response system that may destroy the synchronization and even 

break it.  The conventional control approaches are not applicable in such case, 

as the desired synchronization would be destroyed by these uncertainties.  So 

it is necessary to design adaptive controller and parameter update laws of 
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unknown parameters for synchronization of coupled chaotic systems. The 

definition of adaptive synchronization implies that no direct information 

about the system parameters is available for designing the controller 

functions and update laws (Zang et al. (2006), Chen et al. (2002a), Sun (2013)). 

Consider the drive system as  

)()(' xFxfx                                                                                    (1.6.18) 

and the response system as  

),()()(' tyGygy                                                                        (1.6.19) 

where nRyx, are the state vectors of drive and response systems 

respectively, 
mR, are the unknown parameter vectors, nRygxf )(,)(  

and nxmRyGxF )(,)(  are nonlinear functions, the elements )(xFij  in matrix 

)(xF  and )(yGij  in matrix )(yG  are satisfying n

ij RxLxF ,)( and 

n

ij RyLyG ,)( respectively and nRt)(  is the controller to be 

determined. 

Let, xye  be the synchronization error vector. Then the error dynamical 

system can be written as  

          ).()()()()(' txFxfyGyge                                                 (1.6.20) 

If nonlinear controller is designed as (Zang et al. (2006))  

keyGygxFxft ˆ)()(ˆ)()()(                                            (1.6.21) 

and adaptive law of parameters are taken as 

,)](['ˆ

,)](['ˆ

eyG

exF

T

T

                                                                                   (1.6.22)  
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where k is a positive constant, ˆandˆ are estimated values of the unknown 

parameters and , respectively. 

Consider a Lyapunov function as 

        
],[

2

1 TTT eeV  

where )ˆ(  and )ˆ(  are the estimation errors of the parameters 

and . The time derivative of V  along the the trajectories of (1.6.20) is 

        
.''))ˆ)(()ˆ)((( TTT kexFyGeV  

Applying the parameter update laws rule, we get  

            
,ekeV T  

where nRV  is positive definite function and nRV ' is negative definite 

function. Therefore, according to Lyapunov stability theorem, the error 

system is globally and asymptotically stable which means that the 

synchronization of coupled chaotic systems is achieved and it is also seen that 

the parameters’ estimation errors  and  decay to zero as time goes to 

infinity. 

1.6.2.3   Tracking control method 

Tracking control method is mainly applied for the synchronization of chaotic 

systems with different order. The fractional order chaotic drive and response 

systems are defined as  

          
)(xFx=Dt                                                                                                (1.6.23) 

and  
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),,()( xyyGx=Dt                                                                               (1.6.24) 

where 1,0 are fractional order time derivatives, nRx y, are n-

dimensional state vectors of the systems (1.6.23) and (1.6.24) respectively. 
nn RRGF :,  are two continuous nonlinear vector functions, 

nnn RRyx :),(  is a controller function which have to be determined.  For 

the systems (1.6.23) and (1.6.24), if there exists a control function ),( yx  such 

that 

          
,0)(limlim xxKye

tt
                                                                   

 
(1.6.25) 

where nT

n Reeee ),....,( 21 is an error state vector, 

)),(),....,(),(()( 21 xkxkxkdiagxK n  
ni ,....,2,1  is a continuous scaling 

function, such synchronization is called FPS. Based on the idea of tracking 

control, in order to achieve the equation (1.6.25), it is assumed that the 

function 

          eyxNxxKGxxKDyx t ),())(())((),(                                           (1.6.26) 

is a suitable control function, where nnRyxN ),( . Using equation (1.6.26), 

the error system is obtained as 

          
,)),(),(( eyxNyxMe=Dt                                                                  (1.6.27) 

where nnRxxKGyGeyxM ))(()(),( is a polynomial matrix. Now with 

proper choice of ),,( yxN  if all the eigenvalues of matrix ),(),( yxNyxM  

have negative real part, then 
2

)(arg i  , where ,,...2,1, nii  are the 

eigenvalues of the matrix ),(),( yxNyxM . Thus the error dynamical system 

(1.6.27) is locally asymptotically stable and as a consequence FPS between the 
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systems (1.6.23) and (1.6.24) is achieved (Zhou and Zhu (2011), Hegazi et al. 

(2013)). 

1.7 Numerical Methods 

1.7.1 Runge-Kutta method for Delay Differential Equations 

In 2001, L.F. Shampine and S. Thompson (Shampine and Thompson (2001)) 

developed a program, dde23, to solve delay differential equations (DDEs) 

with constant delays in MATLAB. The aim was to make it as easy as possible 

to solve effectively a large class of DDEs.  The method was proposed based 

on the Runge–Kutta triple BS(2,3) used in ode23, which was nicely explained 

how explicit Runge-Kutta triples can be extended and used to solve DDEs. 

Let us consider a system of the nonlinear delay differential equation as 

          
,)),(),...(),(),(()(' 21 btatytytyt,yt=fty k                      (1.7.1) 

with the initial history  

          ,)()( at,tSty                                                                                       (1.7.2) 

where ),...,2,1( kjj  are constant delays such that 0),...,min( 1 k . 

In order to motivate the construction of numerical strategy for DDEs let us 

discuss the explicit Runge-Kutta triples to solve the general ordinary 

differential equation as  

          
,)),(()(' btat,yt=fty                                                                          (1.7.3) 

with the initial condition ).(ay   
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Assuming an approximation as ),( nn tyy let us proceed to obtain the 

approximation at nnn htt 1 . A triple of s stages involves three formulas. For 

,,...,2,1 si  the stages ),( ninini ytff  are defined in terms of  ninni hctt   and 

          
1

1

i

j

njijnnni fahyy  . 

Considering ),( nn yt  as an increment function, the approximation used to 

advance the integration is 

          

).,(

1

1

nnnn

s

i

niinnn

ythy

fbhyy
 

The solution satisfies this formula with a residual called the local truncation 

error, ,nlte  

          ,),()()( 1 nnnnnn lteythtyty  

which provides an error )( 1p

nhO  for sufficiently smooth f and )(ty . Selecting 

the step size triple gives rise to another formula as 

          

).,(*

1

**

1

nnnn

s

i

niinnn

ythy

fbhyy
 

The solution satisfies this equation with a local truncation error *

nlte  that 

is )( p

nhO . The third formula is given by 

          

),,,(

)(
1

nnnn

s

i

niinnn

ythy

fbhyy
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where coefficients )(ib are polynomials in , so this represents a polynomial 

approximation to )( nn hty  for .10 The third formula is described as a 

continuous extension of the first because it yields the value ny when 0 and 

1ny when 1  and  assume that the order of the continuous extension is 

same as that of the first formula. These assumptions hold for the BS(2,3) 

triple. For such triples we regard the formula used to advance the integration 

as just the special case 1of the continuous extension. The local truncation 

error of the continuous extension is defined by 

          ).()),(,()()( nnnnnnn ltetythtyhty  

Assume that for smooth f and )(ty , there exists a constant 1C  such that 

1

1)( p

nn hClte  for .10  

Now the main problem is to establish approximation to the delayed term 

)(ty which consists of two cases nh  and jnh for some j and assume 

an approximation as )()( tSty  is accessible for all nxx . If nh , then all 

nini tt  and ))(),...,(,,( 1 kninininini tStSytff  is an explicit form of the 

stage and thus the formulas are explicit. After taking the step to nx , we use the 

continuous extension to characterize )(tS on ],[ 1nn tt  as nnn yhtS )( . 

For the second case, the implicit formulas may be evaluated that arise when 

the step size is bigger than  that is jnh  for some j, the history term )(tS  is 

evaluated in the span of the current step and the formulas are defined 

implicitly. Defining )(tS for ,nxx  when reaching nx and extend its definition 

somehow to ],( nnn htt and represent the resulting function as )(0 tS . The 

simple iteration starts with the approximate solution )()( tS m . The following 

iterations are computed with the explicit formula as 
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          )).(:),(,()()( )()1( tStythtyhtS m

nnnnnn

m  

1.7.2 A Predictor-Corrector Approach for Fractional-Order Differential 

Equations 

The investigation of an algorithm for the numerical solution of nonlinear 

fractional-order differential equations, equipped with suitable initial 

conditions can be found in the research articles of Diethelm (Diethelm et al. 

(2004), Diethelm and Ford (2004)). The scheme is the generalization of 

classical one-step Adams–Bashforth–Moulton scheme for first order 

equations. The algorithm may be used even for nonlinear problems, and it 

may also be extended to multi-term equations which involve more than one 

differential operator. 

Let us consider the following nonlinear fractional order differential equation 

          
,0)),(()( Ttt,yt=ftyDt                                                                    (1.7.4) 

with the initial conditions  

          ,1,,.......1,0)0( )(

0

)(
mk,yy kk

                                                            (1.7.5) 

where m  is the smallest integer  i.e., ],1( mm  and the 

differential operator is the Caputo derivative. 

The initial value problem (1.7.4)-( 1.7.5) is equivalent to the Volterra integral 

equation 

          

ds.sy,sfst+
k

t
yty

tk

k

k ))(()(
)(

1

!
)(

0

1
1

0

)(

0                                       (1.7.6) 
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Before using the Adams-Bashforth-Moulton algorithm to solve the fractional-

order differential equations, let us furnish a brief idea idea of the classical 

one-step Adams-Bashforth-Moulton algorithm for the following ODE: 

          0)0()),(()( yyt,yt=ftDy                                                                      (1.7.7) 

Consider the uniform grid }...,,1,0:,{ Njjht j  with some integer N for the 

interval ],0[ T , where NTh /  be the step size. Approximating ),( jj tyy  

,...,,2,1 nj the wish to compute an approximation 1ny  may be computed 

through the equation 

          

1

))(()()( 1

n

n

t

t

nn ds.sy,sf+tyty                                                                   (1.7.8) 

Since the integral in the aforementioned equation can be approximated by 

two-point trapezoidal quadrature formula, 

          ))).(())(((
2

))(( 11

1

nnnn

t

t

ty,tfty,tf
h

dssy,sf
n

n

                                (1.7.9) 

Thus 

          )),()((
2

111 nnnnnn y,tfy,tf
h

yy                                                    (1.7.10) 

which is an implicit one-step Adams–Moulton method and cannot be solved 

directly. Therefore, one should adopt another numerical method to 

approximate 1ny  in the right-hand side preliminarily in order to obtain a 

better approximation. The preliminary approximation ,1

p

ny the so-called 

predictor can be obtained by forward Euler or one-step Adams–Bashforth 

method as 
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          ).(1 nnn

p

n y,thfyy                                                                                (1.7.11) 

Therefore, the one-step Adams-Bashforth-Moulton method for ODEs is 

          )].()([
2

111

p

nnnnnn y,tfy,tf
h

yy                                                    (1.7.12) 

The equations (1.7.11) and (1.7.12) are known as predictor and corrector 

respectively. It is well known (Hairer et al. (1993)) that this method is 

convergent of order 2, i.e., 

          ).()(max 2

,...,1,0
hOyty jj

Nj
 

Now we use an algorithm that generalizes the Adams method to solve the 

fractional-order differential equations. To construct the required algorithm, 

Diethelm et al. (2004), used the product trapezoidal quadrature formula to 

replace the integral of eq. (1.59), where nodes )1...,,1,0( njt j   are used 

with respect to the weight function ..)( 1

1nt  Thus one can write the integral 

part of eq. (1.7.6) as 

,)(
)1(

)()(
1

0

1

0

1

1

1 n

j

jj,n+

t

n tga
+

h
duugut

n

 

where 

,n+=jif

,njifj+njn+jn

,=jifn+nn

=a +++

+

n+j,

1,1

0,)1(2)()2(

0,)1()(

111

1

1
        (1.7.13) 

the equation (1.7.6) reduces to 

,ty,tf
+

h
ty,tfa

+

h
+

k

t
y=ty n+

p

hn+

n

j

jhhj,n+

k

k

n+k

n+h ))((
)2(

))((
)2(!

)( 11

0

1

1

0

1)(

01     (1.7.14) 
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where predicted value )( 1n+

p

h ty is determined by the fractional Adams–

Bashforth method 

          ))((
)(

1

!
)(

0

1
1

1][

0

)(
01 jhj

n

j

n+j,

k
n+

k

k
n+

p
h t,ytfb

k

t
y=ty ,                               (1.7.15) 

with 

          
))()1((1 jnjn+

h
=b n+j,

.                                                             (1.7.16) 

Thus the equations (1.7.14) and (1.7.15) with the weights 1n+j,a  and 1n+j,b  

describes the fractional Adams-Bashforth-Moulton method.   

Error in this method is  

          
)()()(max

,.....1,0

p

jhj
Nj

hOtyty ,                                                                (1.7.17) 

where )1,2min(p .                  


