Chapter 3

Transport, magnetic and structural properties of Mott insulator MnV₂O₄ at the boundary between localized and itinerant electron limit

3.1 Introduction

In recent years the Vanadium oxide spinels have attracted much attention because of the orbital degeneracy, and the interplay of spin, orbital and lattice degrees of freedom. This interplay arises not only from conventional spin-orbit coupling but also from the fact that the occupation of the specific orbitals with geometrical anisotropy prefers specific types of magnetic interaction in specific direction (the so-called Kugel-Khomskii type coupling) [1]. In spinel Vanadate the magnetic V^{3+} ions with t_{2g} orbital degeneracy are located at vertices of a network of corner sharing tetrahedral that is magnetically frustrating. Many studies have been done to understand the mechanism of these AV₂O₄ Vanadates [2-4], where A is a non-magnetic species such as Mg, Zn, or Cd. Usually Vanadates undergo a contraction along the c-axis, which favors the d_{xy} orbital to be occupied by a t_{2g} electron of every V^{3+} ions. The second t_{2g} electron either occupies different d_{yz} and d_{zx} orbitals alternately along the c-axis [5] or occupies the same $d_{yz}\pm id_{zx}$ [6] or forms the more complex pattern [7]. A common feature found in these materials is a sequence of two phase transitions [2-4]. The higher temperature transition is a structural distortion involving a compression of the VO₆ octahedra and a consequent parallel lifting of the orbital degeneracy. The orbital ordering is accompanied, at lower temperature by an antiferromagnetic ordering.

Moreover, the AV₂O₄ spinels are a family of Mott insulators. Essentially, Mott insulators are paradigmatic examples of strongly correlated materials. The strong-coupling limit, U >> t (U is the inter-atomic Coulomb energy and t is the spin dependent expectation value for the charge transfer between sites), corresponds to materials in which valence electrons are strongly localized in their atomic orbitals (Mott-Hubbard insulator). The opposite weak-coupling limit, U << t, corresponds to correlated metals whose electrons are completely delocalized (Paramagnetic metal). This implies that a Mott transition is induced at a critical value Uc/t [8]. These AV₂O₄ spinels fulfill the criterion of varying the t/U ratio because of the metal-metal distance can be changed by applying the chemical pressure i.e., by changing the size of the A²⁺ cation [9]. It is highly challenging to characterize the electronic properties of materials when approaching the quantum phase transition (QPT) either from Mott insulator side or from the paramagnetic metal side. The absence of e_g electrons in these vanadates makes direct V-V hybridization between t_{2g}

orbitals, the only relevant contribution to the hopping amplitude. Moreover, *t* is also a function of the interionic distance, *R*. This volume dependency [10] is the basis of the phenomenological Bloch's equation [11] for magnetic insulators: $\alpha_B \approx -3.3$ provided *U* remains constant. When approached towards itinerant-electron behaviour the α_B value is very sensitive so that it can indicate the applicability of crystal-field theory [12,13]. Blanco-canosa *et al.* have shown that as the V-V separation decreases, α_B value increases progressively in the Mott-insulator region [9]. The large value of α_B is due to the anomalous compressibility near magnetic transition at the crossover from a longer to a shorter equilibrium V-V bond [9].

Recent attention has turned to MnV₂O₄ [14-17]. This MnV₂O₄ lies in the Mott insulator regime and $\alpha_B \approx -9.9$ [9]. Also, in this case Mn²⁺ is in the 3d⁵ high-spin configuration with no orbital degrees of freedom, and can be regarded as a simple S=5/2spin. On the other hand, the B-site is occupied by the V^{3+} ion, which takes the $3d^2$ highspin configuration in the triply degenerate t_{2g} orbital, and has orbital degrees of freedom. MnV₂O₄ exhibits a collinear ferrimagnetic ordering at T_C=57 K, where the magnetic moments of the Mn and the V sites align in opposite direction. It then exhibits a structural phase transition from a cubic to a tetragonal phase at T_S=53 K, with the spin structure becoming non-collinear [14]. It was also observed that the cubic to tetragonal transition could be induced by a magnetic field of few Tesla [15, 16]. In addition, it has been pointed out [18] that the orbital state of MnV₂O₄ cannot be explained simply by anti-ferro orbital model. Zn doping also revealed that the structural phase transition from a cubic to a tetragonal phase is a co-operative phenomena dominated by orbital degrees of freedom [15]. Moreover, Zn is non-magnetic and therefore, doping of Zn on Mn site may affect both $T_{\rm C}$ and $T_{\rm S}.$ In this perspective the detail study of Zn doping in MnV_2O_4 will be highly interesting to throw light on the mechanism of MnV₂O₄ regarding the appearance of magnetic and structural transitions. On the other hand, Cr doping at the V site may change the orbital ordering as for Cr all the t_{2g} levels are full. In this study, we have investigated the transport, magnetic and structural properties of MnV₂O₄ by doping Zn on the Mn site and Cr on the V site. It has been observed that with Zn doping both the Curie temperature (T_c) and structural transition temperature (T_s) decrease while the gap between them

increases rapidly. On the other hand, with Cr-doping on the V site the T_C remains almost constant but T_S decreases rapidly.

3.2 Experimental

Block diagram of the solid state reaction technique, to synthesize Zn and Cr doped MnV_2O_4 , has been given below.

Fig. 3.1. Block diagram of solid state reaction technique to synthesize $Mn_{1-x}Zn_xV_2O_4$ and $Mn(V_{1-x}Cr_x)_2O_4$.

The polycrystalline $Mn_{1-x}Zn_xV_2O_4$ and $Mn(V_{1-x}Cr_x)_2O_4$ samples used in this study were prepared by solid state reaction method. Appropriate stoichiometric ratio of MnO, ZnO/Cr₂O₃ and V₂O₃ were ground thoroughly and pressed into pellets. The pellets were sealed in evacuated quartz tube and heated at 950 °C for 40 hours. The X-ray powder diffraction has been taken using Rigaku MiniFlex II DEXTOP X-ray diffractometer with Cu-Ka radiation. Magnetic measurement was done using MPMS SQUID (Quantum Design) magnetometer with the bulk samples. Data were collected upon warming up the sample. The resistivity and thermoelectric power measurements were performed in a homemade liquid Nitrogen Cryostat. The thermoelectric power has been measured by differential technique keeping the temperature difference between the two ends of the sample (length ~5 mm) about 0.5 K–1.0 K. The Neutron diffraction measurement was performed on the neutron powder diffractometer (PD2) at Bhabha Atomic Research Centre, Mumbai, India using neutrons of wavelength, λ =1.2443 Å.

3.3 Results and Discussion

3.3.1 Magnetic Property

Fig 3.2. Temperature variation of magnetization of $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1) measured at H=100 Oe. Inset shows the plot of dM/dT vs. T indicating two transitions.

Fig. 3.2 shows the temperature dependence of magnetization of $Mn_{1-x}Zn_xV_2O_4$ under zero field cooled (ZFC) and field cooled (FC) condition at 100 Oe. The M-T curve of MnV_2O_4 exhibits a sharp paramagnetic-ferrimagnetic (PM-FM) phase transition. The Curie temperature T_C , defined by the minimum in dM/dT as a function of T, has been determined to be~58K. With further decrease of temperature the ZFC and FC curves exhibit a considerable divergence indicating the presence of magnetic frustration which might be due

to the existence of a long range ordered state [19]. It has been reported that the paramagnetic to ferrimagnetic transition is a second order transition and the transition at the lower temperature (~52K), which is associated with the orbital ordering of V ions (also the structural transition from cubic to tetragonal phase) is first order in nature [14]. Both the T_C and T_S (structural transition temperature) have been determined from the dM/dT vs. T curve (shown in the inset of Fig. 3.2).

Fig 3.3. Temperature variation of magnetization of $Mn(V_{1-x}Cr_x)_2O_4$ (with x = 0.05, 0.1) measured at H=500 Oe. Inset shows the plot of dM/dT vs. T indicating two transitions.

For Zn=0.05 and 0.1 the T_C decreased from 58 K (x=0) to 52.5 K and 47 K respectively whereas the T_S decreased from 53 K (for x=0) to 39 K and 29 K respectively. It is to be noted here that the value of the magnetization increases with the Zn content which is also consistent with the report by Adachi *et. al.* [15] which is due to the change of canting angle with Zn doping [15]. Although both T_C and T_S decrease with Zn content, the difference between these two increases with increase of Zn concentration. It has been shown by Garlea *et. al.* [20] that the structural transition is associated with a non-collinear ferrimagnetic structure (Mn spins are non-collinearly oriented with the V spins). As Zn is non-magnetic, with increase of Zn the non-collinear orientation will decrease.

Moreover, homopolar bonding is formed when the metal-metal separation R \geq Rc. In homopolar bonding the V-V pairing in the tetragonal phase neither suppresses totally the

spin on a Vanadium ions nor removes geometric frustration completely which leads to a short range magnetic order below T_C (and T_S) and an incommensurate spin density wave [9]. This has been confirmed by NMR, muon spin resonance, neutron diffraction and neutron scattering studies [21-23]. In the observed magnetization behaviour the decrease in T_C can be explained as the residual spins on the V-V pairs are reduced with chemical pressure which leads to the decrease of long range magnetic ordering T_C . On the other hand, when Cr is doped on the Vanadium site it is observed that with 5% Cr doping the T_C decreases only slightly (Fig. 3.3) and with further increase of Cr (10%) there is no observable change in T_C . Initially, with Cr doping due to lattice distortion some change in the spin canting occurs which in effect decreases T_C slightly. With further increase of Cr the structure becomes stable and as a matter of fact no further change in canting takes place which leads to constant value of T_C with Cr content.

3.3.2 Structural Analysis

In order to monitor the changes in the crystal and magnetic structure across the transitions we have performed Neutron diffraction and X-ray diffraction experiments. Fig. 3.4 shows the evolution with temperature of integrated intensities of $(220)_T$ reflection obtained from X-ray diffraction. It is observed from the integrated intensity vs. temperature curve that all the three samples undergo a cubic to tetragonal structural transition. For x=0, 0.05 and 0.1 the T_s are, respectively, 50 K, 40 K and 32 K. These values are consistent with those obtained from magnetic measurement. The transition can also be shown from the indexing of peaks at different temperatures. We have shown the splitting of peaks with temperature of x=0, 0.05 and 0.1 samples in Fig. 3.5(a) which clearly shows the occurrence of tetragonal distortion by the splitting of the (400) peak into (220)_T and (004)_T peaks. In Fig. 3.5(b) the systematic occurrence of tetragonal distortion of MnV₂O₄ has been shown.

Fig. 3.4. Integrated intensity of (220) for $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1).

Fig. 3.5. (a) Splitting of $400 \rightarrow (220)_T + (004)_T$ of $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1) obtained from XRD and (b) shows systematic evolution of Tetragonal distortion for x=0.1 sample.

Fig. 3.6. Neutron diffraction pattern of MnV_2O_4 at 300 K and 6 K. The tick marks indicate the position of the nuclear (top) and magnetic (bottom) reflections, respectively.

Fig. 3.6 shows a representative neutron diffraction pattern of MnV_2O_4 at 300 K and 6 K. Significant enhancement in the intensity of the first three reflections (indexed in the figure) is observed on lowering of temperature indicating the magnetic contributions to the intensity. We have analyzed the diffraction pattern of all the samples using the Rietveld refinement method above and below the structural transition. The magnetic structure model chosen is similar to that reported by Garlea *et. al.* [20]. The space group used above the T_s

is Fd-3m and I4₁/a below the transition. The parameters obtained from combined refinement of X-ray diffraction and neutron diffraction data are summarized in Table 3.1 for $Mn_{1-x}Zn_xV_2O_4$ (where x=0, 0.05 and 0.1) and refinement of X-ray diffraction data of $Mn(V_{1-x}Cr_x)_2O_4$ (where x =0.05, 0.1) are summarized in Table 3.2. The c/a ratio in the low temperature phase for MnV_2O_4 obtained from the fitting is 0.9894, whereas for x=0.05 and 0.1 the values are respectively, 0.9909 and 0.9926. For all the cases the V-O values indicate the VO₆ octahedral is compressed along the c-direction and with Zn concentration the distortion decreases.

Table 3.1. Structural parameters (lattice parameters, bond lengths) of $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1) samples obtained from neutron and X-Ray Diffraction data refinement. The structural data have been refined with Space group I41/a at 6K and Fd-3 m at 300 K:

	6K			300К			
Bonds (Å)	X=0.0	X=0.05	X=0.1	Bonds (Å)	X=0.0	X=0.05	X=0.1
Mn- O		22.022(2)	2 021(2)	Mn- O	$4 \times 2.043(1)$	4×2 0338(6)	4×2 0326(9)
Mn- O	4×2.034(3)	2×2.032(2)	2.021(2)	WIII- O	4/ 2.045(1)	+*2.0350(0)	4/2.0520(5)
		2×2.032(2)	2.021(2)		(((
V- 0	2×2.030(3)	$2 \times 2 014(3)$	2.022(3)	V - O	6× 2.023(1)	6× 2.0249(6)	6× 2.0234(9)
V - O		2.014(3)			2 2 4 2 2 (1)		
V- V	4×2.033(2)	4×2.027(1)	2.024(1)	V- V	3.0130(1)	6×3.0105 (1)	6×3.0105 (1)
v – v		4×3.0029(2)	2.9990(2)				
V- V	4×3.0117(2)	2×3.0167(2)	3.0102(2)				
a (Å)	6.0555(3)	6.0333(3)	6.0203(4)	8.522	20(7)	8.5150(3)	8.5092(9)
b (Å)	6.0555(3)	6.0333(3)	6.0203(4)	8.5220(7)		8.5150(3)	8.5092(9)
c (Å)	8.4726(9)	8.4546(8)	8.4507(9)	8.5220(7)		8.5150(3)	8.5092(9)
	NL 0.0		N/ 0.0			N. O. 1	
м	X=0.0 at	6 K	X=0.05 at 6 K			X=0.1 at 6 K	
M _{Mn}	4. / $\mu_{\rm B}$ paral	lel to c.	4. / $\mu_{\rm B}$ parallel to c.			4. $\mu_{\rm B}$ parallel to c.	
IVIV		i angle with	$0.5 \mu_{\rm B}$ at at	angie with c.		$0.5 \mu_{\rm B}$ at an ar	igie with c.
c/a	0.9894	0.9909	0.9926			1	
0,0	5.7071		0.7720				

This distortion splits the triply degenerate t_{2g} orbitals into an *xy* orbital with lower energy and doubly degenerate *yz* and *zx* orbital with a higher energy. It has been explained that in MnV₂O₄ Orbital ordering occurs immediately after the spin ordering because the long-range spin ordering endows the orbital system with a one-dimensional character along the c-axis which produces a strong Jahn-Teller lattice distortion coupled with Orbital ordering [24]. In the present investigation also with doping of Zn the Jahn-Teller distortion decreases. Therefore, the more rapid decrease of T_S is due to the fact that with Zn-doping the Jahn-Teller effect decreases which leads to the decrease of the effective exchange interaction between Mn and V which in effect decreases the temperature where noncollinear ferromagnetic state appears resulting the rapid decrease of T_S with Zn doping.

Table 3.2. Structural parameters (lattice parameters, bond lengths) of $Mn(V_{1-x}Cr_x)_2O_4$ (with x=0.05, 0.1) samples obtained from Rietveld refinement of X-ray diffraction data. The structural data have been refined with Space group I41/a at 10K and Fd-3 m at 300K:

						c/a
		a(Å)	6.034(3)	d(Mn-O)(Å)	4×2.007(0)	
$Mn(V_{0.95}Cr_{0.05})_2O_4$	10K	b(Å)	6.034(3)	d(V-O) (Å)	2×2.031(3),	0.9908
					4×2.038(3)	
		c(Å)	8.453(9)	d(V-V)(Å)	2×2.031(3),	
					4×2.038(3)	
				d(Mn-O)(Å)	4×2.049(8)	
	300K	a(Å)	8.508(1)	d(V-O) (Å)	6×2.014(2)	
				d(V-V)(Å)	6×3.008(1)	
		a(Å)	6.029(2)	d(Mn-O)(Å)	4×2.006(6)	
	10K	b(Å)	6.029(2)	d(V-O) (Å)	2×2.033(4),	0.9927
$Mn(V_{0.9}Cr_{0.1})_2O_4$					4×2.036(6)	
		c(Å)	8.462(8)	d(V-V)(Å)	2×3.014(6),	
					4×3.003(4)	
				d(Mn-O)(Å)	4×1.992(3)	
	300	a(Å)	8.507(8)	d(V-O) (Å)	6×2.043(9)	1
	K			d(V-V)(Å)	6×3.008(0)	-

Moreover, for the Cr doped sample the T_S becomes very low. This might be the fact that Cr^{3+} has no orbital ordering (as all t_{2g} levels are full) and as a consequence the orbital ordering decreases with Cr doping resulting lower T_S .

3.3.3 Transport Property

Fig. 3.7. Temperature dependent (a) Electrical resistivity of $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1) and $Mn(V_{1-x}Cr_x)_2O_4$ (with x = 0.05, 0.1) (b) $ln(\rho)$ vs 1000/T for $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1) and $Mn(V_{1-x}Cr_x)_2O_4$ (with x = 0.05, 0.1).

The temperature dependence of resistivity for Zn and Cr doped MnV_2O_4 is shown in Fig. 3.7(a). The resistivity shows semiconducting behaviour within our temperature range of measurement. The resistivity of doped and undoped MnV_2O_4 can be well fitted by $\rho=\rho_0exp(E_a/kT)$ for nearest-neighbour hopping of polarons [Fig. 3.7(b)], where E_a is the

activation energy. With increasing Zn content, the resistivity and E_a both decrease. It has also been mentioned that with increase of Zn content T_C also decreases. Studies on AV_2O_4 have indicated that with decreasing V-V distance, these Vanadates approach from localization limit to the itinerant-electron limit. MnV_2O_4 is well inside the localization limit [25] and this shows abnormal properties. For example, MnV_2O_4 shows a large pressure dependence of T_C which leads to phenomenological Bloch's parameter α_B =-9.9 [25], showing the breakdown of the Bloch law [26].

Fig. 3.8. Seebeck coefficient as a function of (a) Temperature and (b) 1000/T for $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1) and $Mn(V_{1-x}Cr_x)_2O_4$ (with x = 0.05, 0.1).

In the present investigation as we increase the Zn content (i.e. the chemical pressure) it is also observed the estimated Bloch's parameter is very large. The large α_B is due to an anomalous compressibility near T_C as predicted for a double-well potential at the crossover from a longer to a shorter equilibrium V-V bond can perturb the periodic potential to trap the charge carriers, which gives a dominant variable range hopping (VRH), given by $\rho = \rho_0 \exp[To/T^{1/4}]$, transport behaviour [27]. For VRH model, the constant $T_0 = \alpha^3/k_B N(E_F)$, where α^{-1} is the localization length, k_B is the Boltzmann constant, and $N(E_F)$ is the density of localized states at Fermi level. It is not possible that the Zn doping on the Mn site can change the $N(E_F)$ which in effect can account for the large decrease of T_0 . But, the decrease of T_0 may indicate the increase of localization length α^{-1} which leads to electronic delocalization.

Table 3.3. Transport parameters E_a (obtained from resistivity data using small polaron hopping model), E_s (obtained from thermo-electric power data) and T_o (obtained from resistivity data using Variable range hopping model) for the spinels $Mn_{1-x}Zn_xV_2O_4$ (with x=0, 0.05, 0.1) and $Mn(V_{1-x}Cr_x)_2O_4$ (with x = 0.05, 0.1):

	E _a (eV) (Arrhenius Model)	E _s (eV)	T _o (K) (VRH model)
MnV ₂ O ₄	0.224358	0.2666	5.12×10 ⁸
Mn _{0.95} Zn _{0.05} V ₂ O ₄	0.210328	0.1709	4.15×10 ⁸
$Mn_{0.9}Zn_{0.1}V_2O_4$	0.197398	0.1078	3.52×10 ⁸
Mn(V _{0.95} Cr _{0.05}) ₂ O ₄	0.225844	0.2805	9.08×10 ⁸
$Mn(V_{0.9}Cr_{0.1})_2O_4$	0.234464	0.0401	12.27×10 ⁸

On the other hand, with increasing Cr content both resistivity and E_a increase. Moreover T₀ decreases with increase of Cr content which in effect increase the localization. The thermoelectric power (TEP) data for Zn doped and Cr doped MnV₂O₄ samples are shown in Fig. 3.8(a). It is observed that with Zn doping the TEP value decreases which clearly indicates that with decrease of V-V separation the system moves towards the itinerant electron limit. But interestingly it is observed that with Cr doping although the metal-metal separation increases the TEP value decreases and with 10% doping below a critical temperature it drops abruptly. The activation energy has been estimated from the resistivity data using the small polaron hopping model. According to the small polaron theory the thermo-power can be expressed as

$$S(T) = k_B / e[E_s / k_B T + \alpha]$$
(3.1)

where, E_s is the activation energy for the TEP and α is the sample dependent constant. All the samples (except the 10% Cr doped sample) obey the prediction of the small polaron theory, as S vs 1000/T curves fit well with straight lines (Fig. 3.8(b)). From the linear fit of the curves the obtained activation energies for thermo-power along with those obtained from resistivity data are shown in Table-3.3. The different values of the activation energies for the resistivity and the TEP are consistent with the conduction due to hopping of charge carriers. Moreover, the S(T) value is large and positive which indicates that there is only a low density of mobile holes in these vanadates and the thermally activated behaviour of small polarons for all these vanadates is observed. Therefore, the possibility of the existence of the large polaron which forms due to non-stoichiometry can be excluded. At high temperature the estimated activation energy, E_s is found to decrease with increase of Zn content but to increase initially with increase of Cr (5%) content. But when 10% Cr is doped the Es value decreases abruptly. The E_s is directly proportional to the trapping enthalpy. Therefore, with increase of Zn content a trapping out of mobile holes decreases whereas for low Cr doping the trapping increases. This indicates that when Zn is doped the system moves from localized to itinerant electronic behavior whereas for Cr doping the system moves from itinerant to localized electronic behavior which is the characteristic of a narrow band where as mentioned above the appearance of a double-well bond potential introduces lattice instabilities. For 10% Cr doping the TEP value (also E_s) decreases and below 140 K sign change (positive to negative) occurs. It may happen that with 10% Cr doping band gap increases which may lead to the decrement of the mobility of the polaronic holes than the mobility of the electronic polarons at low temperature. Therefore for the region of the localized electron limit the mobility of the electronic polarons dominate and at the crossover from itinerant to localized electronic behavior the mobility of the polaronic holes dominate.

3.4 Conclusion

The size of the magnetization increases with the Zn content which is due to the change of canting angle with Zn doping. With increase of Zn the non-linear orientation of Mn spins with the V spins decreases. The decrease in T_C with Zn doping can be explained as the residual spins on the V-V pairs are reduced with chemical pressure which leads to the decrease of long range magnetic ordering. The rapid decrease of T_S is due to the decrease of Jahn-Teller effect which leads to the decrease of the effective exchange interaction between Mn and V resulting the decrease of T_s rapidly. It is observed from the VRH model that the Zn doping on the Mn site cause the increase of localization length α^{-1} which leads to electronic delocalization. But, with increasing Cr content the localization increases. Therefore, when Zn is doped the system moves from localized to itinerant electronic behavior whereas for Cr doping the system moves from itinerant to localized electronic behavior which is the characteristic of a narrow band where the appearance of a double-well bond potential introduces lattice instabilities. For 10% Cr doping the TEP value decreases and below 140K sign change (positive to negative) occurs. With the 10% Cr doping band gap increases which may lead to the decrement of the mobility of the polaronic holes than the mobility of the electronic polarons at low temperature. Therefore for the region of the localized electron limit the mobility of the electronic polarons dominate and at the crossover from itinerant to localized electronic behavior the mobility of the polaronic holes dominate.

References

- Kugel, K. I. and Khomskii, D. I., Crystal Structure and Magnetic properties of substances with orbital degeneracy., J. Exp. Theo. Phys., 37, 725-730, 1973.
- [2]. Mamiya, H., Onoda, M., Furubayashi, T., Tang, J. and Nakatani, I., Structural and magnetic studies on vanadium spinel MgV₂O₄, J. Appl. Phys., 81, 5289-5291, 1997.
- [3]. Ueda, Y. and Fujiwara, N., Magnetic and Structural Transitions in (Li xZn 1- x)V 2O 4 with the Spinel Structure, J. Phy. Soc. Jpn., 66, 778-783, 1997.
- [4]. Nishiguchi, N. and Onoda, M., A pseudotetramer in the geometrically frustrated spinel system CdV₂O₄, J. Phys. Condens. Matter, 14, L551-L557, 2002.
- [5]. Tsunetsugu, H. and Motome, Y., Magnetic transition and orbital degrees of freedom in vanadium spinels, Phys. Rev. B, 68, 060405/1-060405/4, 2003.
- [6]. Tchernyshyov, O., Structural, Orbital and Magnetic Order in Vanadium Spinels, Phys. Rev. Lett., 93, 157206/1-157206/4, 2004.
- [7]. Khomskii, D. I. and Mizokawa, T., Orbitally Induced Peierls State in Spinels, Phys. Rev. Lett., 94, 156402/1-156402/4, 2005.
- [8]. Brinkman, W. F. and Rice, T. M., Application of Gutzwiller's Variational Method to the Metal-Insulator Transition, Phys. Rev. B, 2, 4302-4304, 1970.
- [9]. Blanco-Canosa, S., Rivadulla, F., Pardo, V., Baldomir, D., Zhou, J. S., García-Hernández, M., López-Quintela, M. A., Rivas, J. and Goodenough, J. B., Enhanced Pressure Dependence of Magnetic Exchange in AV₂O₄ Spinels Approaching the Itinerant Electron Limit, Phys. Rev. Lett., 99,1872 01, 2007.
- [10]. Harrison, W. A., Electronic structure and the properties of solid: The Physics of the chemical bond (W. H. Freeman & co. San Francisco, 1980), 1980.
- [11]. Bloch, D., The 103 law for the volume dependence of superexchange, J. Phys. Chem. Solids, 27, 881-885, 1966.
- [12]. Zhou, J. S. and Goodenough, J. B., Pressure-Induced Transition from Localized Electron Toward Band Antiferromagnetismin LaMnO₃, Phys. Rev. Lett., 89, 087201/1-087201/4, 2002.
- [13]. Goodenough, J. B., Longo, J. M. and Kafalas, J. A., Band antiferromagnetism and the new perovskite CaCrO₃, Mater. Res. Bull., 3, 471-481, 1968.

- [14]. Plumier, R. and Sougi, M., Observation of a first order transition in the ferrimagnetic spinel MnV₂O₄, Solid State Commun., 64, 53-55, 1987.
- [15]. Adachi, K., Suzuki, T., Kato, K., Osaka, V., Takata, M. and Katsufuji, T., Magnetic-Field Switching of Crystal Structure in an Orbital-Spin-Coupled System:MnV₂O₄, Phys. Rev. Lett., 95, 197202/1-197202/4, 2005.
- [16]. Suzuki, T., Katsumura, M., Taniguchi, K., Arima, T. and Katsufuji, T., Orbital Ordering and Magnetic Field Effect in MnV₂O₄, Phys. Rev. Lett., 98, 127203/1-127203/4, 2007.
- [17]. Baek, S. H., Choi, K. Y., Reyes, A. P., Kuhns, P. L., Curro, N. J., Ramanchandran, V., Dalal, N. S., Zhou, H. D. and Wiebe, C. R., Ac susceptibility and ⁵¹V NMR study of MnV₂O₄, J. Phys. Condens. Matter, 20, 135218/1-135218/6, 2008.
- [18]. Chung, J. H., Kim, J. H., Lee, S. H., Sato, T. J., Suzuki, T., Katsumura, M. and Katsufuji, T., Magnetic excitations and orbital physics in the ferrimagnetic spinels MnB₂O₄ (B=Mn,V), Phys. Rev. B, 77, 054412/1-054412/5, 2008.
- [19]. Huang, Y.,Qu, Z. and Zhang, Y., The magnesium doping effect of the vanadate spinel MnV₂O₄, J. Mag. Mag. Materials, 323, 975-979, 2011.
- [20]. Garlea, V. O., Jin, R., Mandrus, D., Roessli, B., Huang, Q., Miller, M., Schultz, A. J. and Nagler, S. E., Magnetic and Orbital Ordering in the Spinel MnV₂O₄, Phys. Rev. Lett., 100, 066404/1-066404/4, 2008.
- [21]. Uttgen, N. B., Krimmel, A., Loidl, A., Klemm, M., Horn, S., Noakes, D. R., Schreier,
 E. and Kalvius, G. M., Magnetic correlations in frustrated LiV₂O₄ and ZnV₂O₄,
 Physica B, 703, 312–313, 2002.
- [22]. Rechuis, M., Krimmel, A., Buttgen, N., Loidl, A. and Prokofiev, A., Crystallographic and magnetic structure of ZnV₂O₄, Eur. Phys. J. B, 35, 311-316, 2003.
- [23]. Lee, S. H., Louca, D., Ueda, H., Park, S., Sato, T. J., Isobe, M., Ueda, Y., Rosenkranz, S., Zschack, P., Íñiguez, J., Qiu, Y. and Osborn, R., Orbital and Spin Chains in ZnV₂O₄, Phys. Rev. Lett., 93, 156407/1-156407/1, 2004.
- [24]. Zhou, H. D., Lu, J. and Wiebe, C. R., Spin ordering and orbital ordering transitions in MnV₂O₄, Phys. Rev. B 76, 174403/1-174403/6, 2007.
- [25]. Goodenough, J. B., Structure & Bonding (Springer-Verlag, Berlin, 2001), 98, Chaps. 1 and 2, 2001.

- [26]. Pardo, V., Blanco-Canosa, S., Rivadulla, F., Khomskii, D. I., Baldomir, D., Wu, H. and Rivas, J., Homopolar Bond Formation in ZnV₂O₄ Close to a Metal-Insulator Transition, Phys. Rev. Lett., 101, 256403/1-256403/1/4,2008.
- [27]. Kismarahardja, A., Brooks, J. S., Kiswandhi, A., Matsubayashi, K., Yamanaka, R., Uwatoko, Y., Whalen, J., Siegrist, T. and Zhou, H. D., Co[V₂]O₄: A Spinel Approaching the Itinerant Electron Limit, Phys. Rev. Lett., 106, 056602/1-056602/4, 2011.