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1.1 Introduction 

Transition-metal oxides with spinel structure have drawn much attention over many years 

because of their intriguing physical phenomena, such as orbital ordering, geometrically 

frustrated magnetism, and charge ordering, due to an intricate coupling among their orbital, 

spin, and charge degrees of freedom. These compounds consist of a tetrahedrally 

coordinated A site and an octahedrally coordinated B site, as schematically shown in Fig. 

1.1. The B sites form a network of corner-sharing tetrahedra, giving rise to the geometric 

frustration. The rich physics of the spinel compounds arises from various possible 

combinations of spin, charge, and orbital degrees of freedom of the A-site and B-site 

cations and their coupling to the lattice. Another interesting aspect of AV2O4 is that the 

system approaches Mott Insulator to the itinerant-electron limit with decreasing V-V

separation (Rv-v).

1.1.1 Mott-Insulator

Strong interactions between electrons in a solid material can lead to surprising 

properties. A prime example is the Mott insulator, in which suppression of conductivity 

occurs as a result of interactions rather than a filled Bloch band [1].

Mott insulators are a class of materials that should conduct electricity under 

conventional band theories, but are insulators when measured (particularly at low 

temperatures). This effect is due to electron–electron interactions, which are not considered 

in conventional band theory. The Hubbard model offers one of the most simple ways to get 

insight into how the interactions between electrons can give rise to insulating, magnetic,

and even novel superconducting effects in a solid. It was written down in the early 1960’s 

and initially applied to understanding the behavior of the transition metal monoxides (FeO, 

NiO, CoO), compounds which are antiferromagnetic insulators, yet had been predicted to 

be metallic by methods which treat strong interactions less carefully. Over the intervening 

years, the Hubbard model has been applied to the understanding of many systems, from 

‘heavy fermion’ systems in the 1980’s, to high temperature superconductors in the 1990’s. 

Indeed, it is an amazing feature of the model that, despite its simplicity, its exhibits 

behavior relevant to many of the most subtle and beautiful properties of solid state systems. 
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The Hubbard model has been studied by the full range of analytic techniques developed by 

condensed matter theorists, from simple mean field approaches to field theoretic methods 

employing Feynman diagrams, expansions in the degeneracy of the number of ‘flavors’ 

(spin, orbital angular momentum), etc. It has also been extensively attacked with numerical 

methods like diagonalization and quantum monte carlo. More formally, this model can be 

cast into a model Hamiltonian, the so-called Hubbard model [2]. In second quantization of 

quantum-field theory, the corresponding Hamiltonian is

                                                                                                                                                                                       

                         =   +  +  , ,                                   (1.1)

            where the operator r Rj) . The 

first term is nothing but the tight-binding model of band structure (in second quantization), 

where t is the hopping amplitude depending on the overlap of the wavefunctions from 

nearest-neighbor atoms at R1 and R2

                    t =   (  )
|   |

(  )  .                                                          (1.2)

It describes the kinetic energy gain due to electron hopping. 

The second term is the potential energy due to doubly-occupied orbitals. Here, =

  the r Rj) and U is the Coulomb repulsion 

between two electrons in this orbital,

                U =
|  | |  |

|  |
  ,                                                                     (1.3)

The Hubbard model is a so-called lattice fermion model, since only discrete lattice sites are 

being considered. It is the simplest way to incorporate correlations due to the Coulomb 

interaction since it takes into account only the strongest contribution, the on-site Coulomb 

interaction.
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          The strong-coupling limit, U >> t (U is the inter-atomic Coulomb energy and t is the 

spin dependent expectation value for the charge transfer between sites), corresponds to 

materials in which valence electrons are strongly localized in their atomic orbitals (Mott-

Hubbard insulator). The opposite weak-coupling limit, U << t, corresponds to correlated 

metals whose electrons are completely delocalized (Paramagnetic metal). This implies that 

a Mott transition is induced at a critical value Uc/t [3]. As a matter of fact, paramagnetic 

metals and Mott-Hubbard insulators represent two fundamentally different phases that can 

be interchanged by increasing or decreasing electronic correlations through a first-order 

quantum phase transition (QPT) [4]. It is highly challenging to characterize the electronic 

properties of materials when approaching the QPT either from Mott insulator side or from 

the paramagnetic metal side. Among very few materials, the AV2O4 spinels are a family of 

Mott insulators that fulfill the criterion of varying the t/U ratio because of the metal-metal 

separation can be changed by applying the chemical pressure i.e., by changing the size of 

the A
2+

cation [5]. The absence of eg electrons makes direct V-V hybridization between t2g

orbitals the only relevant contribution to the hopping amplitude. Moreover, t is also a 

function of the interionic distance, R. This volume dependence between d orbitals is J/V
-10/3

[6], which is the basis of the phenomenological Bloch’s equation [7] for magnetic 

TN/ V=-3.3 provided U remains constant. When approached towards 

itinerant-

applicability of crystal-field theory.

1.1.2 Geometrically Frustration in AV2O4

Geometrical frustration arises when geometrical constraints promote a locally 

degenerate ground state. A periodic system with this local geometry may 'freeze' on cooling 

forming 'ices' or remain liquid down to the lowest temperatures due to quantum effects. A 

third possibility is that of a structural phase transition that lowers the local symmetry and 

lifts the degeneracy. A classic examples of geometrical frustration are the so-called 

pyrochlore lattice, which is also found in AV2O4 spinels.
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1.1.3 AV2O4 systems    

Vanadium spinel oxides AV2O4 (A =Fe
2+

, Mn
2+

, Co
2+

, Zn
2+

, Mg
2+

), where A
2+

and 

V
3+

ions occupy the tetrahedral (A site) and octahedral (B site) sites, respectively, have two 

3d electrons in the triply degenerate t2g states at V
3+

site. When A site is replaced by some 

non magnetic ion [e.g. Zn] it shows many interesting properties.

1.1.3.1 ZnV2O4

Ueda et. al. [8] had studied the magnetic and structural properties of LixZn1-xV2O4 at 

low temperature and found that ZnV2O4 goes from cubic to tetragonal structure at 50 K and 

it goes from paramagnetic phase to antiferromagnetic phase at 40 K. The substitution of Li 

at Zn site suppress the structural transition and a new spin glass state appears as the ground 

state of Cubic phase in 0.1 < x < 0.9 and its magnetic property study also confirmed that 

it’s a frustrated magnetic system.

Reehuis et. al. [9] report on the crystallographic and magnetic structure of the 

geometrically frustrated spinel ZnV2O4 as determined by neutron powder diffraction. At T

= 51 K, a cubic-to-tetragonal phase transition takes place. The low temperature 

crystallographic structure is characterized by the space group I41/amd and unit cell 

dimensions 2 2 × a with a being the lattice constant of the cubic phase. The 

corresponding antiferromagnetic structure of the vanadium sublattice can be described by a 

propagation vector k = (001) with the magnetic moments being aligned parallel to the c-

axis. The ordered magneticmoment is 0.65(5) µB per V
3+

ion. The experimental results are 

in accord with recent theoretical models proposing spin-driven Jahn-Teller distortions. The 

results are also compared with reports on non-ordering ZnV2O4 .

Lee et. al. [10] shows from neutron diffaraction experiment on powder sample  that 

ZnV2O4 is a system of spin chains that are three-dimensionally tangled in the cubic phase 

above 50 K due to randomly occupied t2g orbitals of V3 (3d
2
) ions. Below 50 K in the 

tetragonal phase, the chains become straight due to antiferro orbital ordering. This is 
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evidenced by the characteristic wave vector dependence of the magnetic structure factor 

that changes from symmetric to asymmetric at the cubic-to-tetragonal transition.

Ebbinghaus et. al.[11] have performed X-ray and Magnetic measurement on single 

crystal and found different behviour from polycrystalline sample. They didn’t find any 

structural transition and antiferromagnetic transition down to 2 K. They found a spin glass 

behavior at 11 K which shows that single crystals are more disorder. 

Zhang et. al. [12] studied Orbitally degenerate frustrated spinels, Cd xZnxV2O4, with 

0  x  1 which were investigated using elastic and inelastic neutron scattering techniques.

They found that with x=0 and 1, a tetragonal distortion c/a has been observed upon cooling 

mediated by a Jahn-Teller distortion that gives rise to orbital ordering. This leads to the 

formation of spin chains in the ab-plane that upon further cooling, Néel ordering is 

established due to interchain coupling. In the doped compositions, however, the bulk 

susceptibility, shows that the macroscopic transitions to cooperative orbital ordering and 

long-range antiferromagnetic ordering are suppressed. However, the inelastic neutron 

scattering measurements suggest that the dynamic spin correlations at low temperatures 

have similar one-dimensional characteristics as those observed in the pure samples. The 

pair density function analysis of neutron diffraction data shows that the local atomic 

structure does not become random with doping but rather consists of two distinct 

environments corresponding to ZnV2O4 and CdV2O4. This indicates that short-range orbital 

ordering is present which leads to the one-dimensional character of the spin correlations 

even in the low temperature cubic phase of the doped compositions.

Takubo et. al. [13] have studied the electronic structure of the spinel-type V oxides 

LiV2O4, ZnV2O4, and CdV2O4 using X-ray photoemission spectroscopy. The charge 

transfer energy was estimated from the valence-band photoemission spectrum. Using the 

transfer integrals deduced from the Harrison rule, the exchange interaction due to d-d

transfer was found to be larger than that due to p-d transfer , consistent with the 

existing theoretical models. The slight decrease of in going from the Li to Zn to Cd 

system would be the origin of the different magnetic properties of the three V oxides.
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Specific heat and magnetic susceptibility of CdV2O4, ZnV2O4 and MgTi2O4 pellet 

samples have been studied over a wide temperature range by Vasiliev et. al. [14]. At lower 

temperature, both V-based spinels exhibit structural transitions followed by 

antiferromagnetic ordering, TS = 89 K, TN = 30 K in CdV2O4, and TS = 45 K and TN=31 K 

in ZnV2O4. In Ti-based spinel the complex metal–insulator-phase transformation occurs at 

TMI = 260 K comprising of structural transition and a spin-singlet ground state formation.

Kuntscher et al. [15] have reported high-pressure resistivity and optical 

measurements in ZnV2O4 that provide unambiguous evidence of an unusual nonmonotonic 

, as a function of pressure P. These unexpected results suggest 

that ZnV2O4 undergoes a crossover from a Mott insulator with a charge gap dominated by 

the on-site Coulomb repulsion U, to a second type of insulator in the high pressure regime.

     On the other hand, when A site is replaced by Magnetic ions, different properties 

emerges. 

1.1.3.2 MnV2O4

According to previous studies [16,17], MnV2O4 exhibits a ferrimagnetic ordering at 

TN=56 K, where the magnetic moments of the Mn and the V sites align to the opposite 

direction, and then a structural phase transition from a cubic to a tetragonal phase at Ts = 53

K. Associated with this structural phase transition, the spin structure changes from a 

collinear Neel configuration to a noncollinear ‘‘triangular’’ structure. These results imply 

that the structural phase transition at 53 K is dominated by the orbital degrees of freedom 

on the V site, and there is an interplay between orbital and spin degrees of freedom in this 

compound. Polycrystalline samples of MnV2O4 and doped Mn1-xZnxV2O4 and Mn(V1-

xAlx)2O4 were studied by Adachi et al. [18] and he found that when the parent compound 

and Mn1-xZnxV2O4 are compared, both TN and Ts decrease with Zn substitution. The 

decrease of TN can be explained by the decrease of the number of Mn spins. Associated 

with the suppression of TN, Ts is also lowered but still exists in the Mn-site substituted 

samples. The size of magnetization increases with Zn doping, suggesting that the canting 
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angle of the triangular structure changes with Zn doping. It is to be noted that the deviation 

between cooling and warming runs exists far above Ts for the striction measurement of Zn-

doped samples, indicating that, though a global crystal structure is cubic, a local lattice 

distortion is occurring even above Ts. On the other hand, the behavior of the V-site 

substituted samples is totally different. It has been shown that TN does not substantially 

decrease, or it even increases with Al substitution for the V site. Furthermore, both the 

decrease of L/L and the dip of M are smeared out, but they exhibit a monotonic T

dependence below TN in Mn(V1-xAlx)2O4, indicating that Ts disappears with the V-site 

substitution. The Al ions with no orbital degrees of freedom act as a random field on the V

orbital and suppress the V orbital ordering. Such a substantial effect of a small amount of 

impurities indicates that the structural phase transition from a cubic to a tetragonal phase is 

a cooperative phenomenon dominated by orbital degrees of freedom. He also showed that 

with increasing magnetic field the structural transition temperature increases, which 

indicates a magnetic-field switching of crystal structure from a cubic to a tetragonal phase.

Garlea et al. [19] performed Neutron Scattering Experiment on MnV2O4 and found 

that how the existence of two consecutive magnetic transitions. The first transition is from 

a paramagnetic to collinear ferrimagnetic state. At a slightly lower temperature the 

ferrimagnetic state becomes noncollinear, with V spins developing AFM components in the 

ab plane. There is a simultaneously structural distortion to an orbitally ordered tetragonal 

phase. The appearance of an anisotropy gap indicates a strong influence of the V orbital 

angular momentum. They also calculated the critical exponent for MnV2O4 and it may be 

pointed out that the obtained values are close to those of the 3D Heisenberg or 3D Ising

models.

Chung et al. [20] have measured spin wave excitations using neutron scattering and 

determined the effective spin Hamiltonians for MnB2O4 (B=V,Mn) in their noncollinear 

ferrimagnetic phases. In spite of the tetragonal distortions occurring in the opposite 

directions, the exchange interaction strength between magnetic B-site ions was always 

stronger in the ab plane JBB than between the planes J BB. The ratio between these two 

constants in MnV2O4, JBB / J BB = 0.31, suggests that the orbital state of MnV2O4 may not 

be explained by the simple antiferro orbital model. The microscopic spin Hamiltonian 
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obtained for MnV2O4 provides a strict test for theoretical models for the orbital physics of 

vanadates.

Hardy et al. [21] have performered magnetization, susceptibility and heat-capacity 

measurement on MnV2O4 ceramic samples. A combined analysis of magnetic and heat-

capacity measurements in MnV2O4 clearly demonstrates that the ordering process in zero 

field takes place in two steps. The first transition taking place at TN =57 K is a second order 

transition from paramagnetic to collinear ferrimagnetic regimes, keeping the cubic 

structure. It can be regarded as the standard spin ordering driven by the JAB interaction in 

spinel oxides of general formula AB2O4. The second transition at lower T is a 

magnetostructural transtion driven by an orbital ordering at the B sites. It occurs upon 

warming at T s = 55.5 K and upon cooling at T s = 54.5 K. This ordering of the t2g orbital of 

V
3+

implies tetragonal distortion which in turn allows the triangular ferrimagnetic 

configuration to set in. Indeed, this spin ordering that is, the expected ground state in the 

presence of antiferromagnetic JAB and JBB interactions is unstable in cubic symmetry 

whereas it can take place in tetragonal symmetry. Upon application of magnetic field, the 

ferrimagnetic collinear state extents to higher temperatures large positive dTC/dH slope, 

while two first order transition lines emerge from Ts. The one at higher T small positive 

dTc/dH slope corresponds to the magnetostructural transition from cubic/collinear to 

tetragonal/triangular ferrimagnetism. Its field dependence results from a strong interplay of 

spin and orbital orderings. The second first order transition we observed in the phase 

diagram of MnV2O4 has a negative dTc/dH slope. We tentatively ascribe this new line to a 

phenomenon of field-induced alignment within the structure of tetragonal domains. The 

resulting development of strains at the interfaces between domains. 

Pannunzio-Miner et al. [22] have presented the electrical transport and magnetic 

susceptibility data of Mn Vx+1O4 (x=0, 1/3, and 1) spinels. All the samples studied 

present semiconducting, positive Magneto Resistance and paramagnetic behavior 

associated with ferrimagnetic order at low temperature. They also found an important 

difference between the activation energies obtained from the Seebeck coefficient and 

electrical resistivity experiments. This difference is a clear indication that the predominant 
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conduction mechanism is by small polarons. In particular these polarons are thermally 

activated in the non-adiabatic regime.

Luo et al. [23] observed large magnetocaloric values for MnV2O4 system. Luo et al.

[24] also observed large orbital entropy in Zn doped MnV2O4. Huang et al. [25] showed 

that doping of Fe on MnV2O4 increases the Magnetocaloric value of MnV2O4 and also it 

suppresses the orbital entropy value. 

Kiswandhi et al. [26] have studied the chemical pressure effect (doping of Co on Mn 

site) on  magnetic and transport properties of Mn1-xCoxV2O4 and also compared it with 

external pressure effect and found that for Mn CoxV2O4, with increasing Co doping, the 

increasing chemical pressure (i) enhances the ferrimagnetic transition; (ii) suppresses the 

structural distortion; and (iii) drives the system towards the itinerant electron limit by 

shrinking the V-V distance. The effects on AV2O4 of chemical pressure are similar to the 

effects of physical pressure [27], confirming that the V-V distance is a critical parameter 

controlling the structural, magnetic, and electronic behavior of AV2O4 spinels.

1.1.3.3 FeV2O4

In FeV2O4 both Fe and V have orbital degree of freedom due to which it show more 

complex behavior compared to other vanadium spinels. According to previous studies [28],

FeV2O4 becomes a ferrimagnetic state below TN = 110 K and exhibits successive structural 

phase transitions at 140 K from cubic to tetragonal, 110 K from tetragonal to orthorhombic

and 70 K from orthorhombic to tetragonal. In the low-temperature tetragonal phase at 70 K,

the c axis is elongated and the magnetic moment is preferably oriented to that direction. 

Katsufuji et al. [29] have also studied the structural and magnetic properties of 

FeV2O4 and found that it exhibits successive structural phase transitions from cubic, HT 

tetragonal, orthorhombic, LT tetragonal, to LT orthorhombic phases with decreasing 

temperature. They found that the tetragonal or orthorhombic domains can be aligned by the 

magnetic field owing to the magnetic anisotropy energy, and this induces a large 

magnetostriction (1%) in this compound. They also found that the magnetically easy axis is 
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along the ab-plane in the HT tetragonal phase, while it is along the c-axis in the LT 

tetragonal phase. A possible scenario for the successive structural phase transitions might 

be the competition and cooperation of Fe2p and V3p orbital’s.

Nishihara et al. [30] have also studied the magnetic properties of FeV2O4 and found 

spin glass ordering is present in FeV2O4 at 85.5 K. The magnetization jumps in the M-H

curves appeared below 90 K at H = 0 T. These jumps may correlate with spin-glass-like 

behaviors. Further, new magnetization jumps appeared below 4.6 K at H =1.2 T and these 

jumps are considered to be caused by spiral long range ordering with the clustering that 

was observed by TEM measurements.

MacDougall et al. [31] have performed Neutron Diffraction measurement on FeV2O4

and found three structural transitions as reported by other authors and reveal that the lower 

two transitions are associated with sequential collinear and canted ferrimagnetic transitions 

involving both cation sites. From local crystal and spin symmetry consideration, they 

further conclude that Fe
2+

cations are ferro-orbitally ordered below 135 K and V
3+

orbital’s

order at 60 K, in accordance with predictions for vanadium spinels with large trigonal 

distortions and strong spin-orbit coupling. Intriguingly, the direction of ordered vanadium 

spins at low temperature obeys “ice rules” more commonly associated with the frustrated 

rare-earth pyrochlore systems.

XAS, XMCD and NMR experiment on FeV2O4 have done by Kang et al. [32]. XAS 

experiment showed that Fe is in divalent state and V is in trivalent state. In XMCD spectra 

of FeV2O4, V2p XMCD indicates that the orbital magnetic moment for a V ion is mostly 

quenched due to the negligibly small spin-orbit interaction in V 3d states, and that the 

orbital ordering of V t2g states occurs from the dxz and dyz real orbital states. 51-V-NMR 

3+

Nii et al.[33] have performed Synchrotron XRD on FeV2O4 and MnV2O4 and 

conclude that the pattern of the V-OO of FeV2O4 was qualitatively different from that of 

MnV2O4. The V-OO in FeV2O4 was an F-OO with the complex orbital characterized by the 
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unquenched orbital angular momentum, whereas an AF-OO with real orbitals was realized 

in MnV2O4.

Zhang et al. [34] showed that FeV2O4 exhibit both ferimagnetic behavior at TN = 110

K and ferroelectric behavior at TN2=56 K. It was found that the application of a magnetic 

field shifts all the signatures associated to TN2 to higher temperatures, while it also clearly 

affects the value of the polarization, revealing a significant magnetoelectric coupling. They 

have suggested that the presence of canted spins in the triangular structure below TN2 could 

be responsible for the appearance of ferroelectricity.

Liu et al. [35] have studied the evolution of the structural, electric, magnetic, and 

multiferroic properties with x in Fe1-xV2-xO4 (0 < x < 0.4) spinels. They found that 

increasing x form 0 to 0.3 increases the ferromagnetic transition temperature and decreases

the cubic to tetragonal transition and orthorhombic to tetragonal transition temperature with 

ferroelectricity weakened. For x = 0.4, orthorhombic to tetragonal transition together with 

ferroelectricity disappeared. The critical composition x is around 0.3. Below x, the 

resistivity follows the variable range hopping model, while above xc, the resistivity obeys 

nearest neighbor hopping model.

1.1.3.4 CoV2O4

CoV2O4 is also very interesting spinel vandates because it lies in the intermediate 

region between Mott insulator and metallic behavior. Many studies have been done on 

CoV2O4. CoV2O4 has been investigated since the 1960s. For example, the preparation and 

properties of some vanadium spinels, e.g. the doping dependence of lattice parameter, 

activation energy, and thermoelectric power, and the relation between V–V distance and 

the activation energy were reported by Rogers et al. [36]. The temperature dependence of 

magnetization and two types of transition for some spinels including CoV2O4 were found 

by Menyuk et al. [37]. The pressure dependence of the resistivity, lattice constant, and the 

corresponding activation energy for CoV2O4 were reported by Sawaoka et al. [38]. The 

Mossbauer emission spectra of spinel CoV2O4 was presented by Tejada et al. [39] and thus 

a ferrous line quadrupole split was found. The series of spinels under the assumption of the 
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classical Heisenberg model with only nearest-neighbor A–B, B–B interaction was 

investigated by Lyons et al. [40]. The Neel configuration with canted spin arrangement was 

suggested and the importance of orbital degeneracy and spin–orbit coupling in connection 

with the V
3+

ions for CoV2O4 were found by virtue of neutron diffraction techniques in 

1964 [41]. 

Recently Kismarahardja et al. [42] have studied  the structure, magnetization, and 

resistivity under pressure on stoichiometric normal spinel CoV2O4 single crystals. It shows 

ferrimagnetic transition at 150 K. Using Arrott plot technique they calculated the critical 

exponent of CoV2O4 ( 0.24,  1.80) which does not belong from the universal class.

Resistivity data under different pressure showed that for P > 6 GPA its showed metallic 

behavior. They have also performed the same resistivity measurement for polycrystalline

sample but they did not get metallic behavior upto 8 Gpa pressure. There pressure studies 

on single crystals FeV2O4 and CoV2O4 clearly demonstrate that pressure and temperature 

do indeed effect the electronic properties strongly by changing the V-V separation. For 

FeV2O4, pressure partially delocalizes the charge carriers. For CoV2O4 which sits on the 

edge of the itinerant-electron limit, pressure actually induces metallic conductivity.

Electric, magnetic, structural, and thermal properties of spinel CoV2O4 have been 

made on polycrystalline sample by Huang et al. [43]. They conclude that there were 

paramagnetic to ferrimagnetic transition at TC = 142 K and another phase transition at T1 =

59 K. At 59 K and 100 K, the thermal conductivity exhibits two valleys. Below T1, the ac 

magnetization shows that the phase transition leads to spin glass behavior, but the phase 

transition cannot be ascribed to the structural transition as revealed by the X-ray diffraction 

patterns.

Huang et al. [44] have also studied structural, magnetic and thermal properties for 

Co1-xZnxV2O4 (0.6 < x 6 < 0.2). They found that as Zn content is increased at the Co site,

the magnetic transition is suppressed. The suppression of the transition at T1 and partial 

melting of the new spin-glass behavior may originate from the uplifting of the oxygen 2p 

bands in energy with the increase of the Zn
2+

content.   
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1.2 Theoretical Background

1.2.1 Spinel Oxide

Many compounds of the AB2O4 family, crystallize at ambient conditions in the spinel 

structure. Spinel is the magnesium aluminum oxide member of this large group of 

materials. It has the formula MgAl2O4 and gives its name to the family of compounds that 

share the same structural arrangement. Consequently, here we will name as spinel to any 

material of general formulation AB2O4 which crystallizes in the cubic (isometric) crystal 

system with space group Fd-3m. In this structure, the O anions are located at (u, u, u), 

closepacked lattice. In 

addition, the cations A and B occupy in the lattice respectively at tetrahedral (1/8, 1/8, 1/8) 

sites with Wyckoff position 8a, and octahedral (1/2, 1/2, 1/2) sites with Wyckoff position 

16d. Therefore, the single positional parameter u plus the unit-cell parameter a are 

sufficient to determine the spinel structure. In these materials, vanadium is in the single-

valence 3+ state, with electronic configuration 3d
2
. Spinel oxides can be further sub-

divided into normal and inverse spinels. This can be further explained using AB2O4 as an 

example. When one type of metal cation individually occupies the tetrahedral and 

octahedral sites, the result is a normal spinel. On the other hand, with inverse spinels, two 

different types of metal cations occupy the octahedral site with only one type of cation

present at the tetrahedral site. In general, the normal spinel forms when the ratio of A/B is 

equal to 0.5 and the inverse spinel forms when the ratio of A/B is greater than 0.5, due to 

possible inversion between A and B leading to the A cation occupying the octahedral sites 

in addition to the B cation. Spinel vanadates are the normal spinels.
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Fig. 1.1. The idealized unit cell of spinel structure of MgAl2O4. Green site, grey site, and red site

are magnesium ion, aluminum ion, and oxygen ion respectively (from reference [40]). 

In particular, this thesis work examines the physical properties in spinel vanadates. 

Spinel vanadates (AV2O4) shows ferrimagnetic behavior when A site is replaced by 

Magnetic ions (e.g. Mn
2+

, Fe
2+

, Co
2+

) and shows antiferromagnetic behavior when A site is 

replaced by some non-magnetic (e.g. Zn
2+

, Cd
2+

, Mg
2+

) ions. Ferrimagnets are often 

described as being ionic solids.

1.2.2 Crystal Field Theory 

The next few sections are intended to present the fundamental concepts necessary to 

understand the material presented in this dissertation. To begin, we employ crystal field 

theory. While crystal field theory is based on an ionic model, and neglects covalent 

bonding character, it provides a qualitative description of transition metal oxides. 

Let us consider an isolated 3d
n

transition metal cation as shown in Fig. 1.2. The 

energy levels associated with its d orbitals are fivefold degenerate. When placed in a crystal 

field, the 3d valence electrons feel the electrostatic field created by the oxygen ligands, and 

the energy is raised due to the Coulombic repulsion between the valence electrons of the 

cation and surrounding ligands. The reduced symmetry finds that the energy of the system 

is lowered by lifting the fivefold degeneracy of the d orbitals and splitting them into two 
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energy levels: a triply degenerate level consisting of the dxy, dyz, and dxz, orbitals and a 

doubly degenerate level consisting of the dz
2

and d3z
2

-r
2

orbitals.

Fig 1.2. The energy levels of the orbital in the d-electron system. The energy levels split into t2g

and eg where these levels are inverted for both fields, also the energy gap in the tetrahedral field is 

smaller than the energy gap in the octahedral field (from reference [45])

       The symmetry of the crystal field affects the relative positions of the energy levels

[46]. This can be understood for the octahedral and tetrahedral symmetries by visualizing 

the orientation of the d orbitals together with their oxygen ligands. In an octahedral 

environment, the transition metal cation is surrounded by six nearest neighbor ligands. In 

this coordination, Fig. 1.2 shows that the d orbitals split into lower energy t2g orbitals and 

higher energy eg orbitals adopting the electronic configuration (t2g)
m
(eg)

n
where m and n are 

integers and t2g and eg are group symmetry notation. The t2g orbitals consist of the dxy, dyz,

and dxz orbitals, and the eg orbitals consist of the and orbitals. Representing the 

oxygen ligands as point charges, their spatial positions are shown in Fig. 1.3 with respect to 

the three coordinate axes, x, y, and z for each d orbital. The eg orbitals point directly at the 

ligands where the crystal field is greatest: points along the z axis, and points 

along the x and y axes. The t2g orbitals, dxy, dyz, and dxz, do not point along the coordinate 

axes, but rather in between them, where the field is weaker. Stronger crystal field effects 
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due to their atomic arrangement creates greater electrostatic repulsion between the 

electrons of the eg orbitals and ligands. This raises their potential energy making them 

energetically less stable than the stabilized t2g orbitals which have lower energy because of 

smaller crystal field effects.

Fig. 1.3. The orbitals of tetrahedral field, the energy levels split into triply degenerate t2g and 

doubly degenerate eg where the energy level of t2g orbitals is higher than the energy level of eg

orbitals (from reference [45]).

In tetrahedral symmetry, a cation is surrounded by four negative anions. The crystal

field also splits the fivefold degenerate d orbitals into triply and doubly degenerate energy 

levels as shown in Fig. 1.3. However, the relative positions of these energy levels are 

reversed. The d orbitals split into lower energy eg orbitals and higher energy t2g orbitals 

adopting the electronic configuration (eg)
p
(t2g)

q
where p and q are integers. Fig. 1.4 shows 

that the t2g orbitals are in closer proximity to the ligands which point towards the midpoint 

of the cube edges than the eg orbitals which point towards the center of the cube faces. 

Similar to the discussion presented for an octahedral crystal field, the greater Coulombic 

repulsion between the electrons of the t2g orbitals and ligands leads to their higher energy 

compared to the eg orbitals. In fact, with tetrahedral symmetry no d orbital lobes point 

directly at a ligands.
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Fig. 1.4. The orbitals of the octahedral field, the energy levels split into doubly degenerate eg and 

triply degenerate t2g. Unlike the tetrahedral field, the energy level of eg orbitals in octahedral field 

is higher than the energy level of t2g orbitals (from reference [45]).

This is important as it provides insight regarding the energy separation between the 

t2g and eg orbitals with tetrahedral (octahedral) symmetry. This separation known as the 

cry ) varies in magnitude for octahedral ( o) and tetrahedral ( t)

symmetry. As can be seen in Fig. t o such t o

ratio of 4/9 [47]. In tetrahedral symmetry, the d orbitals point in directions where the 

crystal field is even less than that of the octahedral t2g orbitals leading to a smaller crystal 

field splitting.

Until this point, contributions from covalent bonding in the transition metal cation-

oxygen bond has been neglected. The shortcomings of this assumption affect the crystal 

field splitting energy and provide an incomplete picture of the bonding. While the bond is 

mostly ionic, covalent bonding is present. One limitation of crystal field theory is the 

inaccurate prediction of the energy separation between the two orbital sets often referred to 

as the crystal field stabilization energy. While crystal field theory provides an estimate, 

covalent bonding must be considered to provide a more accurate separation energy value. 

For a cation with octahedral symmetry, its electronic configuration (t2g)
m
(eg)

n
is used to 

determine the crystal field stabilization energy from the rel (4m-6n)/10. For a cation 
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with tetrahedral symmetry, its electronic configuration (e)
p
(t2)

q
is used to determine the 

crystal f (6p-4q)/10. However, corrections to account for 

covalency find that the t/ o ratio changes although 4/9 remains a good approximation.

Fig. 1.5. (a) Schematic depicting the interaction between an eg orbital and its ligands represented 

by the dx
2
-y

2
and px and py orbitals. The direct overlap between these orbitals indicates strong 

interactions and bonding. (b) Schematic depicting the interaction between a t2g orbital and a 

ligand represented by the dxz and pz orbitals. The indirect overlap between these orbitals results in 

weaker interactions and bonding.

Molecular orbital theory provides a more accurate depiction of the bonding in these 

transition metal oxides [48]. Using a delocalized electron approach, it treats the bond 

between the transition metal cation and ligands as being essentially covalent and considers 

the role of orbital overlap. This modifies the treatment of the ligands as point charges, and 

instead considers the shape of the ligand bonding orbitals. As an example, I show the 

octahedral field as its symmetry allows for easy depiction of the overlap. Fig. 1.5(a) 

illustrates the strong overlap between an antibonding eg orbital and ligands represented by 

the and the px and py orbitals. As the lobes point directly at each other, the 

interaction between them bonding. Fig. 1.5(b) illustrates 

indirect overlap between an antibonding t2g orbital and ligand represented by the dxz and pz

orbitals. This ty bonding.
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Fig. 1.6. Schematic of the d orbital occupancy for a d
5

configuration with octahedral symmetry for 

the weak field and strong field cases.

The reduced symmetry of tetrahedral fields makes such an illustration more 

complicated. The antibonding t2g bonds with its ligands. However, bonds 

between the antibonding eg orbitals 

bonding is bonding.

The lowest energy spin configuration becomes a competition between the crystal field 

energy and Hund’s energy which act to keep parallel alignment between spins. For an 

octahedrally-coordinated cation, the order in which orbital filling occurs is unambiguous 

for d
1

to d
3

systems and for d
8

to d
10

configurations. For all other systems, there is a 

potential for ambiguity associated with the order of orbital filling depending on the strength 

of the crystal field. At the extremes, as illustrated in Fig. 1.6 for a d
5

octahedral 

configuration, a weak field (small crystal field energy) is synonymous with a high spin 

state in which spin-up electrons half-fill the lower energy orbitals then jump to and begin 

populating the higher energy orbitals maximizing the number of unpaired electrons. For a 

strong field (large crystal field energy), the competition between the crystal field and 

Hund’s energies stabilizes a low spin state as an electron would prefer to pair up with the 

electrons in the lower lying, half-filled energy orbitals rather than incur the energy cost of 

overcoming the large crystal field energy in order to populate the higher energy orbitals. In 

between these extremes there are systems in which the Hund’s coupling and crystal field 

energy are closely competing and small external perturbations like temperature, pressure, 

and strain can push a system into high, low, or intermediate spin states. This phenomena 

20 

 



Chapter 1 
 

lies at the heart of spin state transitions research which have given rise to the discovery of 

new and exciting properties in complex oxides.

Finally, for tetrahedrally-coordinated cations, orbital filling is unambiguous for d
1
, d

2

and d
7

to d
10

configurations. Ho t o ratio of 4/9 it is 

thought that the small crystal field splitting in tetrahedral complexes makes them 

exclusively weak field complexes [49].

1.2.3 The Jahn-Teller Theorem

1.2.3.1 Jahn-Teller Distortion

In an electronically degenerate state, a nonlinear molecule undergoes distortion to remove 

the degeneracy by lowering the symmetry and thus by lowering the energy [50, 51].

What is Electronically Degenerate State?

An electronically degenerate state represents the availability of more than one 

degenerate orbitals for an electron. In this condition the degenerate orbitals are 

asymmetrically occupied.

In octahedral symmetry, the d
1

configuration is said to be electronically degenerate 

since three t2g orbitals with same energy are available for the electron to occupy. In this 

condition, the degenerate orbitals are also said to be asymmetrically occupied by electrons, 

whereas the d
3

configuration in octahedral geometry is non-degenerate and symmetric. It is 

not possible to put two electrons in one orbital, which is against of Hund's rule of 

maximum multiplicity.

In the electronically degenerate state, the orbitals are said to be asymmetrically 

occupied and get more energy. Therefore the system tries to get rid of this extra energy by 

lowering the overall symmetry of the molecule i.e., undergoing distortion, which is 

otherwise known as Jahn-Teller distortion. However considerable distortions are usually 

observed in high spin d
4
, low spin d

7
and d

9
configurations in the octahedral environment. 

It is because the Jahn-Teller distortion is usually significant for asymmetrically occupied 
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eg orbitals since they are directed towards the ligands and the energy gain is considerably 

more.

The simple picture described above of the electronic states can be modified by lattice 

distortions in the form of a Jahn-Teller effect. Another facet that has given rise to 

interesting phenomena are structural distortions due to Jahn-Teller effects. According to the 

Jahn-Teller theorem, if the electronic state of a non-linear molecule is orbitally degenerate, 

then there is at least one vibrational coordinate along which the molecule may distort to 

lower its energy. Physically, this can be understood by through an example with 

octahedrally-coordinated Jahn Teller active 3d
9

Cu
2+

with a (t2g)
6
(eg)

3
ground state. If the 

four ligands in the xy plane move towards the Cu
2+

ion while the two ligands along the z 

axis move away from the Cu
2+

ion, then by electrostatics the orbital becomes stabilized 

and  is destabilized. Splitting of the lower t2g orbitals also occurs accordingly. This 

distortion reduces the symmetry of the octahedron leaving one electron in the 

orbital. Simultaneously, the distortion stabilizes the system and distortions proceed 

until the extra stability gained is balanced by the energy required to stretch and compress 

the bonds. The magnitude of the Jahn-Teller distortion depends on the bonding or 

antibonding power of the degenerate electrons [52]. Small splitting of the degenerate 

nonbonding orbitals leads to small distortions from the existing symmetry. Large 

distortions are expected from the increased splitting associated with removing the 

degeneracy of the antibonding orbitals. For octahedral sites, this occurs in the d
4

and d
9

configurations which have unpaired electrons occupying the eg orbitals. In tetrahedral sites, 

unpaired electrons in the t2g orbitals are expected to yield the largest distortions. This 

includes the d
3
, d

4
, d

8
, and d

9
configurations.
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1.2.4 Magnetism

The spinels MnV2O4, FeV2O4 and CoV2O4 have a magnetic ordering from 

paramagnetic to ferrimagnetic and antiferromagnetic for ZnV2O4. Different materials react 

differently when they are located in magnetic field. In atom, the orbital motion of the 

electron, the change of the orbital due to the magnetic field and the spin of the electron will 

affect the magnetic moment of the atom. When all electrons in the atom are paired then the 

magnetic spins will cancel each other so the total magnetic moments will be zero. But if 

there is an electron which is not paired then the atom will have a magnetic moment. In 

general, we can classify the magnetic property of material into several types, e.g., 

diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic. In 

diamagnetic material, all the electrons are paired or the orbital shells are filled so there is 

no net magnetic moment. Diamagnetic material has weak, negative magnetic susceptibility 

and it will be repelled in the magnetic field. In paramagnetic material, some of the atoms or 

ions have unpaired electrons and the orbital shells are partially filled. Paramagnetic 

material has small, positive magnetic susceptibility and it is slightly attracted in the 

magnetic field. Ferromagnetic material has strong, positive magnetic susceptibility and 

strongly attracted in magnetic field. In addition, ferromagnetic material will retain its 

magnetic properties after the magnetic field is removed. In the normal condition, without 

magnetic field, the magnetic domains in the ferromagnetic material are organized 

randomly. However, when we put a ferromagnetic material in the magnetic field, all the 

magnetic domains in the ferromagnetic material will eventually be parallel in the same 

direction. Further, when we remove the magnetic field, some domains are still pointing in 

the same direction. In an antiferromagnetic material, the A and B sublattice magnetic 

moments are equal, creating a zero net magnetic moment.
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Fig. 1.7. Long-range magnetic moment ordering for a (a) ferromagnet, (b) antiferromagnet, and 

(c) ferrimagnet. These magnetic classes exhibit spontaneous ordering of the moments below a 

critical temperature.

Ferrimagnetism displays properties of both ferromagnetism and antiferromagnetism. 

Beneath a critical temperature, Fig. 1.7 shows that all three magnetic classes exhibit 

spontaneous long-range ordering of the magnetic moments. This ordering is the result of 

strong interactions between the magnetic moments attributed to the existence of a large 

internal molecular field, HW. The magnetic moments in a ferromagnet exhibit parallel 

alignment. For antiferromagnets and ferrimagnets, nearest neighbor magnetic moments 

exhibit antiparallel alignment. Developed as an extension of Néel’s theory of 

antiferromagnetism, the theory of ferrimagnetism utilizes the concept of two 

interpenetrating sublattices denoted as sublattice A and sublattice B. Each sublattice has its 

own magnetization, MA and MB, respectively, which is the product of the composition of 

each sublattice and its average magnetic moment. The total magnetization is the difference 

calculated by M = |MA| - |MB|. For an antiferromagnet, sublattice A and B are structurally 

identical such that MA = MB. This yields perfect cancellation of the magnetization and zero 

net moment. For a ferrimagnet, the A and B sublattices are structurally non-identical such 

that MA B. This results in imperfect cancellation of the magnetization and a non-zero 

net moment. The molecular field comes from quantum mechanics and is a construct to 

describe exchange interactions, but is in fact a fictitious field within a mean field 

approximation. Primarily electrostatic in origin and a direct consequence of the Pauli 

Exclusion Principle, it is concerned with the orientation of electron spins and tends to align 

them parallel to each other. To account for the magnetization of each sublattice requires 

consideration of two molecular fields as shown in equations 1.4 and 1.5 [53].
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The molecular field acting on the A sublattice is

                           =    ,                                                                                (1.4)

The molecular field acting on sublattice B is 

                               =   ,                                                                                (1.5)

where,

sublattice A described in equation 1.4, there are contributions from interactions between 

moments within the A sublattice (first term) and interactions between neighboring 

moments on the opposing sublattice (second term). For a ferrimagnet, the critical 

temperature is known as the Curie temperature (TC). We will confined our discussion on 

ferrimagnetism below Tc. Above TC, thermal agitation overwhelms the moment alignment 

resulting in paramagnetism. Below TC, the magnetization for each sublattice is

                                        = ,
 

                                                              (1.6)

                                      = ,
 

                                                            (1.7)

where N = number of atoms/unit volume, m = magnetic moment along the field direction, 

B = the Brillouin function, and J = total angular momentum. The magnetization of each 

sublattice has its own characteristic temperature dependence. This is dependent on 

variables such as the cation distribution and molecular field constants. However, equations 

1.6 and 1.7 also indicate that the magnetization of each sublattice is dependent on the other. 

This mutual dependence requires that the sublattices must have the same Curie point. 

Different Curie points would mean that once the magnetization of one sublattice reaches 

zero, it could no longer align the moments on the second sublattice thus preventing it from 

ordering. This is an important point for the temperature-dependent ordering of magnetic 

moments in ferrimagnets especially when interpreting temperature-dependent magnetic 

data from element-specific techniques such as X-ray magnetic circular dichroism.

Finally, as cation distribution creates a large range of structural possibilities in spinel 

oxide crystals, it simultaneously adds greater complexity to the observed ferrimagnetism. 
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The non-identical lattices require the consideration of at least three different exchange 

interactions: exchange between moments on sublattice A (A-A), exchange between 

moments on sublattice B (B-B), and exchange between moments on sublattices A and B 

(A-B). It is clear from the schematic in Fig. 1.7(c) that the A-B exchange is 

antiferromagnetic. However, there is a subtlety in the nature of the A-A and B-B exchange 

within each sublattice. While it appears that the exchange within each sublattice is 

ferromagnetic due to the observed ferromagnetic alignment, the exchange is actually 

antiferromagnetic. The exchange energy comes from the exchange Hamiltonian, Hex = -

JijSi·Sj. In particular we focus on the sign and magnitude of the exchange integral, Jij. When 

J < 0, the exchange is antiferromagnetic. When J > 0, the exchange is ferromagnetic. For 

ferrimagnets, Jij < 0 for all exchange interactions.

Fig. 1.8. Spin arrangement for the three magnetic cations in a spinel formula unit under the 

exchange interaction conditions for the collinear Néel configuration or conventional ferrimagnet.

For ferrimagnetic spinels, the formula unit AV2O4 allows for up to three magnetic

cations per formula unit. The triangle-based moment geometry imposed by the crystal 

structure is represented by Figure 1.9. This depicts the exchange between the three 

magnetic cations in a collinear Néel configuration more commonly known as the 

conventional ferrimagnet. To achieve this configuration, the exchange condition required is 

|JAB| >> |JBB|, |JAA|. Here the magnitude of the A-B exchange interaction is much larger than 

the A-A and B-B interactions. Note that the triangle-moment geometry depicts the 
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magnetic moments for one formula unit and as a result no A-A interactions are shown. In 

crystal lattices, the large proximity between the A sites results in weak exchange leading to 

their negligible contribution to the total exchange energy. For this reason, A-A interactions 

are neglected in further discussion. The ground state moment configuration is that which 

minimizes the overall energy of the system. Because JAB is so much larger than JBB, the 

ground state configuration is achieved by satisfying the antiferromagnetic A-B exchange 

term and incurring the energy cost of stabilizing parallel alignment of A-A and B-B

moments. As a result, the moments between the A and B sublattice exhibit antiparallel, 

antiferromagnetic alignment, and the moments within the A sublattice and the moments 

within the B sublattice exhibit parallel, ferromagnetic-like alignment.

1.2.3.1 Frustrated Magnetism:

Within the premises of the classical Heisenberg Model, an interesting area of 

condensed matter physics emerges when the condition for the collinear Néel alignment 

does not hold, and the antiferromagnetic exchange integrals, JAA, JAB, and JBB, are on the 

same order of magnitude and no longer dominated by JAB [54]. A competition arises 

between the different exchange interactions, and the three exchange interactions cannot be 

simultaneously satisfied. This leads to the condition known as frustrated magnetism as the 

magnetic moments are unable to order and find themselves arranged in a configuration 

shown in Fig. 1.9.
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Fig. 1.9. Spin arrangement for the three magnetic cations in a spinel formula unit under the 

exchange interaction conditions for frustrated magnetism. (a) Without a dominant exchange 

interaction, it is impossible to simultaneously satisfy all three exchange interactions as the third 

moment cannot order. (b) Instead the moments cant to achieve the lowest energy state possible.

As the frustration is explained with reference to the triangle-based moment geometry, 

it is clear that the frustration is imposed by the crystal structure [55]. These materials are 

referred to as geometrically frustrated magnets. In a crystal, geometrically frustrated 

magnets have a large thermodynamic ground state degeneracy. Lifting this degeneracy has 

the potential to unlock emergent phenomena and is currently an area of active research. 

Fig. 1.10. Examples of unusual spin configurations that arise from varying degrees of magnetic 

frustration [56,57].
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To qualify this statement, it is worthwhile mentioning that there are known methods 

for relieving some of the frustration including chemical tuning of the interstitial sites, 

further nearest neighbor exchange interactions, and lattice distortions. Often these 

mechanisms coexist leading to unusual spin configurations including helical, triangular, 

and monopole-like arrangements in spin ice as shown in figure 1.10. The families of spinel 

ACr2O4, chromites, and AV2O4 vandates are well known for exhibiting varying degrees of 

frustrated magnetism [58].

1.2.3.2 Superexchange

In a spinel oxide crystal, magnetic cations are second nearest neighbors because first 

nearest neighbors are oxygen anions. The increased proximity between magnetic cations

minimizes their orbital overlap effectively weakening their direct exchange. Instead, 

ferrimagnetism arises from superexchange, an indirect exchange mechanism mediated by 

the oxygen anion and is a direct consequence of the covalent bonding term.

Superexchange can be explained from the perspective of the oxygen anion [59]. The 

O
2-

ion has a filled 2p valence shell (2s
2
2p

6
). However, the presence of neighboring 

transition metal cations will perturb this closed shell configuration such that a 2p electron 

finds itself belonging to the neighboring transition metal cations for a short period. 

Perturbations of this nature find that the lowest energy state for oxygen is a superposition 

of the O
2-

ground state and excited O and neutral O states. Electron transfer occurs via 

hopping and preserves spin orientation. An electron may only hop into the neighboring 

orbital if its spin orientation is allowed by the Pauli Exclusion Principle and favored by

Hunds rule. The other 2p electron of opposite spin may now interact with the other 

neighboring transition metal cation assuming the interaction is in accordance with the Pauli 

exclusion principle and Hund’s rule. Superexchange is strongest for bond angles of 180º, 

and weakens as the angle becomes smaller [60]. For a spinel, the largest superexchange 

term originates from the approximately 125º angle formed by the A-O-B ions. There are 

also contributions from the 90º bond angle formed by the B-O-B ions. There are no A-O-A

bonds and thus no expected superexchange. It is also noteworthy that the smaller ionic 
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radius of oxygen leads to the prediction of direct exchange in ionic solids for particular 

combinations of electronic structure with a 90º bond angle [61].

1.2.4 Magneto Caloric Effect

The magnetocaloric effect (MCE) is defined as the heating or cooling (i.e., the temperature 

change) of a magnetic material due to the application of a magnetic field. This effect has 

been called adiabatic demagnetisation for years, though this phenomenon is one practical 

application of the MCE in magnetic materials. The magnetocaloric effect was discovered in 

1881, when Warburg observed it in iron [62]. The origin of the MCE was explained 

independently by Debye [63] and Giauque [64]. They also suggested the first practical use 

of the MCE: the adiabatic demagnetisation, used to reach temperatures lowers than that of 

liquid helium, which had been the lowest achievable experimental temperature. 

Nowadays, there is a great deal of interest in using the MCE as an alternative 

technology for refrigeration, from room temperature to the temperatures of hydrogen and 

helium liquefaction (20-4.2 K). The magnetic refrigeration offers the prospect of an 

energy-efficient and environment friendly alternative to the common vapour-cycle 

refrigeration technology in use today [65, 66].

In order to explain the origin of the magnetocaloric effect, we use thermodynamics, 

which relates the magnetic variables (magnetisation and magnetic field) to entropy and 

temperature. All magnetic materials intrinsically show MCE, although the intensity of the 

effect depends on the properties of each material. The physical origin of the MCE is the 

coupling of the magnetic sublattice to the applied magnetic field, H, which changes the 

magnetic contribution to the entropy of the solid.

The equivalence to the thermodynamics of a gas is evident (Fig. 1.11): the isothermal 

compression of a gas (with application of pressure decrease of the entropy) is analogous to 

the isothermal magnetisation of a paramagnet or a soft ferromagnet (with application of 

magnetic field decrease of the magnetic entropy), while the subsequent adiabatic expansion 

of a gas (lowering of pressure at constant entropy and decrease of temperature) is 

equivalent to adiabatic demagnetisation (withdrawn H, the total entropy remains constant 

and temperature decreases as the magnetic entropy increases).
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Fig. 1.11. Schematic picture that shows the two basic processes of the magnetocaloric effect when 

a magnetic field is applied or removed in a magnetic system: the isothermal process, which leads to 

an entropy change, and the adiabatic process, which yields a variation in temperature.

The value of the entropy of a ferromagnet (FM) at constant pressure depends on both 

H and temperature, T, whose contributions are the lattice (Slat) and electronic (Sel)

entropies, as for any solid, and the magnetic entropy (Sm),

               S(T, H) = Sm(T, H) + Slat(T) + Sel(T)                                                                          (1.8)

Fig. 1.12. S-T diagram showing the MCE. Solid lines represent the total entropy in two different 

magnetic fields (H0 = 0 and H1 > 0), dotted line shows the electronic and lattice contributions to 

the entropy (non-magnetic), and dashed lines show the magnetic entropy in the two fields. The 

ad m, when the magnetic field is 

changed from H0 to H1. Taken from Ref. [67].

31 

 



Chapter 1 
 

Fig. 1.12 shows a diagram of the entropy of a FM near its Curie temperature, TC, as a 

function of T. The total entropy is displayed for an applied external field, H1, and for zero 

field, H0. The magnetic part of the entropy is also shown for each case (H1 and H0). Two 

relevant processes are shown in the diagram in order to understand the thermodynamics of 

the MCE:

(i) When the magnetic field is applied adiabatically (i.e., the total entropy remains constant) 

in a reversible process, the magnetic entropy decreases, but as the total entropy does not 

change, i.e.,

                 S (T0, H0) = S (T1, H1)                                                                                               (1.9)

then, the temperature increases. This adiabatic temperature rise can be visualized as the 

isentropic difference between the corresponding S(T, H) functions and it is a measurement 

of the MCE in the material,

                     Tad = T1 - T0                                                                                                         (1.10)

(ii) When the magnetic field is applied isothermally (T remains constant), the total entropy 

decreases due to the decrease in the magnetic contribution, and therefore the entropy 

change in the process is defined as

                 Sm = S (T0, H0) - S (T0, H1)                                                                                     (1.11)

Both the adiabatic temperature change, Tad, and the isothermal magnetic entropy change, 

Sm, are characteristic values of the MCE. Both quantities are functions of the initial 

temperature, T0, and the magnetic field variation H =H1- H0. Therefore, it is straightforward 

to see that if rising the field increases magnetic order (i.e., decreases magnetic entropy), 

then Tad(T, H) is positive and magnetic solid heats up, while Sm(T, H) is negative. But if 

the field is reduced, magnetic order decreases and Tad(T,- m(T,

- H) is positive, giving rise to a cooling of the magnetic solid.

The relation between H, the magnetisation of the material, M, and T, to the MCE 

Tad m(T, H), is given by one of the Maxwell relations[63]:

                 
( , )

=  
( , )

 ,                                                                                    (1.12)

Integrating Eq. 1.5 for an isothermal (and isobaric) process, we obtain
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                    ( , ) =
( , )

  ,                                                                    (1.13)

This equation indicates that the magnetic entropy change is proportional to both the 

derivative of magnetisation with respect to temperature at constant field and to the field 

variation. Using the following thermodynamic relations [63]:

                =  ,                                                                                     (1.14)

                     =                                                                                                       (1.15)

where CH is the heat capacity at constant field, and taking into account Eq. 1.8, the 

infinitesimal adiabatic temperature change is given by

                    =  
( , )

( , )
 ,                                                                         (1.16)

After integrating this equation, we obtain other expression that characterizes the 

magnetocaloric effect,

            ( , ) =  
( , )

( , )
 ,                                            (1.17)

By analyzing Eqs. 1.9 and 1.13, some information about the behaviour of the MCE in 

solids can be gained:

1. Magnetisation at constant field in both paramagnets (PM) and simple FMs decreases 

with increasing temperature, i.e., ( )H Tad H) should be positive, while 

m(T, H) should be negative for positive field changes, H > 0.

2. In FMs, the absolute value of the derivative of magnetisation with respect to

temperature, |( )H|, is maximum at TC m should show peak at T 

= TC.

1.2.5 Transport Properties

1.2.5.1 Variable Range Hopping

MnV2O4, FeV2O4 and CoV2O4 are insulators and semiconductor. The electrical 

transport in these materials is thermally activated and Variable Range Hopping (VRH) 

model is one of the physical models that can describe the temperature dependence of the 
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conductivity in the insulating system. Sir Nevill Mott [64] proposed VRH model to 

describe the behavior of the resistivity in systems with disorder and at low temperature.

Suppose we have two states in which their distance is r and they are localized, if the 

first state has energy E1 and the second state has energy E2 and the energy difference W =

E2 - E1 0 then the electron can jump from the first state to the second state by absorbing a 

phonon. If 1 and 2 are the electric potential energy of the first state and second state, then 

the current is given by

                =  (  ) ( / ) ( 2 / ),                                      (1.18)

By taking 1- 2 = eV, the resistance can be evaluated as

                =  ( (  / _  ) ( 2 / ) )                                          (1.19)

where 0 is a frequency from typical phonon and is the localization length. The 

conductivity can be written

                    =                                                                        (1.20)

For d = 3, the density N{E} is given by

                 { } =  ,                                                                                          (1.21)

               =  
{ }

,                                                                                          (1.22)

where N{E} is the density of states.

Putting the equation (1.22) into equation (1.20) and maximizing by taking its derivative = 

0, we obtain

                            r =
{ }

                                                                       (1.23)

Substituting equation (1.23) into equation (1.20) and finally we obtain

                            0 exp[-(T0/T)
0.25

]                                                                       (1.24)

which implies

                           0 exp(T0/T)
0.25

                                                                       (1.25)
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where T0 is the characteristic barrier energy parameter and it can be calculated from the 

slope of ln versus (1/ T)
0.25

curve (Fig. 1.13 (a)). Finally, we obtain the relation between 

the barrier energy parameter T0 and the localization length by putting the value of r from 

equation (1.23) into equation (1.20) and evaluate for T0, we obtain

                                                    T0
{ }

,                                                             (1.26)

Localization length is a characteristic of a localized system where the smaller is, the more 

localized the system. A physical interpretation of the localization length in a localized 

system is illustrated in Fig. 1.13 (b)

Fig. 1.13. (a) ln versus 1/T)
0.25 

from VRH model, the barrier energy parameter T0 is calculated 

from the slope of the curve. (b) The localization length in the localized wave function (from 

reference [70]).

1.2.5.2 Arrhenius law

The discussion on Arrhenius law is also given here in order to describe the 

temperature dependence of the resistance of a system which its electrical transport has a 

thermally activated behavior. Originally, the Arrhenius equation was proposed by Dutch 

chemist, J.H van’t Hoff in 1884. However, Svante Arrhenius was the first person who gave 

the physical interpretation of this equation. He was using this equation to explain the 

dependence of the rate constant k of a chemical reaction on the activation energy Ea and 

temperature T.
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                         k = A exp(-Ea / RT),                                                                            (1.27)

where R is a gas constant. In general, many thermally activated processes can be evaluated 

by using Arrhenius law. In the electrical transport mechanism, the resistance of a 

semiconducting or an insulating material can also be explained by using this model and we 

can express the resistance (resistivity) as following

                         R = R0 exp(Ea / kBT) ,                                                                       (1.28)

here, kB is the Boltzman constant and Ea is the activation energy and can be obtained from 

the slope of ln versus (1/ T) curve (Fig. 1.14 (a)).

Fig. 1.14. (a) ln versus 1/T from Arrhenius model. (b) The activation energy and the band gap 

between valence and conduction bands.

1.2.6 The Modified Arrott Plot

The modified Arrott plot is a scaling technique to determine the critical exponents, 

, , and the critical temperature Tc for the ferromagnetic (and ferrimagnetic) 

system. The modified Arrott plot can be used in order to study the critical spin fluctuations 

near the ferromagnetic transition, by analyzing the spontaneous magnetization Ms and the 

inverse of the 0
-1

based on the magnetization versus field 

measurements near the transition temperature. Arrott plot was originated from the Landau 

theory of the second order ferromagnetic phase transition. According to this theory, the free 

energy is written as a power series of the magnetization. Before the modified Arrott plot, 
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there was a plot called Arrott plot proposed by A. Arrott [71]. In general, this plot is non 

linear and there is a difficulty to determine accurately the value of Ms 0
-1

. However, 

Anthony Arrott and John E. Noakes then suggested a more practical and powerful plot and 

is known as the modified Arrott plot [72]. In the modified Arrott plot, we plot the Ms

versus (H/M) from the M-H data around the transition temperature. This plot yields a set 

of parallel straight lines near Tc. The relations of the spontaneous magnetization Ms and the 

inverse 0
-1

are given by

                    0)
-1

(T) (T – Tc) , for T > Tc                                                             (1.29)

                          H  M , for T = Tc and                                                                       (1.30)

                         Ms(T) (Tc – T)                                                                                (1.31)

From the Arrott plot, we can see if a system obeys the Ising model or Heisenberg model or 

the Molecular Field Theory.
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