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Criticality and Utility-aware Fog Computing
System for Remote Health Monitoring

Moirangthem Biken Singh, Navneet Taunk, Naveen Kumar Mall, and Ajay Pratap, Member, IEEE

Abstract—Growing remote health system allows continuous monitoring of patients’ conditions outside medical facilities. However, the
real-time smart-healthcare applications having latency limitations, must be solved efficiently. Fog computing is emerging as an efficient
solution for such real-time applications. Therefore, Medical Centers (MCs) are becoming more interested in offering IoT-based remote
health monitoring services to get profited by deploying fog resources. However, an efficient algorithmic model for allocating limited fog
computing resources in a criticality-aware smart-healthcare system while considering the profit of MCs is needed. Thus, we formulate
an optimization problem by maximizing system utility, calculate as a linear combination of MC’s profit and patients’ cost together. We
propose a flat-pricing based scheme to measure the profit of MC in health monitoring system. Further, we propose a swapping-based
heuristic to maximize the system utility. The proposed heuristic is evaluated on various parameters and shown to be closed to the
optimal while considering the criticality of patients and the profit of MC, together. Through extensive simulations, analysis on real-world
data and prototype implementation, we find that the proposed heuristic achieves an average utility of 94.5% of the optimal, in
polynomial time complexity.

Index Terms—IoT, WBAN, Fog Computing, Smart Healthcare, Remote Health Monitoring.

✦

1 INTRODUCTION

In remote health monitoring system, a patient is
equipped with Wireless Body Area Network (WBAN) sen-
sors, capable of collecting health data, and transmitting it
to a Local Device (LD) [1]–[3] for further processing. The
LD stores and forwards the health data to a Fog Server (FS)
for remote health monitoring over 5G networks [4], [5], as
shown in Fig. 1. However, rural people have a higher rate of
poverty [6] and thus, they cannot afford LDs or IoT sensors
on their own. Thus, there is a need for a low cost remote
health monitoring system. However, the profit of Medical
Center (MC) should also be considered for patients’ health
monitoring services to encourage the participation of MCs.

Due to criticality, medical data has to be monitored
on time without delay involved. For example, health data
of patients with chronic illnesses like lung and heart dis-
eases need real-time and continuous assessment; and their
monitoring should be prioritized over other diseases. Many
critical sensitive diseases’ data cannot be computed on low
resourced LDs while achieving desired delay constraint.
Hence, assistance of FS has emerged to compute patients’
health data efficiently while achieving desired delay con-
straint [7]. Table 1 [3], [8] provides data size and desired
delay of different WBAN sensors based on the IEEE Stan-
dard 802.15.6-2012. From the table, it can be seen that
if all sensors (i.e., ECG, EMG, artificial retina, audio and
video) sense data from a patient, and send it to an LD for
computation. The desired delays of artificial retina, audio
and video do not achieve while doing so1. However, FS can
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1. Evaluation parameters are given in Table 4.
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Fig. 1: Remote healthcare architecture.

TABLE 1: Different types of WBAN sensors

type
Sensor

size
Data

delay (ms)
Desired

LD (ms)
Delay at

FS (ms)
Delay at

ECG 72 kb 250 208.33 4.53
EMG 80 kb 250 214.52 4.68

Artificial retina 175 kb 250 287.86 6.35
Audio 0.25 Mb 100 345.79 7.66
Video 2.5 Mb 100 2083.33 47.17

reduce latency to a greater extent, allowing real-time remote
health monitoring within a desired delay [9], [10].

Motivated by the above scenarios, we propose intra-
WBAN and beyond-WBAN based system. Intra-WBAN
consists of sensors deployed on the patients’ bodies, and
the LD collects data from them, whereas beyond-WBAN
consists of different LDs that send patients’ data to FSs.
Moreover, we formulate FS assisted beyond-WBAN based
remote health monitoring system to minimize the cost of pa-
tients while keeping profit of MC into deliberation. Inspired
by [11], we aim to use dedicated LDs not only to gather the
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patients’ health data sent by sensors but also to compute
the data locally while achieving desired delay. In nutshell,
contributions of this paper are summarized as below:

• Formulate an optimization problem by maximizing
the system utility, defined as a linear combination of
MC’s profit and patients’ cost. Moreover, offer a flat-
type pricing scheme to measure the profit of MC.

• Propose swapping-based heuristic to maximize the
system utility under the constraint of permissible la-
tency for computation of patients’ data in polynomial
time complexity.

• Through extensive simulations and analysis on real-
world data, proposed heuristic is found to achieve
an average utility of 94.5% of the optimal solution.

The rest of the paper is organized as follows: Section
2 reviews the relevant works. The system model and the
problem formulation are introduced in Section 3. Proposed
solution and analysis are given in Section 4. Performance
study is presented in Section 5. Finally, Section 6 offers
conclusions and future research directions.

2 RELATED WORKS

This section offers closely related works available in the
literature with comparative analysis as given in Table 2.

Primary focused of [12] was to improve haptic com-
munications under three factors- system stability, energy
consumption, and network delay. Authors proposed a time-
varying swarm algorithm to solve the formulated problem.
However, they did not consider profit. Authors of [13] pro-
posed a cost-aware medical cyber-physical system assisted
fog computing model. In [14], authors primarily focused on
resource allocation to minimize energy consumption and re-
sponse time through dynamic-cluster algorithm. However,
these works [12]–[14] did not consider criticality of patients’
data while offloading it to a computing node.

In [15], the authors investigated energy consumption,
transmission delay, QoS requirement, power limit and wire-
less front-haul constraints in fog computing-based Internet
of Medical Things (IoMT). However, this model did not
consider criticalities of patients and profit of health service
provider. Authors of [11] proposed a health monitoring
system for IoMT considering criticality, energy and delay
constraints. However, this work did not consider profit
of MC while offloading the medical data to edge server.
The authors of [16] proposed a queue-based transmission
of time-sensitive medical data packets in beyond-WBAN
using a non-cooperative game-based approach. In [17], au-
thors proposed a criticality-aware dynamic management
for medical data transmissions. However, the above works
did not consider the profit for delay-sensitive medical data
transmission. The authors in [3] proposed a priority-aware
time-slot allocation in WBANs. They extended evolutionary
game theory to solve the formulated problem. The authors
of [18] proposed a Nash bargaining solution for a coopera-
tive game based priority-aware data-rate tuning in WBAN
model. However, these works did not consider beyond-
WBAN scenario for priority-based data transmission.

Shortcomings of Existing Approaches: In most of the
existing approaches [3], [12]–[15], [18], only intra-WBAN

TABLE 2: A relative comparison

Focus
Problem

cality
Criti- Profit WBAN

Beyond-

zation
Maximi-
Utility

Resource allocation [12] × × × ×
Task allocation [13] × × × ×

Resource allocation [14] × × × ×
QoS requirement [15] × × × ✓

latency [16]
Data priority, × × ✓ ×

transmission [17]
Criticality aware packet

✓ × ✓ ×

Medical criticality [11] ✓ × ✓ ×

tion, data priority [3]
Time-slot alloca-

✓ ✓ × ×

Data-rate tuning [18] ✓ × × ×

allocation [Proposed]
-aware resource

Criticality and utility
✓ ✓ ✓ ✓

transmission has been considered under latency and crit-
icality constraints. Some works [11], [16], [17] have con-
sidered both intra-WBAN and beyond-WBAN transmission
with latency and criticality constraints. However, none of
the existing approaches has considered the profit of the
MC in their model. Therefore, unlike existing works, we
formulate criticality-aware health monitoring system while
considering patients’ cost and MC’s profit, altogether as
an optimization problem. Moreover, we propose a novel
swapping-based heuristic to solve the formulated problem
in polynomial time complexity.

Projects
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Fig. 2: Student project assignment.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a remote health monitoring system, provided
by MC to a set of patients P = {1, . . . , p . . . , P} in co-
ordination with FSs as shown in Fig. 1. Moreover, the
descriptions of important symbols are given in Table 3.
The proposed framework is equivalent to student project
assignment problems in colleges where students approach
a professor for project assignment and the professor assigns
different projects to the students (see Fig. 2). However, there
are limits on the total number of students a professor can
allocate and the number of students assigned to a project.
Similarly, patients (LDs) request an MC for health moni-
toring, and the Cloud Server (CS) employed by the MC
allocates patients’ data to FSs (see Fig. 1). However, there
are limits on the number of patients that a CS can allocate as
well as the number of patients whose data can be allocated
to an FS.
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TABLE 3: Symbol description

Symbol Description
S, X Sets of sensors and medical criticalities
xs Medical criticality of sensor s
θsp,t Health data sensed by s from p at time t
θl,s, θu,s Lower and upper limits of normal value for s
dsp,t Health severity index for p via s at time t
csp,t Criticality index for p and s at time t
P, F Set of patients and FSs
SINRf

p,t, V f
p,t SINR and number of allocated PRBs

ρcp,t Patient criticality for patient p at time t
Ht Set of strategies
up,t, qp,t LD and, FS are chosen for computation
ηp,t Overall data size for p at time t
βp,t CPU cycles for computing p’s data at time t

T c,l
p,t Computation time for p at time t by LD

T tr,f
p,t , BRf

p,t Transmission time and rate between p and f

T c,f
p,t (Ht) Computation time for a patient p at FS f

γp(Ht) Fraction of FS f ’s resource utilized by p
L Set of computation capacity of FSs
Υ, Γf Computation capacity of LD and FS f
n′

p,f,t Number of patients utilizing FS f
m, l Computation charge at FS and LD
χt Revenue earned by MC
ϕt, g Expenses of MC and CPU cycle of FS
δ, k Latency constraint and fixed charge per FS

The problem setting is divided into two parts: intra-
WBAN and beyond-WBAN as described in the following:

3.1 Intra-WBAN
Consider a set of sensors S = {1, . . . , s, . . . , S} deployed
on patient’s body. Each sensor collects data with different
criticality classes and transmits it to an LD for further
analysis. To facilitate this phenomenon, we consider medical
criticality for prioritizing different health data in a resource-
constrained health monitoring scenario.

Let medical criticalities of health data collected by sen-
sors be a set X = {x1, . . . , xs, . . . xS}. If data collected by
sensor s is more critical than that of sensor s′, then xs > xs′ .
Two sensors’ data of the same criticality class can have
different medical criticalities, thus xs ∈ [0,∞) [11]. Let θsp,t
be the parameter value sensed by sensor s from patient p
at time t, and θl,s and θu,s be lower and upper limits of
reference range- defined as the range of health parameter
values under normal conditions for a healthy person2. Then,
health severity index of patient p’s data collected by sensor
s at time t is defined as follows [3], [19]:

dsp,t =

∣∣∣∣∣ (θu,s − θsp,t)
2 − (θsp,t − θl,s)

2

(|θu,s|+|θl,s|)2

∣∣∣∣∣ . (1)

Health severity index defines the deviation of a patient’s
health data value from its normal reading. Higher health
severity index indicates more severe data. For instance, ECG
data is more critical than temperature data in healthcare
[19]. We further define criticality index, csp,t for a patient
p and sensor s at time t as the product of health severity
index and medical criticality as follows:

csp,t = xsd
s
p,t. (2)

2. A detailed explanation for calculating θl,s and θu,s, i.e., lower and
upper limits of reference range is given in Appendix A of [3].

Moreover, LD normalizes the health severity index between
0 and 1 using the min-max normalization technique [20].
Then, pth patient’s criticality at time t is defined as the
average of criticality indices of sensors, as follows:

ρcp,t =
1

S

S∑
s=1

csp,t. (3)

Higher criticality value indicates severe condition of a pa-
tient. After receiving data at LD, there is a need to make
a decision for its computation either at LD or FS in order
to achieve the system’s constraints. Moreover, computation
capacity of all LDs is considered to be uniform and equal to
Υ. Let up,t be a binary variable defined as:

up,t =

1, system selects LD for computation of p’s data;

0, otherwise.
(4)

Computation time at LD for a patient p is calculated as:

T c,l
p,t =

βp,t

Υ
, (5)

where βp,t is the required CPU cycles for computing patient
p’s health data at time t. In addition, we assume that each
sensor is allocated a different amount of LD’s resources.

In the next section, we describe the transmission3 and
computation of health data at FSs.

3.2 Beyond-WBAN

Let a set of FSs F = {1, . . . , f, . . . , F} be equipped
with a respective computation capacity of a set L =
{Γ1, . . . ,Γf , . . . ,ΓF }. However, to determine whether or
not the system selects FS for computation of p’s data, we
define a binary variable qp,t as follows:

qp,t = 1− up,t. (6)

Let Ht be a P × F binary matrix that indicates the choice of
FS for computing patient p’s data at time t, as given below:

Ht =


h1
1,t h2

1,t . . hF
1,t

h1
2,t . . . .
. . . . .
. . . . .

h1
P,t . . . hF

P,t

 , (7)

hf
p,t =

1, FS f computes patient p’s data;

0, otherwise.
(8)

Transmission rate between patient p and FS f underlying
cellular 5G is computed as follows [4]:

BRf
p,t = ΩV f

p,t log2

(
1 + SINRf

p,t

)
, (9)

where Ω, V f
p,t and SINRf

p,t are channel bandwidth, num-
ber of allocated PRBs4 and Signal-to-Interference-plus-Noise

3. Transmission of data in intra-WBAN is beyond the scope of this
work. However, the existing approach [11], can be utilized for intra-
WBAN communication.

4. PRB is the smallest unit of radio resource that can be assigned to a
device [4].
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Ratio (SINR)5 between patient p and FS f , respectively. We
assume each patient communicates over a distinct channel;
thus, interference is not considered6.

Transmission time between patient p and FS f can be:

T tr,f
p,t =

ηp,t

BRf
p,t

, (10)

where, ηp,t is the size of patient p’s data at time t. Like [22],
[23], we assume that each patient uses the same amount of
FS’s resources. Thus, computation time for a patient p at FS
f can be calculated as:

T c,f
p,t (Ht) =

βp,t

γp(Ht)
, (11)

where γp(Ht) is the fraction of FS f ’s resource utilized by
the patient p, calculated as follows:

γp(Ht) =
Γf

n′
p,f,t

, (12)

where n′
p,f,t is the number of patients utilizing the FS f

for their computation if patient p is also utilizing it without
violating the constraints.

One of our objectives is to minimize the cost of the
patients, defined as the weighted (i.e., criticality) sum of
computation and transmission time as follows:

Jt =
∑
p∈P

ρcp,t

∑
f∈F

(
hf
p,tT

tr,f
p,t + T c,f

p,t (Ht)
)
+ up,tT

c,l
p,t

 .

(13)
Thus, to minimize the cost, we have to lower down the
latency for the patient in the beyond-WBAN scenario.

To determine revenue model of MC, we consider a flat-
type pricing scheme [24], [25] as described in the following:

3.2.1 Flat-type pricing scheme
Let the MC charges l unit price per time slot for computation
at LD. If computation is done at FS, the MC charges m unit
price per time slot. Generally, FS charges more than that of
LD, i.e., m > l. Thus, revenue of the MC is calculated as:

χt =
∑
p∈P

(up,tl + qp,tm). (14)

Let k be the fixed expenses of each FS per time slot and
g be the expenses of MC per CPU cycle for computation
on the FS. Then, the expenses of MC can be calculated as
follows:

ϕt = kF + g
∑
p∈P

qp,tβp,t. (15)

Now, the profit of the MC can be calculated as follows:

∆t = χt−ϕt =
∑
p∈P

(up,tl+qp,tm)−kF−g
∑
p∈P

qp,tβp,t. (16)

The profit of MC from a patient p depends on whether the
patient p’s data is allocated to an FS or LD. Let the maximum
value of βp,t be βmax

p,t (βmax
p,t can be approximated by the MC

5. We assume that the channel exhibits flat fading. However, this can
be easily extended to frequency-selective fading channels as well [4].

6. Interference can be solved by applying methods given in [4], [21].

before deciding the values of m and l), then profit of the MC
can follow the following constraint:

m− l ≥ gβmax
p,t +

kF

P
. (17)

The above constraint ensures that if a patient’s data is
allocated to an FS, then the profit of the MC will be higher
than if it is allocated to LD, independent of the CPU cycles
needed for computing patients’ data, as stated in Lemma 1.

Lemma 1. The profit of the MC either increases or remains
constant as more patients’ data is allocated to FS instead of LD
for their computation.

Proof. Let P ′ be the number of patients whose data is
allocated to FS. Then, the profit of the MC is given by:

∆t,1 = P ′m+ (P − P ′)l − kF − g
∑
p∈P

qp,tβp,t. (18)

Take any patient p′ utilizing LD and allocate it’s data to
any FS for computation of health data. So, the new profit in
this scenario (assuming allocation of all other patients’ data
remains the same) is given by:

∆t,2 = (P ′ + 1)m+ (P − P ′ − 1)l − kF

− g
∑
p∈P

qp,tβp,t − gβp′,t. (19)

Now, ∆t,2 −∆t,1 is given by:

∆t,2 −∆t,1 = m− l − gβp′,t. (20)

From Eqs. (17) and (20), we have:

∆t,2 −∆t,1 ≥ 0. (21)

From Eq. (21), we conclude that the profit increases or
remains constant as we increase the number of patients
whose data is allocated to FSs for computation.

As per Lemma 1, the profit only depends on patients
whose data is allocated to FSs. So, if all patients’ data is
allocated to FSs, the profit does not depend on how their
data is allocated to FSs. Thus, the utility depends only on
the cost of the patients as defined in Eq. (13).

3.3 Problem Formulation
In remote health monitoring system, the patient with a
higher criticality should be monitored in less time. Thus,
lower computation and transmission time are required for
the patients to minimize their costs and ensure proper
monitoring. Moreover, MC tries to maximize its profit by
providing monitoring services under the condition that no
patient faces any delay. However, both objectives cannot be
achieved at the same time. Therefore, we consider utility
as the linear combination of profit of the MC and the
cost of patients, that signifies the importance of profit for
the monitoring service as well as the cost of patients, as
discussed in the following:

Ut = λ1∆t − λ2Jt, (22)

where, λ1 and λ2 are positive weights assigned to the
profit of MC and the cost of patients, respectively, and
λ1 +λ2 = 1. The weights are taken as inverse units of profit
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and latency cost, respectively, so that utility becomes unit-
less. The weights are dependent on the system requirements
and should be considered accordingly. That means, if the
system is more profit aware then, λ1 > λ2, or if the system
is more criticality aware then, λ1 < λ2, or if it is equally
balancing between these two, then λ1 = λ2. Moreover, we
consider a constraint on the permissible latency defined as
δ, to ensure that no patient has a delay more than δ

ρc
p,t

. As
a result, the permissible latency should be lower for higher
criticality patients. Therefore, the optimization problem of
the proposed model is formulated as follows:

argmax
Ht

Ut (23)

Subject to the constraints:∑
f∈F

(
hf
p,tT

tr,f
p,t + T c,f

p,t (Ht)
)
+ up,tT

c,l
p,t ≤

δ

ρcp,t
,∀p ∈ P, (24)

l ≤ lmax,m ≤ mmax, (25)

m− l ≥ gβmax
p,t +

kF

P
, (26)∑

f∈F

hf
p,t = qp,t,∀p ∈ P, (27)

∑
p∈P

hf
p,t ≤ Fmax

f ,∀f ∈ F, (28)

∑
p∈P

∑
f∈F

hf
p,t ≤ Cmax, (29)

Eq. (24) refers to the latency constraint. Eq. (25) puts con-
straint on service charges. Eq. (26) refers to constraint de-
fined in Eq. (17). Eq. (27) ensures that every patient’s data
is allocated to at most one FS. Eqs. (28) and (29) define the
maximum number of patients whose data can be allocated
to an FS and the maximum number of patients whose
requests can be handled by the CS, respectively.

The formulated problem in Eqs. (23)-(29) is a Binary
Integer Programming problem in Ht decision variables, that
is generally NP-hard to solve as its feasibility problem is
strongly NP-complete [26]. Due to high conditionality and
complexity of the formulated problem, this work proposes
a sub-optimal solution for the maximization problem based
on swapping-based heuristic in the following section.

4 PROPOSED SOLUTION

To avoid high computation charges at FS, each patient
would like to compute the health data at LD. However, they
may not be able to satisfy the latency constraint given in Eq.
(24) while doing so (see Table 1). Thus, a sub-problem here
is to allocate these patients’ data to FSs. Let Pv

t be the set of
patients that violate the latency constraint at time t if their
data is computed at the LD. Formally,

Pv
t = {p ∈ P : ρcp,tT

c,l
p,t > δ}. (30)

The MC allocates patients from the set Pv
t to FSs. Next objec-

tive is to allocate a subset of the remaining patients such that
it maximizes the utility under the system constraints. Due
to limited resources, it is not possible to allocate all of the
patients’ data to FSs. Doing so may result in violation of the

latency constraint given in Eq. (24) and significant increase
in the cost of patients, resulting in lower utility. Let nmax

p,f,t be
the maximum number of patients (see Theorem 1) that can
utilize the FS f for their computation if patient p utilizes it
without violating the constraint given in Eq. (24).

Theorem 1. Maximum number of patients that can utilize the
FS f for their computation, if patient p utilizes FS f , is given by:

nmax
p,f,t =

⌊( Γf

βp,t

) δ

ρcp,t
− ηp,t

ΩV f
p,t log2

(
1 + SINRf

p,t

)
⌋.

(31)

Proof. According to Eq. (24), if a patient p utilizes FS f , then,

T tr,f
p,t + T c,f

p,t (Ht) ≤
δ

ρcp,t
. (32)

From Eqs. (10) and (11), we get

ηp,t

BRf
p,t

+
βp,t

γp(Ht)
≤ δ

ρcp,t
. (33)

After solving the inequality and putting the value of BRf
p,t,

n′
p,f,t ≤

(
Γf

βp,t

) δ

ρcp,t
− ηp,t

ΩV f
p,t log2

(
1 + SINRf

p,t

)
 .

(34)
Thus, the maximum value of n′

p,f,t is the greatest integer
value of the right-hand side expression. Hence, proved.

We employ Brakerski-Gentry-Vaikuntanathan (BGV) [27]
homomorphic encryption scheme in the proposed health
monitoring system between LD and FS to maintain the
privacy and security of the health data. Here, LD encrypts
patient p’s data before transmitting it to FS. Our proposed
model employs encryption parameters as suggested in [28].

To solve the formulated problem, we propose Utility
Maximization Patient Monitoring (UMPM) algorithm. We
consider that the MC has CS that executes the UMPM
algorithm to allocate patients’ data to FSs. Fig. 3 shows
data flow between patients, LDs, FSs, and MC. Labels 2,
3, 4 and 7 in Fig. 3 are handled by control signals (e.g.,
beacons [29]). However, labels 1, 5 and 6 are handled by data
signals. UMPM algorithm begins with an initial allocation of
patients’ data to FSs and then iteratively re-positioning the
patients’ data by swapping their allocated FSs to achieve
higher utility as shown in Fig. 4. The elaboration of each
sub-algorithm is described in the following:

4.1 UMPM Algorithm

We define Udiff,t
7 as a difference between utility before and

after a patient p’s data is allocated to FS f , keeping the

7. The profit of p changes and it affects the cost with a value of
the difference of p’s local computation time and its transmission and
computation time at FS f . Moreover, computation time of other patients
whose data is allocated to f also changes.
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allocation of other patients’ data as it is as follows:

Udiff,t = λ1(m− l − gβp,t)− λ2

∑
p′∈Pf

t

ρcp′,tβp′,t

Γf

+ λ2

(
ρcp,t

(
βp,t

Υ
−
(
βp,t(n

f
t + 1)

Γf
+

ηp,t

BRf
p,t

)))
. (35)

Set of patients whose data get allocated to FS f is given by:

Pf
t = {p ∈ P : hf

p,t = 1}. (36)

Moreover, the number of patients whose data is allocated to
FS f can be estimated as follows:

nf
t =

∑
p∈P

hf
p,t. (37)

The UMPM algorithm begins by calculating the constraint
parameter nmax

p,f,t (Eq. (31)). It selects the patients that violate
latency constraint if their data is computed on LD and sorts
them in the order of their decreasing criticalities (lines 3-
6). As a result, the algorithm prioritizes the patients with
higher criticalities over the lower criticality patients. Then,
re-allocation is done using Algorithms 2 and 3. Then, the
algorithm constructs the set of patients whose data is not yet
allocated to any FS (line 18). It calls Algorithm 4 to allocate
more patients’ data to FSs. Then, Algorithms 2 and 3 re-
position the allocation of patients’ data to FSs. The execution

Algorithm 1: UMPM Algorithm

Input: L, Υ, g,m, l, δ, Ht = {0}, Ω;
∀p ∈ P: ρcp,t, βp,t, ηp,t; ∀p ∈ P,∀f ∈ F: SINRf

p,t;
∀f ∈ F : Pf

t , n
f
t = 0; Umax

diff,t = −∞
Output: Allocation Strategy (Ht).

1 Calculate nmax
p,f,t, ∀p ∈ P and ∀f ∈ F using Theorem 1;

2 Calculate local computation time using Eq. (5);
3 for p← 1 to P do
4 if T c,l

p,t >
δ

ρc
p,t

then
5 insert p into Pv

t ;

6 Sort patients in set Pv
t in decreasing criticality order;

7 for p ∈ Pv
t do

8 for f ∈ F do
9 if nf

t ≥ minp′∈Pf
t

⋃
{p} n

max
p′,f,t then

10 continue;

11 Calculate Udiff,t as per Eq. (35);
12 if Udiff,t > Umax

diff,t and Eq. (29) satisfied then
13 Umax

diff,t ← Udiff,t;
14 tempp ← p, tempf ← f ;

15 Allocate tempp to tempf , update variable ; // hf
p,t

16 Run Algorithm 2;
17 Run Algorithm 3;
18 Prem ← P− Pv

t ;
19 Run Algorithm 4;
20 repeat
21 Run Algorithm 2;
22 Run Algorithm 3;
23 Update Prem;
24 Run Algorithm 4;
25 until Utility does not increase;

order of the Algorithms 2 and 3 does not affect the outcome
of UMPM algorithm (see Fig. 12a). Further, Algorithm 4 al-
locates more patients’ data to FSs by improvising the utility.
This process repeats until there is no possibility of increment
in the utility (Fig. 4). The reason for having Algorithms 2
and 3 is to obtain better utility by swapping the allocation
between patients and FSs as described in Subsections 4.2
and 4.3, respectively.

4.2 Two Way Swap based Algorithm
Utility difference due to two way swap, J tr

diff,t
8 is given as:

J tr
diff,t =

ρcp,tηp,t

BRf
p,t

−
ρcp,tηp,t

BRf ′

p,t

+
ρcp′,tηp′,t

BRf ′

p′,t

−
ρcp′,tηp′,t

BRf
p′,t

+
ρcp,tβp,tn

f
t

Γf
−

ρcp,tβp,tn
f ′

t

Γf ′
+

ρcp′,tβp′,tn
f ′

t

Γf ′
−

ρcp′,tβp′,tn
f
t

Γf
.

(38)

At each iteration, the algorithm picks a pair of patients
whose data is allocated to different FSs (lines 2-7). Then
checks, whether the number of patients’ data allocated to

8. When two patients’ data allocated to different FSs are swapped,
the change in utility is caused by the difference of their transmission
and computation latencies, as considered in Eq. (38).
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those two FSs is greater than the maximum number of
patients that can be allocated to the two FSs (line 8). If it ex-
ceeds the maximum number of patients, then the algorithm
picks another pair of patients and checks the condition in
line 8. Else, it checks whether swapping the allocation of the
two patients can increase utility or not (line 10). If utility can
be increased, patients are swapped, and updates are taken
place in the corresponding values (lines 11-12). This process
repeats until no such pair of patients exist (lines 1-13).

Algorithm 2: Two Way Swap
Input: Globally accessible Ht , Information of all

patients (as per Algorithm 1) and FSs.
Output: Ht

1 repeat
2 for f ← 1 to F do
3 for every p ∈ Pf

t do
4 for f ′ ← 1 to F do
5 if f ′ == f then
6 continue;

7 for every p′ ∈ Pf ′

t do
8 if nf ′

t > nmax
p,f ′,t or nf

t > nmax
p′,f,t then

9 continue;

10 if J tr
diff,t > 0 then

11 Swap p and p′;
12 Update corresponding values;

13 until No swap increases utility;

4.3 One Way Swap based Algorithm
Utility difference due to one way swap, Jdiff,t9 is given as:

Jdiff,t =
ρcp,tηp,t

BRf
p,t

−
ρcp,tηp,t

BRf ′

p,t

+
ρcp,tβp,t(n

f
t − nf ′

t − 1)

Γf

+
∑

p′∈Pf
t \{p}

ρcp′,tβp′,t

Γf
−
∑

p′∈Pf′
t

ρcp′,tβp′,t

Γf ′
. (39)

At each iteration, algorithm picks a patient whose data is
allocated to an FS (lines 2-3). It then selects another FS and
calculates utility difference if the patient’s data is allocated
to that FS (lines 4-7). Then, it checks if allocating the patient’s
data to that FS increases utility (line 8). If utility is increased
by satisfying the constraints, the patient’s data is allocated
to that FS and updates are taken place in the corresponding
values (lines 9-10). This process repeats until no such patient
exists (lines 1-11).

4.4 Patient-FS Allocation Algorithm
The algorithm selects a subset of patients and allocates their
data to FSs that satisfy the constraints and maximize the util-
ity. Algorithm 4 terminates when there is no improvement in

9. When a patient p’s data is reallocated to f ′ from f , the profit
does not change. The change in the cost is calculated as the difference
between the transmission times when p’s data allocated to f and f ′. The
computation time of all patients’ data allocated to f and f ′ changes.

Algorithm 3: One Way Swap
Input: Globally accessible Ht, Information of all

patients (as in Algorithm 1) and FS.
Output: Ht

1 repeat
2 for f ← 1 to F do
3 for every p ∈ Pf

t do
4 for f ′ ← 1 to F do
5 if f ′ == f then
6 continue;

7 Compute Jdiff,t according to Eq. (39);
8 if Jdiff,t > 0 and

nf ′

t + 1 ≤ min
p′∈Pf′

t

⋃
{p}(n

max
p′,f ′,t) then

9 Add p to Pf ′

t and remove p from Pf
t ;

10 Update the values correspondingly;

11 until No swap increases utility;

the utility compared to utility obtained in previous iteration.
The following Lemma 2 provides the utility correlation
across different iterations of Algorithm 4.

Lemma 2. Let Umax
diff,t,i be the Umax

diff,t calculated by the algorithm
at ith iteration at time t, then Umax

diff,t,i ≥ Umax
diff,t,i+1. In

other words, the maximum utility difference decreases with each
iteration of Algorithm 4.

Proof. Let p and p′ be the patients whose data is allocated
to FS f at ith iteration and FS f ′ at (i+ 1)th iteration,
respectively. Then, consider the following two cases:

Case 1: f = f ′

Umax
diff,t,i = λ1(m− l − gβp,t)− λ2

∑
p′′∈Pf

t

ρcp′′,tβp′′,t

Γf

+ λ2

(
ρcp,t

(
βp,t

Υ
−
(
βp,t(n

f
t + 1)

Γf
+

ηp,t

BRf
p,t

)))
. (40)

Umax
diff,t,i+1 = λ1(m− l − gβp′,t)− λ2

∑
p′′∈Pf

t

⋃
p

ρcp′′,tβp′′,t

Γf

+ λ2

(
ρcp′,t

(
βp′,t

Υ
−
(
βp′,t(n

f
t + 2)

Γf
+

ηp′,t

BRf
p′,t

)))
, (41)

where nf
t is the number of patients utilizing f before ith

iteration at time t and similarly Pf
t is the set of such patients.

On subtracting Eq. (40) from Eq. (41), it is clear that,

Umax
diff,t,i+1 ≤ Umax

diff,t,i. (42)

Case 2: f ̸= f ′

In this case, as both the FSs are different, if Umax
diff,t,i+1

would have been greater than Umax
diff,t,i, then the algorithm

would have picked p′ at the ith iteration only, but that is not
the case. Hence, Umax

diff,t,i+1 ≤ Umax
diff,t,i.

From both cases, Umax
diff,t,i+1 ≤ Umax

diff,t,i. Hence, proved.
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Algorithm 4: Patient-FS Allocation
Input: Globally accessible Ht, Set of Patients, Prem,

flag = 0, tempp, tempf , Umax
diff,t = 0

Output: Allocation Strategy (Ht).
1 repeat |Prem| times
2 for every p ∈ Prem do
3 if qp,t == 1 then
4 continue;

5 for f ← 1 to F do
6 if nf

t ≥ minp′∈Pf
t

⋃
{p} n

max
p′,f,t then

7 continue;

8 Calculate Udiff,t as per Eq. (35);
9 if Udiff,t > Umax

diff,t then
10 flag ← 1;
11 Umax

diff,t ← Udiff,t;
12 tempp ← p, tempf ← f ;

13 if flag == 0 then
14 break

15 Assign patient tempp to FS tempf ;
16 Update n

tempf

t , Prem and Ht;

4.5 Illustration of UMPM Algorithm

Let there be 8 patients and 3 FSs in the system. We consider a
constant data size of 2 MB and needed CPU cycles as 600 for
each patient. Computation capacity of FSs, F1, F2, and F3 are
considered as 22 GHz, 18 GHz, and 20 GHz, respectively.
In Fig. 5, yellow and blue colors indicate patients and FSs,
respectively. The patients’ criticalities are shown at the top of
the figure. These values are calculated based on simulation
Table 4 and Eqs. (1)-(3). Moreover, the costs of patients’ data
allocations are labeled on respective FSs in Fig. 5 after the
execution of UMPM algorithm.
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P6
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0.66 0.56 0.47 0.28 0.99 0.74 0.97 0.96Criticality

Fig. 5: (a) Initial allocation (lines 1-17 of Algorithm 1). (b)
Allocation after execution of Algo. 4 (lines 18-19 of Algo. 1).
(c) Final allocation (lines 20-25 of Algo. 1).

Fig. 5(a) shows an initial allocation of patients’ data to
FSs (lines 1-17 of Algorithm 1), in which data of patients P5,
P7, and P8 is allocated to F1, F3, and F2, respectively. Algo-
rithm 4 allocates remaining patients’ data to FSs for further
improvising the system utility. Thus, we get an outcome as
shown in Fig. 5(b) after the execution of Algorithm 4 (lines
18-19 of Algorithm 1). Then, after reiterating Algorithms 3,

2, and 4 (lines 20-25 of Algorithm 1), Fig. 5(c) is obtained as
final allocation with a maximized overall system utility.

4.6 Analysis of Proposed Heuristic
This section discusses convergence and time complexity of
UMPM algorithm as follows.

Lemma 3. The proposed UMPM algorithm converges.

Proof. Convergence of UMPM relies on convergence of three
sub-algorithms. Algorithms 3 and 2 swap patients only if
utility increases. Else, their execution terminates. As the
total possible combinations between patients and FSs are
finite, utility will also be a finite value. Thus, both the
swap algorithms converge. Algorithm 4 converges since
the number of iterations is finite, i.e., P . Further, UMPM
repeatedly executes two way swap, one way swap, and
Patient-FS allocation algorithms. Every iteration converges,
and the algorithm goes to next iteration only when utility
increases. Therefore, UMPM algorithm converges.

Theorem 2. Time complexity of UMPM algorithm is O(P 2F ).

Proof. Time complexity of UMPM depends on complexity of
three sub-algorithms it calls. Time complexity of Algorithm
1 from lines 1-15 is O(PF ). Algorithm 2 considers P 2 pairs
of patients and repeats until it converges. Thus, the number
of iterations is bounded by a finite value. Hence, time com-
plexity of Algorithm 2 is O(P 2). Similarly, time complexity
of Algorithm 3 is O(PF ) as it considers PF number of
possible swaps. In Algorithm 4, the number of iterations is
bounded by number of patients, i.e., P . In each iteration, PF
pairs are considered. Thus, time complexity of Algorithm
4 is O(P 2F ). Hence, time complexity of proposed UMPM
algorithm is O(P 2, PF, P 2F ), i.e., O(P 2F ).

Simulation setup and obtained results are discussed in
the following section:

5 PERFORMANCE STUDY

Patient’s data size and required CPU cycles for computing
patient’s data are randomly considered between [1, 3] MB
and [100, 1000] Megacycles, respectively [11]. The value of δ
is taken as 250 ms. The patients’ criticalities are considered
between [0, 1], as shown in Table 4. Moreover, we have con-
sidered 5 physiological sensors’ data such as body temper-
ature, heart rate, blood pressure, respiration rate and blood
oxygen saturation for evaluation purposes. We used HElib
open-source library [30] for implementing homomorphic
encryption in our proposed model. Simulation experiments
are performed using Windows 10 Laptop with Intel(R) i7-
10750H @ 2.60 GHz processor and 16 GB memory.

We could not compare the proposed model with other
existing works because none of the existing works have
considered patients’ criticality, profit of MC and other con-
straints altogether as per best of our knowledge (see Table
2). Gurobi optimization tool is used to get the optimal so-
lution [33]. Moreover, we offered Greedy scheme to compare
with the proposed model. In greedy scheme, patients that
violate latency constraint are sorted in decreasing order of
their criticality. Then, patients’ data is allocated to FSs one
by one. The remaining patients are sorted in decreasing
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TABLE 4: Simulation parameters

Parameter Value
P , F [20-1000], [2-200]
ηp,t [11] [1, 3] MB
βp,t [11] [100, 1000] Megacycles
Blood pressure [θl,s, θu,s] [31] 91 mmHg, 169 mmHg
Body temperature (θl,s, θu,s) [31] 34.1 ◦C, 37.9 ◦C
Heart rate (θl,s, θu,s) [31] 51 bpm, 139 bpm
Respiration rate (θl,s, θu,s) [31] 11, 29 breath/min
Oxygen saturation (θl,s, θu,s) [32] 95 %, 100 %
δ, ρcp,t, Υ 250 ms, [0, 1], 2.4 GHz
l, m, g, k 100, 200, 0.1, 0 units
Ω, Γf [11] [5-15] MHz, [18-22.4] GHz
SINRf

p,t, V f
p,t [13-20] dB, [5-15]

Fmax
f , Cmax [3-15], [200-1400]

λ1, λ2 0.5, 0.5
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Fig. 6: Utility comparison among different schemes.
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Fig. 7: Patients’ cost comparison among different schemes.

order of criticality, and the allocation process repeats until
no improvement takes place in the utility.

System Utility Analysis: Fig. 6 considers two cases
where the numbers of patients are 40 and 60, and the num-
ber of FSs varies from 5 to 12. We observe from the result
that the utility increases as the number of FSs increases.
UMPM algorithm performs better than the greedy scheme.
The utility obtained by UMPM algorithm is 94.5% of the
optimal value compared to 77% that of greedy scheme on
an average. The reason is that the greedy scheme allocates
patients’ data in a particular order. Although the greedy
scheme considers patients’ criticality, it ignores data size
and CPU cycles of health data. UMPM algorithm considers
all the above factors to reach a sub-optimal utility within
polynomial time complexity. Moreover, the optimal solution
performs better than the UMPM algorithm because it con-
siders all possible combinations of allocations and selects
the best out of them while maximizing the utility.

Patient Cost Analysis: Fig. 7 compares the patients’ cost
of the UMPM algorithm in various scenarios. We observe
that UMPM algorithm generally results in lower patients’
cost than that of greedy scheme because UMPM considers
different parameters, and it allocates and re-allocates pa-
tients’ data to maximize the utility by minimizing patients’
cost. However, greedy scheme does not re-allocate patients’
data, resulting in higher patients’ cost and lower utility. We

also observe that patients’ cost obtained by UMPM algo-
rithm is higher than that of the optimal because the optimal
solution considers all possible combinations of allocations
and selects the best out of them to maximize the utility.
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Fig. 8: Utility based on λ1 and λ2.

Impact of λ1 and λ2 on Utility: Fig. 8 compares the
utility of optimal, UMPM, and greedy schemes, taking
precision level of 5 decimal points of lambda values. Nor-
mal system balances profit and cost factors equally, i.e.,
λ1=λ2=0.5. Criticality-aware system concerns more about
cost factor than profit, i.e., λ1<λ2. Experimental evaluation
on precision level of 5 decimal points of lambda values gives
highest utility when λ1=0.49999 and λ2=0.50001. In fact,
the obtained profit and loss factors are the highest and the
lowest respectively, when λ1=0.49999 and λ2=0.50001 on
precision level of 5 decimal points; resulting in a higher util-
ity. Therefore, criticality-aware system reaches its optimal
value when λ2 is closed to 0.5 and λ1<λ2. Moreover, profit-
aware system concerns more about the profit factor than
the cost, i.e., λ1>λ2. Profit-aware system reaches its optimal
value when λ1=1 and λ2=0. The reason is that with increase
in λ1 and decrease in λ2, profit and loss factors become
higher and lower, respectively, resulting in a better utility
value. Furthermore, UMPM algorithm performs better than
greedy in all cases and is closer to optimal value. Therefore,
UMPM can be applied efficiently in profit-aware system.

Impact of Data Sizes on Utility: Fig. 9a shows the
impact of data sizes on system utility. We observe that the
system utility decreases as the data size increases. The utility
is higher when the patient’s data size is small (i.e., 1.0 MB).
However, the utility is lower when the patient’s data size
is large (i.e., 3.0 MB). It is because the required CPU cycles
to compute patients’ data rise, and transmission time and
FS’s computation time increase as the data size grows. As a
result, the patients’ cost increases, resulting in lower utility.

Convergence Analysis: Fig. 9b depicts convergence of
the UMPM algorithm for three different cases. We observe
from the result that the algorithm converges in a few itera-
tions in all three cases. We also observe that the utility in-
creases as the number of patients and FSs increases, as does
the number of iterations because the number of possible
combinations between patients and FSs increases. However,
after certain iterations, the increase in utility is very small
and converges in finite iterations for all three cases. Thus,
UMPM algorithm converges in finite time.

Patients’ Data Allocation Analysis: Fig. 9c shows the
number of allocations based on the cloud capability ranging
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from 200 to 1400 patients’ requests at a time. We considered
30 FSs, and the number of patients that an FS can handle
ranges from 5 to 15. We observe from result that number of
allocated patients’ data increases when CS’s capability rises,
but after reaching total capacity of FSs, it becomes constant.

Execution and Transmission Time Analysis: Fig. 10a
compares the Execution Time (ET) of optimal, UMPM and
greedy schemes in various scenarios using Laptop (LP),
Workstation (WS), and the Param Shivay (PS) super com-
puter [34]. For optimal, we consider the ET required by the
Gurobi optimization tool to run the proposed heuristic. To
improve the readability, the y-axis in Fig. 10a is given after
applying the log2 scale to ET. We observe that the greedy
scheme completes its execution in less time than that of the
optimal and the UMPM approaches in all three machines.
However, the utility obtained by the greedy scheme is
much lower than that of the UMPM algorithm (see Fig.
6). Moreover, the optimal solution takes more time than
that of the UMPM algorithm since it considers all possible
combinations of allocations and selects the best out of them
while maximizing the utility. We also observe that the ET
of the UMPM algorithm is different for different machines.
This result shows that the ET depends on machine’s config-
uration, i.e., the configuration of the CS available at MC.

Fig. 10b shows the transmission time of the proposed
model and the 5G standard. We considered 1 MB data
size for each patient and 1 FS to simulate the transmission
time. We observe that the transmission time of the proposed
model is little higher than that of the 5G standard. The
reason for the slight variation is that the proposed model
achieves slight less data rate (Eq. (9)) between patients and
FS than that of the standard method (1 Gbps [35]) due to
limited consideration of available PRBs in the system [29].
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Fig. 10: Execution and transmission time analysis.

System Utility using Real World Data: Fig. 11 compares
the system utility of UMPM algorithm using a real dataset
on different settings. We use the Statlog (Heart) dataset
[36] which contains 13 attributes and has total of 270 data
samples. In our work, we considered three attributes (i.e.,
blood pressure, ECG and heart rate) as the data collected
by sensors from patients. Other simulation parameters are
considered the same as given in Table 4.
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Fig. 11: Utility comparison of UMPM on various parameters.

Fig. 11a considers five cases where the numbers of FSs
are 8, 15, 22, 30, and 37, and the number of patients varies
from 30 to 270. We observe that the utility increases when
the number of patients increases, but the utility decreases
after a certain number of patients. It is because, up to a
certain number of patients, the total computation required
for the patients is less than the total fog computation power.
However, if we increase the number of patients further-
more, the required computation increases but the total fog
computation power remains the same. This leads to higher
computation time, resulting in higher costs and lower utility.
We also observe that the utility is higher for the higher
number of FSs. It is because the computation time decreases
since total computation power increases as the number of
FSs increases, resulting in lower costs.

Fig. 11b considers five cases where numbers of patients
are 80, 130, 180, 220, and 270, and the number of FSs
varies from 15 to 45. We observe from result that the utility
increases when the number of FSs increases because the total
fog computation power rises, but the required CPU cycles
of patients’ data remain the same. Thus, FSs can compute
patients’ data in less computation time. This leads to lower
costs, resulting in higher utility. We also observe that the
utility is lower for the higher number of patients. The reason
is that computation time increases since the number of
patients increases, but total computation power remains the
same, resulting in higher costs.
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Fig. 12: Execution order and utility analysis.

Execution Order Analysis: Fig. 12a analyses the execu-
tion order of swap Algorithms 2 and 3. We use the Statlog
(Heart) dataset as discussed above. From the result, we
observe that the utility obtained by performing two way

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3206770

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on April 25,2023 at 10:20:41 UTC from IEEE Xplore.  Restrictions apply. 



11

GSR data Pulse data

Laptop (FS2)
Laptop (FS1)

Cloud Server
(CS)

Patient 1

Patient 2

Patient 3

Patient 4

Raspberry Pi
(LD4)

Raspberry Pi
(LD3)

Raspberry Pi
(LD2)

Raspberry Pi
(LD1)

NeuLog 
Sensor

NeuLog 
Sensor

Fig. 13: Prototype setup.

swap followed by one way swap algorithm is almost the
same as that of performing one way swap followed by two
way swap algorithm. Thus, UMPM algorithm can perform
two way and one way swap algorithms in any order. As
seen from the result, execution of one way swap or two
way swap algorithms one after another increases the overall
system utility. We also observe that the utility obtained by
performing two way swap algorithm is better than that of
performing only one way swap algorithm.

Utility and Encryption Analysis: We use a WS as CS, 2
LPs as FSs, 4 NeuLog sensors, and 4 Raspberry Pi as LDs,
as shown in Fig. 13. The WS’s specification is Core-i7-10700
CPU @ 4.10 GHz processor and 32 GB memory, and that
of LPs is same as discussed above. We use Raspberry Pi
4 Model B with 1.5 GHz 64-bit quad-core, ARM Cortex-
A72 CPU, and 8GB memory. NeuLog sensor is connected
with Raspberry Pi using a USB. Raspberry Pi, LP and WS
are connected with a 4G mobile hotspot. NeuLog sensor
collects data from the patient and sends it to Raspberry
Pi, and Raspberry Pi sends a request to WS for remote
health monitoring. The WS allocates patients’ data to the
LP by executing the UMPM algorithm. Then, Raspberry Pi
transmits the health data to the LP for further processing.

UMPM has been evaluated on data sizes varying from
0.33 MB to 2.35 MB (Fig. 12b). The result denotes the utility
obtained in simulation is higher than that of the prototype
model. It is because the prototype model used 4G mobile
hotspot for transmitting data between Raspberry Pi and LP,
unlike the 5G communication used in simulation. Moreover,
Raspberry Pi, LPs, and WS use in the prototype model
are not dedicated same configured devices as considered
in simulation set-up. This leads to higher transmission and
computation time, resulting in higher costs and lower utility.

Table 5 shows the impact of BGV in terms of data size
and encryption/decryption time at the LD. We observed
from experiment that encryption and decryption overhead
time is very low, as shown in Table 5a. As a result, the BGV
encryption scheme can be employed in practice. We also
observe an increase in original data size after employing the
BGV encryption scheme, as can also be seen in Table 5b.

TABLE 5: BGV encryption analysis

Operation Time (ms)
Encryption 22.99785
Decryption 1.00088

(a) Time

Data size
Before encryption 84 bytes
After encryption 192 bytes

(b) Data size

6 CONCLUSION AND FUTURE WORK

This paper proposed a beyond-WBAN based fog assisted
remote health monitoring system. Formulated an optimiza-
tion problem based on the MC’s profit and patients’ cost.
Further, proposed UMPM algorithm to maximize overall
system utility. Through extensive simulations on real-world
data and prototype model, the paper concludes that UMPM
algorithm achieves an average utility of 94.5% of the opti-
mal value in polynomial time complexity.

This work considers CS to execute UMPM algorithm for
allocating patients’ data to FSs. However, future work will
consider compute heavy tasks such as data analysis and
trend analysis at the cloud level in coordination with FS to
minimize total computation delay. Moreover, the proposed
utility maximization model can be extended to incorporate
the sub-channel allocation problem considering interference
into account. The role of doctors can be included in the
proposed system by employing appropriate pricing model
and energy minimization for WBAN-enabled system along
with latency and patients’ criticality altogether in the future.
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