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ABSTRACT

The hemispheric asymmetry of the sunspot cycle is a real feature of the Sun. However, its origin is still not well understood. Here

we perform nonlinear time series analysis of the sunspot area (and number) asymmetry to explore its dynamics. By measuring

the correlation dimension of the sunspot area asymmetry, we conclude that there is no strange attractor in the data. Further

computing Higuchi’s dimension, we conclude that the hemispheric asymmetry is largely governed by stochastic noise. However,

the behaviour of Hurst exponent reveals that the time series is not completely determined by a memory-less stochastic noise,

rather there is a long-term persistence, which can go beyond two solar cycles. Therefore, our study suggests that the hemispheric

asymmetry of the sunspot cycle is predominantly originated due to some irregular process in the solar dynamo. The long-term

persistence in the solar cycle asymmetry suggests that the solar magnetic field has some memory in the convection zone.

Key words: Sun: activity, sunspots, dynamo, magnetic fields — Time series analyses.

1 INTRODUCTION

The magnetic activity of Sun is not identical in two hemispheres—

there is always an asymmetry. This hemispheric asymmetry,

also called the north-south asymmetry, has been observed in

the photospheric magnetic field (Mordvinov & Kitchatinov 2004;

McIntosh et al. 2013; Mordvinov & Kitchatinov 2019) as well

as in many proxies of the solar activity (Mandal et al. 2017;

Goel & Choudhuri 2009; Norton et al. 2014; Mordvinov et al. 2020).

The hemispheric asymmetry is a real feature of the solar cycle and is

not an artefact of inaccurate or noisy observations (Carbonell et al.

1993).

Bell (1961) found the evidence of hemispheric asymmetry in the

number of major flares and later Bell (1962) found a long-term asym-

metry in the sunspot area data during Cycles 8–18. Swinson et al.

(1986) found a peak in the northern hemispheric solar activity about

two years after sunspot minimum and a 22-years periodicity in the

north-south asymmetry. Verma (1987) showed that the northern

hemisphere is more active during Cycles 19 and 20. Li et al. (2009)

used group sunspot and sunspot area data from 1996 to 2007 to show

that the solar activity for cycle 23 is dominant in the southern hemi-

sphere; also see Chowdhury et al. (2013) who extended this study to

some part of cycle 24. A well-known sunspot asymmetry was ob-

served during the Maunder minimum. Most of the sunspots were reg-

istered in the southern hemisphere (Sokoloff & Nesme-Ribes 1994).

It is believed that a hydromagnetic dynamo, operating in the solar

★ E-mail: karak.phy@iitbhu.ac.in

convection zone, is responsible for the generation and maintenance of

the large-scale magnetic field and the cycle of solar activity (Parker

1955). In the current scenario of the solar dynamo (Karak et al. 2014;

Charbonneau 2020; Hazra 2021), a toroidal component of the mag-

netic field is largely generated due to the shearing of the poloidal

component by the differential rotation. This toroidal field gives back

to the poloidal one due to the decay and dispersal of tilted bipolar

magnetic regions (BMRs)— the so-called Babcock–Leighton pro-

cess and possibly due to the helical convection—the so-called U

effect. Meridional circulation and the small-scale convective flow

play the role in transporting the magnetic field from the near-surface

layer (the location of Babcock–Leighton process) to the deeper con-

vection zone, where the shearing process is efficient, and thus largely

regulates the cycle period.

The turbulent nature of the helical convective flow—the main drive

of the dynamo—is expected to make the magnetic field unequal in

two hemispheres. Thus, a hemispheric asymmetry in the solar mag-

netic field is unavoidable. Furthermore, the tilts of BMRs, which

primarily determines the poloidal field, has a large scatter around

Joy’s law (Stenflo & Kosovichev 2012; Wang et al. 2015; Arlt et al.

2016; Jha et al. 2020). Thus the tilt scatter makes the poloidal mag-

netic field irregular and asymmetric (Lemerle & Charbonneau 2017;

Karak & Miesch 2017; Karak 2020). As the poloidal field is the

seed for the toroidal field of the next solar cycle, the asymmetry

in the polar field is propagated in the solar cycle (Choudhuri et al.

2007). Dynamo models have shown that when the turbulent diffu-

sion is sufficiently strong, the coupling between two hemispheres

tries to diminish the asymmetry introduced in the polar field
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and thus the asymmetry in the solar cycle may not persist for

several cycles (Chatterjee & Choudhuri 2006; Goel & Choudhuri

2009; Karak 2010; Karak & Miesch 2017). Dynamo models by

including scatter in the BMR tilt (Lemerle & Charbonneau 2017;

Karak & Miesch 2017, 2018) or U term in the poloidal source

(Olemskoy & Kitchatinov 2013; Karak et al. 2018; Hazra & Nandy

2019) produce hemispheric asymmetry in the magnetic cycle, which

in some parameter regimes, are in agreement with observations.

Schüssler & Cameron (2018) have shown that the random excitation

of the quadrupole mode of dynamo by the stochastic fluctuations in

the Babcock–Leighton process can lead to an asymmetry in the ob-

served magnetic field; also see Nepomnyashchikh et al. (2019). Thus,

all these previous results motivate us to explore whether the solar

hemispheric asymmetry is governed by a low-dimensional chaotic

process or stochastic process? Is there any long-term memory in the

solar cycle asymmetry?

Nonlinear time series analysis is suitable to answer the above ques-

tions. While there exist many such studies for the solar cycle data

(e.g., Ostriakov & Usoskin 1990a; Carbonell et al. 1994; Jevtić et al.

2001; Letellier et al. 2006; Suyal et al. 2009), only a few such stud-

ies are performed in the solar cycle asymmetry. Carbonell et al.

(1993) computed the correlation dimension of the asymmetry of daily

sunspot area during 1874–1989 and did not find any evidence of low-

dimensional chaos. By computing the Higuchi’s fractal dimension

(Higuchi 1988) and some nonlinear prediction method for the hemi-

spheric asymmetry of sunspot number during 1947–1984, Watari

(1996) concluded that the sunspot number asymmetry is highly ir-

regular and not deterministic chaos.

In the present work, we shall utilize the maximum available

sunspot area data (during 1874–2016) of hemispheric asymmetry

and apply multiple nonlinear time series techniques to check the in-

herent nonlinear properties of the system. First, we shall compute

the correlation dimension (�2) to extract whether the data has any

strange attractor in the data and thus this analysis will reveal the

existence of any low-dimensional chaos in the underlying system

(Grassberger & Procaccia 1983a). Next, we shall compute a fractal

dimension using the method given in Higuchi (1988) which provides

a stable estimate of the fractal dimension when the data is more irreg-

ular and non-stationary. Higuchi’s dimension will give another inde-

pendent support of whether the asymmetry data is from a stochastic

process or low dimensional chaos. Finally, we shall compute the

Hurst exponent (Mandelbrot & Wallis 1969) to check whether the

data has any persistent memory or not. The final conclusion will be

presented in Section §6.

2 OBSERVATIONAL DATA

We use the monthly mean sunspot area data during May 1874 –

September 2016 obtained from the Royal Greenwich Observatory

(RGO) 1. The RGO data have been the only available record of

sunspot area separately in two hemispheres for the longer dura-

tion and this is routinely used in many studies of the solar activity

(Hathaway 2015). RGO provides the monthly value of the average

(over observed day) of the daily sunspot area in the unit of millionths

of a hemisphere and it is evenly spaced. We have also repeated our

analyses with the newly available monthly mean hemispheric sunspot

number data; §B.

The easy way to measure the asymmetry is to take the difference

1 https://solarscience.msfc.nasa.gov/greenwch.shtml
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Figure 1. Time series of the hemispheric asymmetry of monthly average

sunspot area (in unit of millionth of a solar hemisphere) as measured by �(

(top) and �(#>A< (bottom).

in the values between two hemispheres (Ballester, J. L. et al. 2005;

Chang 2007), i.e. asymmetry,

�( = �# − �( , (1)

where �# and �( are the monthly values of the sunspot area in

the northern and southern hemispheres, respectively. We note that

during solar maxima, the difference becomes large in comparison

to the value during minima and this causes a cyclic pattern in the

asymmetry; see Figure 1 top panel. Furthermore, if a cycle is strong,

then the asymmetry is large and vice versa. Therefore, in the litera-

ture (Carbonell et al. 1993; Oliver & Ballester 1996; Duchlev 2001;

Goel & Choudhuri 2009; Chowdhury et al. 2013; Priyal et al. 2014),

the asymmetry is also measured by normalizing its strength, namely.

the normalized asymmetry,

�(#>A< =
�# − �(
�# + �(

. (2)

When both �# and �( become equal to zero, we set �(#>A< = 0.

We realized that this happens for 15 data points (which is less than

1% of the total data). However, we discussed its effect in Section 4

by replacing these points with interpolated values.

We note that this �(#>A< is a different time series than the �(;

statistics of the data are different ( Table 1). Again this definition

of asymmetry is not satisfactory because during the solar minima,

when the sunspot area becomes very small and this leads to increase

in �(#>A<; see Figure 1 bottom panel. It was examined in Yi (1992),

that dividing the difference of the hemispherical sunspot areas by the

total sunspot area results in the appearance of a peak in the power

spectrum between 11 and 12 years.

Due to such facts from the literature, where both definitions have

been used to measure the solar cycle asymmetry, it becomes neces-

sary to perform analyses of the time series of asymmetry using both

the methods that we have discussed above.

3 METHODS

To identify the nonlinear properties of the hemispheric asymmetry of

sunspot area time series, we shall compute three quantities for �( and

MNRAS 000, 1–8 (2021)
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Table 1. Some statistics of the data. Total number of data points used: 1709.

Symbols in second to third columns are as follows: < ( >, the average of the

time series; A<B, the root mean-squared deviation, and < PN >=
√
< ( >.

Data < ( > A<B < PN > /A<B

North 426.79 488.2 0.042

South 409.43 470.1 0.043

AS 17.36 466.9 0.009

ASNorm 0.01 0.6 0.225

�(#>A<, namely, the Correlation dimension, Higuchi’s dimension,

and Hurst exponent. Below, we discuss briefly how to compute these

quantities.

3.1 Correlation dimension

First, we shall apply a method of time series analysis to distinguish

the random noise in the underlying system from the low dimen-

sional chaos. This method is to measure a fractal dimension of the

strange attractor in the system which is popularly known as the cor-

relation dimension (�2). The method for obtaining �2 has been

given in Grassberger & Procaccia (1983a,b), also see Takens (1981);

Packard et al. (1980). This has also been used in many astrophysi-

cal applications (e.g., Schreiber 1999; Misra et al. 2006; Karak et al.

2010), including identifying chaotic dynamics of the solar cycle

data (Ostriakov & Usoskin 1990b; Carbonell et al. 1994; Jevtić et al.

2001). In this method, we construct a " dimensional phase space

using our time series - (8) (where 8 = 1, 2, 3.....#); - (8) is �( or

�(norm in our case. In this space, any vector has the following form:

G8 = [- (8), - (8 + g), ........., - (8 + (" − 1)g)]. (3)

The time delay, g is chosen in such a way that each component

becomes independent of each other. We find that at g = 3 months,

the auto-correlation of the data falls below 1/4 and thus we set this

value for g in our analysis (see Carbonell et al. 1994, for a detailed

discussion on choosing g). We checked that our results do not change

abruptly if we increase g.

Next, the correlation function �" (A) is given as

�" (A) = 1

# (#2 − 1)

#∑
8=1

#2∑
( 9 , 9≠8)

Θ(A − |G8 − G 9 |), (4)

where G8 is a reconstructed vector; Equation (3), Θ is Heaviside

function (Θ(I) = 1 if I ≥ 0 and 0 if I < 0), # the total number of

points and #2 is the number of centers. Essentially, �" (A) gives

the number of points that are within a distance A from the centre,

averaged over all the centres. Then for small A , �2 (") is given by

�2 (") = dlog(CM (r))
dlog(r) . (5)

To compute�" (A), we divide the entire phase space into " cubes

of length A around a point and count the average number of points.

To avoid the edge effects due to the finite number of data points,

we compute �" (A) in the range A<8= < A < A<0G . Here A<8= is

chosen when �" (A) is just greater than one and A<0G is taken in

such a way that all " cubes remain within the embedding space. For

a fixed value of " , �2 is computed for different values of A in the

linear region of log(�" (A)) versus log(A) plot using Equation (5).

The average of all these values will give our final �2 and the mean

standard deviation over the average value gives the error on �2. The

whole calculation is repeated for different values of " .

The value of �2 should increase initially with the increase of

" . However, if the time series is obtained from a low dimensional

chaotic system, then �2 tends to saturate above a certain value of

" . In contrast, for a stochastic system, �2 keeps on increasing with

" . That is the number of dimensions needed to describe the system

in the phase space is infinitely large in a stochastic system. In that

case, �2 ≈ " , for all " . Thus, the variation of �2 with " is used

to distinguish between the random noise vs low dimensional chaos.

3.2 Higuchi’s dimension

Previously, many methods for finding stable estimations of the power-

law spectral index have been discussed in the literature. Here, we

follow the method given in Higuchi (1988) to calculate the fractal

dimension � of the asymmetry series. This method is helpful in

providing a stable estimate of the fractal dimension of the asymmetry

time series.

We recall that - (8) is our time series (8 = 1, 2, 3, ..., #; # is the

total number of observations taken at a regular interval) and thus,

- (8) : - (1), - (2), - (3), ..., - (#) (6)

From this, a new time series is constructed in the following manner:

-<
g : - (<), - (< + g), - (< + 2g), ..., -

(
< +

[
# − <
g

]
g

)
(7)

where < = 1, 2, ..., g, and [ ] denotes Gauss’s notation. The length

!< (g) of the curve associated to each -<
g is defined as:

!< (g) =



©­­«

[
#−<

g

]∑
8=1

|- (< + 8g) − - (< + (8 − 1)g) |
ª®®
¬

# − 1[
#−<
g

]
g




1

g
,

(8)

The average value of the time series length 〈! (g)〉 for a given value

of g is defined as the average of g sets of !< (g). If 〈! (g)〉 ∝ g−� ,

for the range g<8= < g < g<0G then the time series is a fractal and

has a dimension � for that range of g. We find 〈! (g)〉 for g = 2 to

g = 55 for our analysis, for both �( and for �(#>A< .

3.3 Hurst exponent

Here, we attempt to find the Hurst exponent, �, which characterises

the persistence of a times series to examine whether the non-periodic

variations in the asymmetry time series are a result of a white

noise process, an anti-correlated random process, or a correlated

random process. We borrow the discussion regarding the Hurst ex-

ponent in the context of solar activity data from Ruzmaikin et al.

(1994) and Suyal et al. (2009). We use the '/( method as given in

Mandelbrot & Wallis (1969) to obtain the Hurst exponent.

We choose a temporal window g, where gC > g > # , and gC is the

Theiler window (Theiler 1986), to make subsets of time series - (8)
as follows:

G8 (g); - (C0), - (C0 + 1), - (C0 + 2), ..., - (C0 + g − 1), (9)

where C0 = 1, 2, ..., # − g + 1. It is important to note that the choice

of window used in finding the '/( values for each given g is rather

important, since non-overlapping windows produce '/( values from

comparatively small sample sizes. Lesser number of windows could

possibly provide inaccurate values for �. Now we denote the average

of these subsets as:

Ḡ (C0, g) =
1

g

C0+g−1∑
8=C0

G8 (g). (10)

MNRAS 000, 1–8 (2021)
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Figure 2. Variation of correlation dimension (�2) with the embedding di-

mension (" ) for �( (square points) and �(Norm (asterisks). The dotted line

along the diagonal of the figure indicates the �2 variation as expected from

an ideal stochastic process. �(�=B.�E6. and �(
�=B.�E6.

#>A<
(round points)

shows the variation averaged over an ensemble of 1000 AS & �(#>A< time

series, respectively (see Section 5).

Let, ((C0, g) be the standard deviation of G8 (g) for the window g as

follows:

((C0, g) =

√√√√
1

g − 1

C0+g−1∑
8=C0

[
G
C0
g (8) − Ḡ (C0, g)

]2
. (11)

Now, we define a set of new variables H8 (C0, g), which is the set of

cumulative deviations from the mean of G8 (g)

H8 (C0, g) =
C0+8−1∑
:=C0

[
G
C0
g (:) − Ḡ (C0, g)

]
, (12)

and hence, the range ' of H8 (C0, g) is obtained as:

'(C0, g) = max
1≤8≤g

H8 (C0, g) − min
1≤8≤g

H8 (C0, g). (13)

This allows us to define the rescaled range measure '/( as:

('/()(C0, g) =
'(C0, g)
((C0, g)

. (14)

Calculating the '/( values for each temporal window by moving

from C0 = 1 to C0 = # − g + 1 for window size g, the rescaled range

for g is then given as the average of these values

('/() = 1

# − g + 1

∑
C0

('/()(C0, g). (15)

It was observed that the rescaled range for a time window is propor-

tional to g�

('/()g = :g� (16)

where : is the proportionality constant, and � is the Hurst exponent.

To obtain the value of the Hurst exponent, '/( values are plotted for

g = 11 to g = 1709 for the Hurst Exponent analysis, for both �( and

�(#>A<.

A white noise process or a random walk process is defined by a

Hurst exponent of � = 0.5. When the time series has � > 0.5, it is

said to be persistent. Persistence is defined as the tendency for the

0 1 2 3 4
log(τ)

−2

0

2

4

6

8

10

12

14

lo
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Figure 3. Variation of the length (〈! (g) 〉) with the time interval (g) for �(

and �(#>A< .
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Figure 4. Variation of '/( with time interval (g) for �( (top) and �(#>A<

(bottom). g = 135 months and g = 271 months are indicated as (1) and (2).

process to have a memory of the previous step. That is, if there was an

increase in the value of the time series, the following step would be

more likely to have an increase as well. In such a case, the time series

would cover more “distance” than a random walk would. Whereas,

if 0 < � < 0.5, then the time series is said to be anti-persistent.

That is, an increase in the value of the time series is more likely to

be followed by a decrease, and vice-versa. And in opposition to a

persistent case, the time series would cover less “distance” than a

random walk.

There are other methods to determine the Hurst exponent, and

the value that is obtained is sensitive to the method used (Weron

2002). In order to provide a confidence in the estimate of the Hurst

exponent, and to ensure that the result is not method dependent,

we shall compute Hurst exponent in two more methods, namely,

Detrended Fluctuation Analysis and Periodogram Regression. As

these methods are well described in the literature, we shall describe

them briefly in Appendix A.

MNRAS 000, 1–8 (2021)
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Figure 5. Variation of���with time interval (g) for �( (top) and �(#>A<

(bottom). g = 135 and g = 271 months are indicated as (1) and (2).

4 RESULTS

The variation of �2 as function of " for the sunspot area asymmetry

is shown in Figure 2. We find that the asymmetry and normalized

asymmetry do not show the same behaviour. Nevertheless, in both

cases, �2 increases with an increase of " . The lack of saturation in

�2 implies that the sunspot area asymmetry is not governed by low-

dimensional chaos, rather it might be driven by a high-dimensional

or stochastic process. This conclusion is in general agreement with

Carbonell et al. (1993) who also did not find the evidence of low-

dimensional chaos in the asymmetry of sunspot area data during

1874–1989.

To confirm that the solar cycle asymmetry is really governed

by stochastic or high-dimensional chaos, we observe the value

of Higuchi’s dimension (�). As seen from Figure 3, for �(,

� = 1.9125 ± 0.0001, and for �(#>A< , � = 1.9106 ± 0.0003.

We know that when the value of � for a curve is close to 2, the curve

behaves nearly like a surface, i.e., the curve is close to a space-filling

curve. Hence, the self-similar nature for time series, i.e., the hallmark

of low-dimensional chaos is absent. Therefore, we conclude that the

process that generates the hemispheric asymmetry of sunspot area is

very likely to be the result of an irregular or stochastic process.

Finally, we explore the memory of these irregular asymmetry data

by computing the Hurst exponent (�). In Figure 4, we show the

log-log plots for '/( against g. The slope of this curve gives the H

value. We, however, see two distinguishable linear scaling regimes,

and hence one value of H for all g is not adequately representing the

data. The previous study for sunspot number cycle also indicted two

distinct regimes (Suyal et al. 2009).

For �(, in the range: g = 11–110 months, we find � = 0.79,

while for g = 263–650 months, we obtain � = 0.94 (Table 2). In

between these two regimes, there is a small region during 135–271

months (marked by vertical lines in (Figure 4a)) with a weaker slope,

which is possibly linked to a period of lower persistence in the trend.

For �(#>A< (Figure 4b), in the range g = 11–130 months, we find

� = 0.81, while in the range: g = 233–630 months, we get � = 0.87.

In this case, the change in the slope happens very slowly.

In the Detrended Fluctuation Analysis (DFA), we get similar re-

sults but the values of � are slightly larger (Figure 5). For �(, in the

range: g = 1–110 months, we find � = 0.84, while for g = 263−650

months, we obtain � = 1.10. Now, as discussed in Bryce & Sprague
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(a)AS
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(b)ASNorm
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Figure 6. Periodogram Geweke-Porter-Hudak (GPH) Method for �( (top)

and �(#>A< (bottom).

(2012); Ceballos & Largo (2017), we can point out that a value of �

above 1 is not impossible. It is a consequence of non-stationarity or

a trend not being fully removed from the data. The reliability of DFA

as a valid method has been questioned on similar grounds before.

But since our R/S analysis still backs up the general result that the

latter regime has a higher slope, we can safely negate the effect that

this inconsistency may cause. (Table 2).

For �(#>A< , in the range: g = 11−130 months, we find� = 0.85,

while in the range: g = 223 − 630 months, we get � = 0.91.

Using the Method of Periodogram Regression (Figure 6), for �(,

we obtain� (= 0.5+0.21) = 0.71, while for �(#>A< , we obtain� (=
0.5 + 0.27) = 0.77. Unlike the case in '/( Method and Detrended

Fluctuation Analysis, the periodogram (Figure 6) does not show two

distinct linear scaling regimes. However, the Hurst exponent being

larger than 0.5, we can safely conclude that �( and �(#>A< time

series are persistent in nature and the degree of persistence increases

with the time-scale. Larger value of � for g ' 22 years (= 264

months), suggest that the memory of solar cycle asymmetry persists

at least for two cycles.

We have obtained � and � graphically, using the Least Squares

method for all of our plots; see e.g., Figure 3. We have also applied

Bayesian linear regression to all our power law fits (Wheatland 2004)

using the justification towards a Bayesian method of fitting as op-

posed to a frequentist method, as explained in D’Huys et al. (2016).

We use the Python module, PyMC3 (Salvatier et al. 2016) for this.

We find that the differences in results lie in the range of 10−4 –

10−3, except in the case of of the periodogram method. In that case,

for �( and �(#>A< we obtain the value of the Hurst exponents as

0.707 ± 0.179 and 0.761 ± 0.132, respectively using Bayesian linear

regression, while these values obtained from previous Least Squares

method are 0.706 and 0.772, respectively.

We recall that while computing �(Norm using Equation (2), we

took �(Norm = 0 when both �# and �( are zero. Instead of this,

if we replace these points by interpolating the neighbouring points,

then this so-called zero-replacement strategy affects our computed

results only marginally. (For example, from this zero-replacement

�(Norm data, the computed value of � is 1.9077 and the values of

� are 0.8110 & 0.8693 (R/S method), 0.8469 & 0.9074 (DFA), and

0.7718 (PR). Compare these values with the corresponding values in

Table 2.)
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Table 2. Summary of results obtained for Higuchi’s dimension and Hurst exponents. In the forth and sixth columns, the values are the means and the standard

deviations (errors) of the results obtained from an ensemble of 1000 AS & AS#>A< time series, respectively (see text).

Method Window Time Series

(months) AS Ensemble of AS AS#>A< Ensemble of AS#>A<

Higuchi 2-55 1.912 1.915±0.002 1.911 1.916±0.002

Hurst (R/S) 11-110 0.788 0.783±0.008 0.811 0.813±0.007

263-650 0.933 0.929±0.019 0.871 0.879±0.017

Hurst (DFA) 11-110 0.840 0.834±0.010 0.851 0.851±0.008

263-650 1.102 1.096±0.022 0.912 0.920±0.018

Hurst (PR) K = 28 0.706 0.704±0.039 0.772 0.775±0.028

5 ERROR ESTIMATES

In our study, we used the monthly averaged hemispheric sunspot area

as recorded in RGO. Unfortunately, in these data, no error information

is given. Therefore we cannot make a direct estimate of error in our

computed results. However, using the daily sunspot area data1, we

can make some estimate of the errors in the following way using a

Bootstrapping technique (Efron & Tibshirani 1993). Let us consider

the daily sunspot area data of one month for both the northern and

southern hemispheres. We produce 100 resampled datasets with the

same size as the number of days for this month by randomly selecting

daily pairs of values for north and south, and then computing the

corresponding �( and �(#>A< for the resamples. We compute the

mean for all of these resamples. And then, we compute the mean

(`) and the standard deviation (f) of the means of all the resampled

datasets for a month. It can be easily seen that this mean is not

necessarily the same as what we have used in our earlier analyses.

With these ` and f, we produce an ensemble of 1000 data points

(deviate) from a Gaussian distribution and repeat this for all the

months to get 1000 time series. Finally, perform our all the nonlinear

time series analyses with this ensemble.

Black and magenta filled circles connecting dashed lines in Fig-

ure 2 show the average �2 behaviour of the ensemble of 1000 �( and

�(#>A< time series. The error bar represents the f of the computed

�2 of 1000 time series. In Table 2, forth and sixth columns show the

mean and error (standard deviation) of � and � from the ensembles.

We clearly see that the mean values of the computed quantities (�2 ,

�, and �) of the ensemble of 1000 �( & �(#>A< time series are

not too far from the ones computed from the original monthly mean

time series. The values of f of the ensemble are also reasonably low,

with the quantities being less than 1 standard deviation away from

the computed values in most cases.

6 DISCUSSION AND CONCLUSION

We have explored some nonlinear properties of the underlying pro-

cess behind the solar cycle asymmetry using nonlinear time series

analysis. For this, we have used the hemispheric monthly sunspot

area and number time series, which are the best proxies of the Sun’s

large-scale magnetic flux available for a longer duration.

Following the literature, solar cycle asymmetry has been measured

in two ways, namely, the hemispheric difference �( and the normal-

ized hemispheric asymmetry �(#>A<. We have used three methods

of time series analyses to characterise the data.

From the analysis of the correlation dimension �2, we find that the

value of �2 does not saturate for higher values of " . This indicates

that there is no underlying presence of a low-dimensional chaotic

attractor that could govern the asymmetry of sunspot area data, in

agreement with the conclusion obtained in Carbonell et al. (1993).

In other words, we can expect that the asymmetry is likely to be

produced by irregular process.

In our fractal analysis, we see that the value obtained for the

Higuchi’s fractal dimension (�) is close to 2, which implies that a

stochastic process or possibly a high-dimensional chaotic process is

the cause of the asymmetry.

In all three methods of computation of Hurst exponent, we find the

value of Hurst exponent � is above 0.7 for �( data and a little larger

for �(Norm. We find multiple values of� for the same time series. Its

value decreases slightly after about 11 years (one cycle period) and

then increases for windows larger than about 22 years. This change

in the value of H and thus the persistence is more prominent in �(.

In general, a memory can be observed for the asymmetry time series

and it is larger in long-time scale (beyond 22 years; two cycles). From

our analysis, we conclude that the monthly hemispheric asymmetry

of sunspot area is dictated by a stochastic process with some amount

of long-memory.

The results from hemispheric sunspot number, which is recently

made available by Veronig et al. (2021) during 1874–2020, also

shows similar behaviour (during the period May 1874 - September

2016) as that found in the hemispheric area data; §B.

Stochastic nature of hemispheric asymmetry supports

the previous theoretical studies (e.g., Goel & Choudhuri

2009; Olemskoy & Kitchatinov 2013; Karak & Miesch

2017; Schüssler & Cameron 2018; Hazra & Nandy 2019;

Nepomnyashchikh et al. 2019) which explains the solar cycle

asymmetry to be caused by the irregularity involved in the he-

lical convective flow, and in particular the randomness involved

in the Babcock–Leighton process (e.g., in the form of tilt of

BMRs, emergence rate, meridional flow). Further, the presence

of some long-term memory in asymmetry time series supports

the existence of a finite memory of the sun’s magnetic field,

which is possibly determined by the turbulent diffusion and

pumping (Chatterjee & Choudhuri 2006; Karak & Nandy 2012;

Karak & Miesch 2017; Kitchatinov & Khlystova 2021).
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APPENDIX A: HURST EXPONENT USING DIFFERENT

METHODS

In this section, we will determine the Hurst exponent by two other

methods, namely, Detrended Fluctuation Analysis and Periodogram

Regression.

The method of Detrended Fluctuation Analysis proposed by

Peng et al. (1994) and also discussed in Weron (2002) can be summa-

rized as follows. We choose a temporal window g, where g0 ≤ g ≤ # .

Here, g0 plays a similar role as the Theiler window plays in the

'/( method. For this g, we can divide the time series - (C) into

3 (= # − g + 1) subseries

G8 (g) : - (8), - (8 + 1), ..., - (8 + g − 1) (A1)

for 8 = 1, 2, 3, ..., 3. Note that each subseries G8 (g) is of length g.

Now, for each subseries G8 (g), we create a cumulative time series

.8 (g) : - (8),
1∑
9=0

- (8 + 9), ...,
g−1∑
9=0

- (8 + 9). (A2)
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Now, we fit a least-squares line . 8 (g, G) = 08G + 18 where, G =

1, 2, ..., g, to {.8 (g)}. Let, (8 (g) be the root mean square fluctuation

(i.e. standard deviation) of the Integrated and Detrended time series,

given by

(8 (g) =

√√√
1

g

g∑
G=1

(.8,G (g) − 08G − 18)2 (A3)

where, .8,G (g) represents the x-th element of the cumulative time

series .8 (g). Finally, we calculate the mean value of the root mean

square fluctuation for all subseries of length g, (���)g , given by

(���)g =
1

3

3∑
8=1

(8 (g) (A4)

Similar to the case of the '/( analysis, a linear relationship on a

double logarithmic paper of (���)g against g indicates the presence

of a power-law scaling

(���)g = :g� (A5)

where, : is the proportionality constant and � is the Hurst exponent.

To obtain the values of the Hurst exponent, (���) values are

plotted for g = 11–1709 months for both �( and �(#>A<.

Now, we will discuss the method of Periodogram Regression pro-

posed by Geweke & Porter-Hudak (1983). It is calcualted from the

slope of the spectral density function of a fractionally integrated

series at low frequencies.

For the time series, we start out by calculating the periodogram,

which is a sample analogue of the spectral density. Given the time

series - (8) of length # , the periodogram is obtained as

�# (l: ) =
1

#

�����
#∑
C=1

- (C)4−82c (C−1)l:

�����
2

(A6)

where, l: = :/#, : = 1, 2, ..., [#/2] and [-] denotes the greatest

integer less than or equal to - Note that, �! is the squared abso-

lute value of the Fourier transform. The next step is to run a linear

regression

log{�# (l: )} = 0 − 3̂ log{4 sin2 (l:/2)} + n: (A7)

at low Fourier frequencies l: , : = 1, 2, ...,  ≤ [!/2]. l: , : =

1, 2, ...,  ≤ [#/2]. The least squares estimate of the slope yields

the differencing parameter 3 = 3̂ and � = 3̂ + 0.5. Next is how to set

the value of  . Since, the differencing parameter 3 is sensitive to the

choice of  , we decided to keep it smaller than the standard value

of #0.5. We use  = [#0.45] = 28 in our analysis to determine the

Hurst exponent, keeping in mind smaller powers of # introduce large

estimation errors. Once the differencing parameter 3 was obtained,

the Hurst exponent was obtained as � = 3 + 0.5.

APPENDIX B: RESULTS FROM HEMISPHERIC SUNSPOT

NUMBERS

The sunspot number is probably the longest data available to study

solar activity. However, the hemispheric data of sunspot number were

available only from 1992. Recently, hemispheric sunspot number data

has been derived and made publicly available (Veronig et al. 2021)2

during 1874–2020. As the sunspot number has been extensively used

2 https://wwwbis.sidc.be/silso/datafiles

Table B1. Summary of results obtained for Higuchi’s dimension and Hurst

exponents from hemispheric sunspot numbers.

Method Window Time Series

(months) AS AS#>A<

Higuchi 2-55 1.90 1.90

Hurst (R/S) 11-110 0.83 0.83

263-650 0.93 0.83

Hurst (DFA) 11-110 0.90 0.89

263-650 1.07 0.88

Hurst (PR) K = 28 0.73 0.76
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Figure B1. Variation of correlation dimension (�2) with the embedding

dimension (" ) for �( (square points) and �(Norm (asterisks) calculated

from hemispheric sunspot numbers.

to study solar activity and it has a strong correlation with the sunspot

area number, we present the results of our time-series analyses for

the �( and �(#>A< computed from the sunspot number during the

period May 1874 - September 2016. The results are presented in

Table B1 and Figure B1.
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