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The 2060 carbon neutral target reflects the long-term equilibrium and stability of production
activities and the natural environment. As an important part of Chinese energy structure, the
operation and transformation of power enterprises will face higher requirements. Although the
rapid development of smart grids provides necessary technical support for power enterprises to
build amodern energy systemwith greenpower as the core,whether power enterprises can use
smart grids to improve their operating performance and environmental performance has yet to
be discussed. The differences caused by the heterogeneity of property rights will also have an
impact on the green transformation and development of enterprises. This paper selects 25
Chinese power enterprises as the research objects and uses the 2011–2019 enterprise panel
data and the data envelopment analysis model to evaluate the operating performance and
environmental performance of power enterprises. The results show that the overall fluctuation
trend of the total factor productivity index and green total factor productivity index of power
enterprises are W-shaped, and technological progress is the main driving force for the
improvement of power operating performance and environmental performance; Compared
with enterprises with a single power generation method, enterprises with diversified power
generationmethods performed better in their overall total factor productivity index. After that, text
mining and machine learning methods are used to classify the text of the enterprise’s annual
report to determine whether the enterprise applies smart grid technology for production and
operation activities. Finally, using feasible generalized least squaresmethod (FLGS) and dynamic
panel systemgeneralizedmoment estimation (SYS-GMM) to analyze the impact of smart grid on
the operating performance and environmental performance of power enterprises, and the nature
of corporate property rights in this process. It is found that smart grids can improve the operating
performance and environmental performance of power enterprises; compared with state-
owned enterprises, non-state-owned enterprises can achieve better performance in the
application of smart grids to improve operating performance and environmental
performance. Finally, this study provides corresponding policy recommendations for power
enterprises to achieve performance improvement and green transformation development.
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INTRODUCTION

The 2021 Chinese government work report first proposed the goal
of “carbon peak and carbon neutrality”. In November of the same
year, China and the United States issued the “The Glasgow Joint
Declaration of the U.S. and China on Strengthening Climate Action
in the 2020s”, series of events marked that China is entering a
critical period of green transformation and development. However,
China’s energy structure has always been highly dependent on coal.
The power sector accounts for a relatively high proportion of
thermal power generation, and clean energy power generation
methods have problems of indirectness and instability. If China
wants to realize the energy transition, it is by no means simply
expanding the scale of renewable energy production or paying too
much attention to renewable energy and pursuing a “crippled”
energy transition. Instead, it should improve the efficiency of
existing installed equipment, equip new energy power generation
facilities with appropriate flexible power reserve capacity, and rely
on advanced digital technology to improve the overall operating
efficiency of the power system. The smart grid integrates big data,
Internet of Things, 5G and other digital technologies, and realizes
high-quality development of China’s energy through the application
of scientific and technological achievements such as advanced
sensor technology and measurement technology. It not only has
strong self-healing ability and reliability, but also can realize the
efficient use of power system equipment resources through digital
technology and the coordination and cooperation among the power
generation, transmission, distribution, and use parties to improve
the power system energy utilization efficiency and power supply
stability.

However, there are currently three main reasons why Chinese
power enterprises have failed to widely apply smart grids: First, the
technological level is backward. Compared with European
countries, China’s smart grid-related technology research started
relatively late, and it is difficult for power enterprises to effectively
deal with the “information explosion” caused by smart grids,
resulting in a reduction in the overall operating efficiency of the
power system; second, the cost of transformation is higher. The
power generation method of Chinese power enterprises is mainly
thermal power generation. In 2021, China’s total installed coal
power capacity will account for more than 50% of the world. Power
enterprises need to upgrade and replace the original equipment to
apply smart grids; third, infrastructure and supervision system and
policy incentives were not in place. The governmentmainly adjusts
the production and operation methods of electric power
enterprises through the introduction of corresponding policies,
and lacks the necessary government investment to create a good
external environment for enterprises and help them to carry out
green transformation and development. These reasons have
increased the investment risk of smart grid projects of power
enterprises, making their green transformation and development
process full of uncertainty.

As the Chinese market system is not mature enough, making
enterprise operations vulnerable to government intervention. To
achieve carbon neutrality target as soon as possible, China not
only actively advocates green transformation and development of
enterprises but also introduces relevant policies to adjust the

business model of enterprises. There is monopolistic competition
in the power industry, and enterprises with “leader” status in the
industry have the ability to build smart grid basic networks, tackle
core technical problems, andmaintain market share in traditional
power generation models. “Leader” power enterprises, mainly
state-owned enterprises, have played a key role in the promotion
of smart grids. Compared with non-state-owned enterprises,
state-owned enterprises need to undertake more social and
environmental protection responsibilities. Although they can
obtain government subsidies and financing from financial
institutions, state-owned enterprises have low marketization,
low decision-making efficiency, and poor operating efficiency.
Compared with state-owned enterprises, non-state-owned
enterprises have better resource allocation capabilities and
stronger market sensitivity, but they also face greater market
pressure and environmental protection regulatory pressure. The
vast majority of non-state-owned enterprises are small in scale
and short in development cycles, and are prone to problems such
as financing difficulties and weak corporate culture. The
adjustment mechanism of the smart grid for the green
transformation of power enterprises can be roughly divided
into three realistic paths: emission reduction mechanism,
market mechanism, and property rights mechanism.

It can be seen from Figure 1 that “Leader” electric enterprises
can improve energy efficiency by building smart grids and adjust
the proportion of power production capacity to achieve energy-
conservation and emission-reduction. However, the impact of
these on electricity market prices is still uncertain (indicated by
the dotted line). Therefore, the government needs to provide
appropriate subsidies to the “leader” of power enterprises.
Regardless of whether it is a “leader” electric enterprise or an
ordinary electric enterprise, they are faced with the uncertainty
challenge of corporate shareholders to change the current profit
situation and large-scale investment risks. Therefore, it will trigger
the adjustment of the corporate property structure. In the process
of green transformation of enterprises applying smart grids,
different types of enterprises have different advantages and
disadvantages. These will have an impact on the green
transformation and upgrading of electric power enterprises,
especially the “leader” electric enterprises in the smart grid.
“Leader” electricity enterprises have the first advantage in the
construction of smart grids, and may benefit themselves
through technical standards and market advantages. In addition,
the “leader” electricity enterprises may make their own optimal
choice between energy conservation and emission reduction and
corporate benefits based on the consideration of maximizing their
own benefits, rather than the overall optimal choice. Therefore, it is
necessary to strengthen the role of policy tools to avoid the
“leader” trap.

The possible marginal contributions of this paper are as
follows: First, including the enterprise’s power generation and
sales in the evaluation process, comprehensively evaluate its total
factor productivity and green total factor productivity, and
decompose these to further analyze the driving force for the
improvement of operating performance and environmental
performance; second, using text analysis methods to analyze
the annual reports of electric power enterprises to determine

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7837862

Li et al. Smart Grid Impacts Green Transformation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


whether enterprises use smart grids and use machine learning
methods to test the accuracy of the text analysis results; third,
using feasible generalized least squares (FLGS) and dynamic
panel systems Generalized Moment Estimation (SYS-GMM)
analyzes in detail the feasibility of enterprises using smart
grids to achieve green transformation; fourth, considering the
role of corporate property rights in the process of improving
operating performance and environmental performance of smart
grids. The following chapters are arranged as follows: The second
part is the mechanism discussion and theoretical assumptions;
the third part uses the Malmquist index model and the
Malmquist-Luenberger index model to evaluate the total factor
productivity and green total factor productivity of power
enterprises; the fourth part is based on the text analysis results
Construct relevant variables, use feasible Generalized Least
Squares (FLGS) and Dynamic Panel System Generalized
Moment Estimation (SYS-GMM) to analyze the impact of
smart grids on power enterprises’ total factor productivity and
green total factor productivity, and the nature of corporate
property rights in the process of green transformation; the
fifth part is the conclusions; the sixth part is the policy
recommendations; the seventh part is limitations and future
research opportunities.

MECHANISM DISCUSSION AND
THEORETICAL ASSUMPTIONS
The Impact of Smart Grids on the Operating
Performance of Power Enterprises
Although urbanization can promote the rapid development
of the regional economy, it will also stimulate the continuous

increase of electricity consumption in the region (Ali et al.,
2020). Especially for those regions that rely heavily on
energy-intensive industries, when they are in a stage of
rapid development, the contradiction between their ever-
increasing power demand and limited power supply
becomes more prominent (Mehmet et al., 2019).
Technological innovation is seen as the key to alleviating
the conflict between the two and achieving sustainable and
high-quality development. From a macro perspective,
technological innovation can promote clean energy
development, improve regional energy efficiency and
environmental performance, and have a positive impact on
the improvement of energy efficiency in surrounding areas
(Sun et al., 2021). From a micro perspective, the government
can optimize the regional industrial structure by formulating
technology-intensive policies, vigorously develop innovative
and environmentally-friendly industries (Sun et al., 2020). In
order to achieve the goal of carbon neutrality, enterprises can
reduce environmental pollution through green innovation
activities, and at the same time rely on innovation results to
improve their energy production and operating performance.
The traditional school-based on strict cost-benefit analysis
believes that corporate green innovation activities not only
cannot offset their internalized costs but also occupy limited
financial resources of the enterprise (Preston and O’Bannon,
1997). The purpose of green innovation activities carried out
by enterprises is to fulfill their social responsibilities and
improve their social image, but their operating performance
cannot be significantly improved (King and Lenox, 2002).
However, the revisionist school believes that green
innovation activities can improve its competitive advantage
and operating performance (Guo et al., 2017). The research-
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FIGURE 1 | Green transformation path mechanism of power enterprises considering smart grid.
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based on the basic view of natural resources and the view of
capability believes that the green innovation activities can not
only obtain the three key strategic capabilities of pollution
prevention, product management, and sustainable
development but also improve their innovation
capabilities, Staff learning ability and practical ability
(Triguero-Cano and Córcoles, 2014). According to the
stakeholder theory, green innovation activities can meet
the requirements of stakeholders for environmental
governance, maintain long-term cooperative relationships
between enterprises, investors and customers, and reduce
market risks and financing costs (Hu et al., 2017).

As an important result of corporate green innovation
activities, smart grids are widely discussed by scholars as to
whether they can promote power enterprises to improve their
operating performance. Related research can be divided into two
categories. The first type of research mainly analyzes the
optimization effect of smart grid real-time pricing on the
traditional power system from the perspective of the supply
side and the demand side. From the perspective of the supply
side, the application of smart grids can reduce battery
consumption, reduce battery usage costs and improve the
overall operating efficiency of the power system (Anees et al.,
2021). From a demand-side perspective, compared with
traditional fixed pricing, smart grid real-time pricing can
stimulate consumers’ demand for electricity purchases (Yd and
Pei, 2020). An effective time-of-use electricity pricing plan can
also reduce the price and the difference between real-time prices
reduces consumer terminal consumption costs (Aditya et al.,
2018).

The second type of research mainly explores the role of smart
grids in promoting the development of the electric vehicle
industry from a micro and macro perspective. From a micro
perspective, the contractual agreement between electric vehicle
owners and smart grids can bring benefits to operators and
owners based on reducing expected costs (Wolinetz et al.,
2018). From a macro perspective, photovoltaic and
hydropower grid-connected smart microgrids can not only
stabilize electric vehicle power demand while reducing grid
power loss, but also alleviate the impact of electricity demand
on the construction and dispatch of regional power grids caused
by the rapid development of the electric vehicle market (Kong
et al., 2017; Mem et al., 2021).

With the continuous development of research on the impact of
green innovation on operating performance, more and more
scholars have begun to affirm the positive role of corporate
green innovation activities in improving operating
performance. The application of the smart grid by electric
power enterprises can not only improve their operating
performance by saving costs and stimulating consumption but
also can drive the rapid development of related industries such as
the electric vehicle industry. Scholars have verified the role of
smart grids in improving the operating performance of power
enterprises Positive effect.

Green transformation and development are the general trend,
but the strategy and profitability of “leader” electric enterprises
and ordinary electric enterprises on whether to adopt smart grids

are different. Table 1 shows a simple income matrix of different
types of power enterprises’ choice of power generation methods.

When the “leader” electric enterprise chooses not to build the
smart grid strategy, its revenue is composed of revenue VT minus
the cost CT and emission reduction costs ρPC, ρ is the “leader”
electric enterprise bears the share of emission reduction, PC

which is the carbon price. Using α, β to represent the power
generation share of the “leader” power enterprises in the industry
when they adopt traditional power generation and smart grids
respectively and (1 − α − β) is the power generation share of
ordinary power enterprises in the industry. When “leader”
electric enterprises choose to build a smart grid, they will
receive a certain amount of government subsidies S1, but they
also need to bear the opportunity costs and risks of taking the lead
in building a smart grid S2. For ordinary power enterprises, they
are the recipients of traditional power generation market prices
PT affected by the behavior of “leader” power enterprises. It is
expected that at the same time they are also beneficiaries of the
opportunity cost S2 of “leader” power enterprises. They can
become free-rider “smart pigs” by directly using the network
and operation of the “leader” electric enterprises. The discount
rate λ for all ordinary electric enterprises in the industry is far
greater than one. In fact, due to a large number of ordinary
electric enterprises, and the “leader” electric enterprises are one of
the few, λS2 have become a manifestation of economies of scale. It
only needs simple numerical assignment and discussion to know
that (smart grid, smart grid) is the best choice. Therefore:

Hypothesis 1: Smart grid and operating performance are
positively correlated.

The Impact of Smart Grids on the
Environmental Performance of Power
Enterprises
Excessive dependence on fossil energy will cause the carbon
emissions of the economy to continue to rise during the rapid
development of the economy, and its economic development
will also be significantly affected by energy price fluctuations
(Samu et al., 2019; Bekun and Agboola, 2019). Although
globalization can inhibit carbon dioxide emissions, from a
long-term perspective, the government needs to adjust the
production and operation modes of enterprises by
formulating energy and environmental policies to ease the
pressure on the environment caused by fossil energy
consumption and economic growth (Saint Akadiri et al.,
2020). Green innovation activities can help enterprises
improve their environmental performance, and the research
on their impact on environmental performance can be discussed
from two aspects: green product innovation and green process
innovation. As enterprises pay more and more attention to
sustainable development and innovation capabilities, green
product innovation has occupied an important position in
the enterprise’s long-term development strategy (Dangelico
and Puari, 2010). It can improve product performance by
adjusting product production materials, changing product
design schemes, etc., and reduce the negative impact of
enterprise production activities on the environment (Rave,
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Goetzke and Larch, 2011). Green process innovation can be
subdivided into cleaner production technology and end
treatment technology (Xie et al., 2016). Cleaner production
technology refers to the control of pollutant production and
discharges from the source, while end treatment technology
focuses on the conversion of existing pollutants into other
substances that are easy to handle, and the recycling of
existing products. Through green process innovation,
enterprises can not only reduce pollutant emissions to meet
government environmental protection requirements, but also
reduce production costs, improve production efficiency and
resource utilization (Xie et al., 2016; Huang and Li, 2017).

Smart grid, as an important result of green process
innovation, can help power enterprises widely apply clean
energy power generation to promote China’s energy
structure adjustment and reduce the negative impact of
power production activities on the environment. The
research on smart grids on the environmental performance
of enterprises is mainly divided into two categories. The first
type of scholars mainly focuses on the positive impact of smart
grids on the environmental performance of enterprises. The
demand response mechanism existing in the smart distribution
network can achieve low-carbon benefits on the generation
side, the distribution side and the demand side, (Zhou et al.,
2013). This mechanism can help enterprises learn more about
users’ energy consumption and improve the operating
efficiency of the power system (Yan et al., 2015). The society
and government departments combine environmental
protection concepts with digital technology and are
committed to the development of smart grids by adjusting
energy policies to promote the construction of “smart energy
cities” (Cominola et al., 2021).

The second type of research analyzes the difficulties faced
by enterprises in the process of applying smart grids. From
the perspective of internal operation, due to the shortcomings
of the traditional power system in energy distribution,
transaction and management, it is difficult for the new
energy supply model of smart grid to operate normally.
From the external environment, low coverage of digital
infrastructure, shortage of high-tech talents, and imperfect
rules and regulations will hinder the advancement of smart
grid projects (Onyei-Nwogu et al., 2020). Moreover, Chinese
resource endowment of “rich coal, poor oil, and less gas” will
reduce the impact of emerging technologies such as smart
grids and clean energy power generation on the coal industry,

making it difficult for China to reduce its dependence on coal
resources in the short term (Zhang and Duan, 2020).

The green innovation activities of enterprises can improve
their environmental performance, help them better fulfill
their social responsibilities, and establish a good external
image. Although limitations in technology, management
methods, and the external environment have hindered
power enterprises from adopting smart grids extensively,
scholars still affirmed the positive role of smart grids in
helping enterprises improve their environmental
performance.

Taking into account the different income functions of electric
power enterprises, x, y are used to indicate the possibility of
ordinary electric enterprises and “leader” electric enterprises
actively adopting smart grid strategies. Using U1, U2

respectively to show the expected benefits of ordinary power
enterprises and “leader” power enterprises, then:

U1 � ⎛⎝x

1 − x
⎞⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ λS2(1 − 1

λ
)PT(1 − α − β) − (1 − ρ)PC

0, PT(1 − α − β) − (1 − ρ)PC

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎝y

1 − y
⎞⎠,

� λxyS2 + (1 − y)(1 − x

λ
)(1 − α − β)PT − (1 − y)(1 − ρ)PC,

(1)

U2 � (x
1 − x

)( α(VT − CT − ρPC) + β(VI − CI + S1 − S2), VT − CT − ρPC

α(VT − CT − ρPC) + β(VI − CI + S1), VT − CT − ρPC + S2
)(y

1 − y
),

� (1 − y + xy)(VT − CT − ρPC) + yβ(VI − CI + S) + (1 − x − y + xy − xyβ)S2 ,
(2)

Let zU1/zx � 0, zU2/zy � 0, then:

xp � α(VT − CT − ρPC) + β(VI − CI + S1) + S2(β − 1)S2 , yp

� 1 − α − β

λ2S2 + (1 − α − β)PT

. (3)

Because β − 1< 0 is strictly established, ordinary power
enterprises will not actively adopt smart grid strategies at this
time. In equilibrium, “leader” power enterprises will no longer be
constrained by carbon prices, and for ordinary power enterprises,
the impact of the carbon price will not be worse. It will not be
worse, indicating that the adoption of a smart grid strategy will
eventually significantly improve environmental issues and
ultimately achieve carbon neutrality.

Hypothesis 2: Smart grid and environmental performance are
positively correlated.

TABLE 1 | “Leader” power enterprises and general power enterprises’ strategic choices.

Ordinary
electricity enterprise

“Leader” electricity enterprise

Smart grid Traditional power generation

Smart grid λS2 ,
α(VT − CT − ρPC) + β(VI − CI + S1 − S2) (1 − 1

λ
)PT(1 − α − β) − (1 − ρ)PC ,

VT − CT − ρPC + S2

Traditional power generation 0,
α(VT − CT − ρPC) + β(VI − CI + S1)

PT(1 − α − β) − (1 − ρ)PC ,
VT − CT − ρPC
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The Impact of the Nature of Corporate
Property Rights on the Development of
Green Transformation
The impact of the nature of corporate property rights on the
development of green transformation can be discussed from two
perspectives. From the perspective of the resource base, the high
internal value, scarcity, and inimitable resources of enterprises
can give them stronger competitive advantages. State-owned
enterprises not only have resource advantages such as
technology and capital, but can also obtain support from
local governments, and can achieve green transformation and
upgrading in a short period (Qu and Richard, 2018). However,
some scholars believe that the resource advantages of state-
owned enterprises, such as resource endowments and credit
preferences, will provide themwith a loose market environment,
leading to strategic rent-seeking of state-owned enterprises and
reducing their enthusiasm for green transformation and
development (Jiang et al., 2020). As non-state-owned
enterprises do not have resource advantages, they will
actively carry out green innovations to get rid of financial
difficulties during performance deficits. Non-state-owned
enterprises have efficient internal incentives and competition
mechanisms, which can better reflect the cost-reduction and
efficiency-increasing effects of green management on
innovation activities.

From the perspective of stakeholders, the government, as the
main leader of state-owned enterprises, can influence the
development strategy of enterprises. According to the theory
of political championships, local officials and state-owned
enterprise executives will pay more attention to environmental
performance to achieve political promotion, and the political
connection between state-owned enterprises and local
governments can also help them achieve good green
performance (Min et al., 2015). Some scholars believe that the
relationship between state-owned enterprises and the
government will lead them to make larger-scale environmental
protection investments, the purpose of which is to bear external
burdens rather than to improve the efficiency of enterprise input
and output (Zhenbing et al., 2021). Due to the weak political
connection between non-state-owned enterprises and the
government, they will be under greater pressure when facing
environmental protection supervision, which will strengthen the
positive relationship between corporate green transformation and
innovation performance (Hoffmann and Pfeil, 2018). In addition,
the issue of entrusting non-state-owned enterprises is relatively
simple. The self-interest of executives is closely related to the
operating conditions of the enterprise, and executives are more
sensitive to changes in performance caused by innovation
premiums and innovation risks (Cl et al., 2020).

The resource advantages of state-owned enterprises may
reduce the sensitivity of corporate executives to performance
changes, while the internal conditions and external environment
of non-state-owned enterprises will stimulate them to be more
enthusiastic about green transformation and upgrading. There
are complex principal-agent and operational management issues
in state-owned enterprises, which are not conducive to the

effective application of smart grid technology. The efficient
internal incentive and competition mechanism of non-state-
owned enterprises will improve their production efficiency and
market performance. Therefore, this paper assumes:

Hypothesis 3: Compared with non-state-owned enterprises,
state-owned enterprises have poorer operating performance
when applying smart grids.

Hypothesis 4: Compared with non-state-owned enterprises,
state-owned enterprises have poorer environmental performance
when applying smart grids.

PERFORMANCE EVALUATION

Variable Selection and Data Sources
In order to evaluate the green transformation of electric power
enterprises, this paper uses the Malmquist index model and the
Malmquist-Luenberger index model to evaluate the operating
performance and environmental performance of power
enterprises. Since power generation is used not only for
sales, but also for its own production and operation, the
amount of electricity generated is usually greater than the
amount of electricity sold. In order to more accurately measure
the operating performance and environmental performance of
power enterprises, this paper incorporates both power
generation and sales into the evaluation system. This paper
selects power generation, net fixed assets, and electricity
business operating cost as input variables selects electricity
sales and electricity business operating income as expected
output variables and selects the carbon emissions generated in
the power production process as undesired variables for
evaluation. Although there are 76 power enterprises in
China, several enterprises are in ST status, and 15 power
enterprises have data missing and purchased electricity. If
considering the purchase of electricity, the research content
will be too complicated and the research standards cannot be
unified. Therefore, it was removed during the research process.
This paper selects 25 electric power enterprises with qualified
data as the research objects and evaluates their performance
changes by using relevant data from 2010 to 2019. The relevant
data come from the annual reports published by various
enterprises.

Since power enterprises have not announced the carbon
emissions generated during their power production process,
this paper is based on the standards required by power
enterprises for power generation in the “National Electricity
Statistics” published by the National Energy Administration
every year. The coal is estimated, and then the standard coal
is converted into raw coal according to the conversion factor of
0.7143 between raw coal and standard coal. Estimating the carbon
emissions of electric power enterprises through the reference
methods and parameters provided in the “2006 IPCC National
Greenhouse Gas Inventory Guidelines 2019 Revised Edition”,
combined with relevant parameters that have been published in
China. The specific formula is:

C � Ei ×NCVi × CCi × COFi × (44/12), (4)
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Where C represents carbon emissions, in units of billion tons; E
represents raw coal consumption, in units of billion tons; NCV is
the average low calorific value, that is the conversion factor, in
units of kilooules/billion tons; CC is carbon content, which
represents unit heat The carbon content of the unit is billion
tons/106 kilooules; COF represents the carbon oxidation factor,
that is, the carbon oxidation rate when energy is burned, and the
value is 100% when the ideal state is completely oxidized; 44 and
12 are the molecular weights of CO2 and C, respectively. Defined
NCVi × CCi × COFi × (44/12) as the CO2 emission coefficient.
According to the document, the CO2 emission coefficient is 1.83.
The input-output variables of 25 power enterprises are shown in
Table 2.

Analysis of Experimental Results
In this paper, 25 electric power enterprises are used as
decision-making units (DMU) to evaluate operating
performance and environmental performance. Based on the
relevant input-output panel data from 2010 to 2019, the

Malmquist index model and the Malmquist-Luenberger
index model with variable returns to scale are used.
MAXDEA software measures the total factor productivity
index (M), comprehensive technical efficiency index (EC),
technological progress efficiency index (TC), green total
factor productivity index (GML), green comprehensive
technical efficiency index (GMLEC), and green technical
progress efficiency Index (GMLTC). Experimental results of
the Malmquist index model and the Malmquist-Luenberger
index model reflect that the decision-making unit’s
performance evaluation total factor productivity and its
decomposition represent a dynamic process. For the
convenience of expression in the following table, the last
year of the adjacent year indicates the adjacent period, such
as 2010–2011 abbreviated as 2011. The specific calculation
results of the total factor productivity index (M) and the green
total factor productivity index (GML) are shown in Table 3.

As can be seen from Table 3, the overall fluctuation trend of
the total factor productivity index and the green total factor

TABLE 2 | Description statistics of the variables.

Type Variable Units No. of obs Mean Std. Dev. Min Max

Inputs Power generation TWh 250 418.01 655.91 2.50 3,660
Net fixed assets RMB in hundred million 250 346 562 3.43 2,750
Electricity business operating cost RMB in hundred million 250 94.50 152 0.59 838

Expected outputs Electricity sales TWh 250 395.39 625.20 1.96 3,470
Electricity business operating income RMB in hundred million 250 127 195 0.64 1,010

Undesired outputs Carbon emissions Billion tons 250 248.62 457.60 0 2,350

TABLE 3 | 2011–2019 Evolvement trend of M index and GML index.

Power
enterprises

2011 2012 2013 2014 2015 2016 2017 2018 2019

M GML M GML M GML M GML M GML M GML M GML M GML M GML

DMU 1 0.86 0.86 0.96 0.96 0.99 0.99 1.05 1.05 0.99 0.99 0.97 0.97 1.00 1.00 0.96 0.96 1.04 1.04
DMU 2 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.09 0.96 0.96 1.01 1.01 0.99 0.99 1.00 1.00 1.00 1.00
DMU 3 1.17 1.17 0.99 0.99 1.00 1.02 1.04 1.04 0.99 1.02 0.49 0.59 0.96 0.99 0.98 0.99 0.99 1.00
DMU 4 0.89 0.89 1.01 1.00 1.06 1.01 1.03 1.01 1.02 1.02 0.93 0.99 0.95 0.95 1.14 1.06 1.03 1.03
DMU 5 0.91 0.91 1.00 1.01 0.92 0.95 1.14 1.08 1.14 1.05 0.94 0.94 1.00 1.02 0.96 0.99 0.98 0.99
DMU 6 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.02 1.02 0.97 0.97 1.00 1.00 1.00 1.00 1.01 1.01
DMU 7 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.96 0.96 0.86 0.86 1.10 1.10
DMU 8 0.94 1.01 0.97 1.00 1.05 1.00 1.03 1.00 0.97 1.00 0.91 0.99 1.01 1.00 1.05 1.01 1.02 1.00
DMU 9 1.01 1.01 0.82 0.82 1.23 1.23 0.78 0.78 1.35 1.36 0.99 0.99 1.00 1.00 1.10 1.12 1.00 1.00
DMU 10 2.52 2.37 0.43 0.45 1.02 1.02 0.99 1.00 1.01 1.01 0.99 1.00 1.04 1.01 1.02 0.95 1.03 1.03
DMU 11 1.01 1.04 1.02 1.00 1.08 1.00 1.33 1.24 0.83 0.83 0.99 0.99 0.99 0.99 1.00 1.00 1.01 1.01
DMU 12 0.97 0.95 1.03 1.09 0.97 0.97 1.03 1.03 1.00 1.00 1.08 1.09 0.90 0.89 1.02 1.01 1.05 1.05
DMU 13 0.90 0.90 1.02 1.07 1.09 1.07 1.13 1.02 0.92 0.96 0.95 1.00 0.97 0.98 1.11 1.07 0.97 0.97
DMU 14 0.93 0.98 1.14 1.01 0.87 0.97 1.19 1.04 1.01 1.00 0.96 1.00 1.02 1.00 0.99 1.00 1.00 1.00
DMU 15 1.01 1.01 1.00 1.00 1.02 1.01 0.99 0.99 0.99 1.00 0.89 0.99 0.97 1.00 1.10 1.05 0.96 0.96
DMU 16 0.99 0.96 1.02 1.10 1.00 1.00 1.05 1.05 0.97 0.95 0.95 0.95 0.97 1.03 1.01 1.03 0.99 1.01
DMU 17 0.98 1.05 0.91 0.85 1.25 1.26 0.97 1.00 0.82 0.95 0.89 1.00 0.87 0.84 1.06 0.92 0.96 1.06
DMU 18 0.89 0.89 1.10 1.05 0.86 0.86 1.14 1.14 0.89 0.89 0.99 0.99 0.95 0.94 1.08 1.06 0.97 0.99
DMU 19 1.10 1.12 1.00 1.00 1.04 1.02 1.02 1.02 1.00 0.99 0.98 1.01 0.95 0.96 1.00 1.00 1.00 1.00
DMU 20 1.01 1.01 1.00 1.00 1.06 1.04 0.99 0.99 1.02 1.01 0.93 0.99 1.01 0.99 1.31 1.14 1.07 1.08
DMU 21 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.98 1.02 0.99 1.02 1.05 1.06 1.07
DMU 22 1.03 0.96 1.14 1.17 1.00 1.00 1.02 1.01 1.01 1.01 1.00 1.00 0.98 1.00 0.98 0.99 1.00 0.99
DMU 23 1.08 1.08 0.99 1.00 0.96 0.95 1.08 1.08 1.02 1.02 1.00 1.00 0.91 0.91 1.08 1.08 1.00 1.00
DMU 24 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
DMU 25 1.03 1.03 0.99 1.02 1.03 1.02 1.04 1.04 0.92 0.93 1.04 1.04 0.96 0.96 1.00 1.00 1.00 1.00
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productivity index of the 25 power enterprises from 2011 to 2019
was W-shaped. The index declined from 2011 to 2012, and then
began to rise, reached its highest in 2014; from 2014 to 2017, the
index showed a cliff-like decline, then began to rise and stabilized
at about 1, the average total factor productivity index and the
green total factor productivity index was close to 1. Figure 2
shows the overall experimental results of the operating
performance and environmental performance of 25 power
enterprises. It can be seen from the figure that the
comprehensive technical efficiency index and the green
comprehensive technical efficiency index did not fluctuate
significantly during the inspection period. In contrast, the
technical progress efficiency index and the green technology
progress efficiency index fluctuate significantly, and the
fluctuation trend is close to the fluctuation trend of the total
factor productivity index and the green total factor productivity
index. This indicates that the changes in the total factor
productivity index and the green total factor productivity
index during the inspection period are mainly dominated by
the technological progress efficiency index and the green
technological progress efficiency index. It can also be found
from Table 3 and Figure 2 that the green total factor
productivity index obtained by incorporating the undesired
output into the input-output model is significantly lower than
the total factor productivity index, indicating that the gap
between the efficiency values of each decision-making unit has
been reduced after considering the undesired output.

Figure 3 shows the power generation of 25 power enterprises
in 2019. It can be seen that the amount of electricity generated by
thermal power generation is the highest, accounting for 73.88%,
followed by hydropower, wind power, and photovoltaic power
generation. Although there are 11 enterprises with diversified
power generation structures, their power generation structures all
include thermal power generation, and the amount of power
generated by thermal power generation accounts for a relatively
high proportion. This shows that although power enterprises
adopt multiple power generation methods, their electricity sales
revenue mainly comes from thermal power generation.
According to Figure 3, 25 power enterprises can be divided
into four groups, namely thermal power generation group, wind
power generation group, hydroelectric power generation group,
and hybrid power generation group. It can be seen from Table 3
and Figure 3 that the performance of all indexes of the hybrid
power generation group is better than the other three groups.
This indicats that the thermal power generation enterprise not
only fails to achieve the best performance but also causes damage
to the environment during the production process; although
hydropower and wind power generation enterprises will not
cause damage to the environment, their limited technical level
prevents them from achieving stable performance. It can be seen
from Table 3 and Figure 3 that compared with the other three
groups, the performance of wind power generation has the most
significant fluctuations, while hybrid power generation is the
most stable; by comparing the performance of wind power

FIGURE 2 | Overall experimental results of the total factor productivity index and the green total factor productivity index.
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generation, hydropower generation, thermal power generation,
and hybrid power generation, it can be seen that the fluctuation
trends of thermal power generation and hybrid power generation
are relatively close. In addition, the operating performance of the
thermal power generation group and the hybrid power generation
group has a little gap with the environmental performance, while
the environmental performance of the wind power generation
group and the hydropower generation group is higher than the
operating performance. It shows that after considering undesired
output, the performance gap between power enterprises that
focus on clean energy power generation and power enterprises
that focus on fossil energy power generation is gradually
decreasing.

REGRESSION ANALYSIS

Construction of Core Variables
This paper uses qualitative analysis methods to explore the
impact of smart grid R&D and application on the
environmental performance and operating performance of
power enterprises, and the role of corporate property rights
in the green transformation process. Many scholars used text
analysis methods to qualitatively analyze the production and
operation activities of enterprises. The types of texts they rely on
being mainly two types. The first type of research mainly

analyzes information contained in corporate announcements.
The corporate announcement not only covers important
information such as the research direction, research and
development efforts, and innovation results of the
enterprise’s technological innovation activities (Palmer and
Truong, 2017), but also contains details of the enterprise’s
application of advanced digital technology for production
and operation activities (Pan et al., 2020). The second type of
research mainly analyzes the information contained in the
enterprise’s annual report and sustainable development
report. Li et al. (2018) in order to judge whether enterprises
implement sustainable public procurement (SSP) in the process
of participating in the global supply chain, they sorted out the
use of supplier code of conduct contained in the enterprise’s
annual report and sustainability report. D’Amato et al. (2019)
started from the three perspectives of circular economy (CE),
green economy (GE) and bioeconomy (BE), and evaluated the
enterprise’s green transformation based on annual reports and
sustainability reports. This paper refers to the research methods
of Li et al. (2018) and D’Amato et al. (2019) and uses text mining
methods to analyze the text of the annual reports of 25 power
enterprises.

In order to accurately determine whether power enterprises
are developing and applying smart grids, this paper first extracts
15 keywords that are highly relevant to smart grids based on the
information provided in the Baidu index, Google index, and
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Alibaba big data analysis platform. The specific conditions are
shown in Table 4. After that, using KNIME to conduct text
mining on power enterprise annual reports and count the
frequency of keywords appearing in the enterprise’s annual
reports based on the text mining results. Using manual
inspection methods to filter the information and classify the
enterprise’s annual reports based on the frequency of smart
grid related keywords. Finally, the classification method in
machine learning is used, that is, under the premise of given
relevant input indicators, supervised learning is used to judge
whether the classification results of this paper are accurate.

Note: In the actual index, the case of English abbreviations is
also included to avoid missing key text information due to
formatting issues.

This paper downloaded the 2011–2019 annual reports of 25
electric power enterprises from Sina Finance (finance.sina.com.
cn) and converted them into EXCEL documents, and organized
the data as follows: Firstly, remove the numbers and punctuation
that exist in the document. Secondly, use the stop words list of
Harbin Institute of Technology to segment the content of the
annual report and remove the stop words. After that, a bag of
words is created and the text mining results are stored. Finally,
count the frequency of smart grid-related keywords in the
company’s annual reports. Based on the results, the

enterprise’s annual reports are classified and a word cloud
diagram is made. The diagram shows the frequency of
occurrence of keywords related to the smart grid. The specific
results are shown in Figure 4.

According to the binary classification method, enterprise
annual reports are divided into two categories. The frequency
of smart grid related keywords in the first type of enterprise
annual report is greater than or equal to one, and the frequency of
smart grid related keywords in the second type of enterprise
annual report is less than one. After that, the unstructured text
data in the text mining results are converted into vector data X,
and the quality of the classification results of the electric power
enterprise’s annual report is tested by using Logistic Regression
(LR), Random Forest (RF), and Support Vector Machine (SVM).

By establishing a logistic regression model, the functional
relationship between the probability of an event and other
variables can be found. This paper assumes that the annual
reports of electric power enterprises belong to the first
category, with C � 1, otherwise C � 0. P is the probability of a
certain event. P can be expressed as a linear function explaining
the vector data X. The logistic regression model is as follows:

Logistic(P) � ln( P

1 − P
) � Y � b0 +∑k

i�1
bixi + ε. (5)

TABLE 4 | Keyword combinations related to smart grid of power enterprises.

Keyword combination

5G Smart city UHV grid
Smart Smart meter Low-voltage power distribution cabinet
Internet of things Smart grid New energy battery
Microgrid Smart technology Energy internet
Reactive power compensation automation instrument distribution network automation

FIGURE 4 | Smart grid word cloud diagram.
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The logistic regression model returns the probability of event
occurrence as:

P � exp(β0 + β1x1 + . . . + βkxk)
1 + exp(β0 + β1x1 + . . . + βkxk). (6)

When using the random forest model to analyze the sample,
first use the bootstrap method to randomly select multiple sub-
samples from the vector data, and model the decision tree, and
then use the voting method to combine the prediction results of
multiple decision trees to determine the analysis of the random
forest Result. The random forest model is as follows:

H(x) � argmax∑k
i�1
I(hi(x) � C). (7)

Among them,H(x) represents the analysis result of the random
forest, hi(x) represents the classification result of a single decision
tree, k represents the number of decision trees, C represents the
classification status of the power enterprise’s annual report, and I(•)
is an indicator function. In random forest analysis, the larger the
difference between the average number of votes that are correctly
classified and the average number of votes that are incorrectly
classified into other categories, the larger the difference between
the classification prediction, the more reliable the classification
prediction. As the number of decision tree classification trees
increases and hi(x) obeys the law of strong numbers, the number
of prediction trees in this paper is controlled at i � 100. Then adjust
the number of decision trees based on the empirical results.

Support vector machines can find support vectors with better
classification performance through self-learning methods, map
them to a high-dimensional space, and establish a hyperplane in
the space that correctly classifies samples and has the largest
interval. Generally speaking, any function that satisfies the
Mercer condition can be used as a kernel function. In this
paper, a common radial basis function (RBF) is selected to
analyze the results of model classification. This function can
be expressed as:

K(x, x0) � exp( − γ‖x − x0‖2), γ> 0. (8)

Among them, K(x, x0) represents the monotonic function of
the Euclidean distance from any point x to a certain center x0 in
the space, x is the text mining result, x0 is the center of the kernel
function, and γ is the width parameter of the function.

The text-mining results are divided into a training set (80%)
and test set (20%) and analyzed using logistic regression, random
forest, and support vector machine. The specific results are shown
in Table 5. It can be seen that the results of logistic regression and
random forest are higher than support vector machines, and the
results of the two are relatively close. The poor evaluation result of
the support vector machine is because the sample size selected in
this paper is large, and the number of matrix elements will
increase squarely with the increase of the data size, which will
have a negative impact on the calculation results of the support
vector machine. According to the evaluation results of the
machine learning model, the classification results of the annual
reports of electric power enterprises can effectively describe the

specific conditions of the enterprise’s R&D and application of
smart grids.

Model Introduction and Data Description
Although many scholars have found that the application of smart
grid by power enterprises can improve corporate performance,
the monetary funds held by enterprises usually do not change
much. When they conduct smart grid R&D applications, they
need to obtain cash through financing and invest them in the
R&D and application of smart grids, this will lead to a decline in
its return on equity (ROE). In addition, enterprises need to
upgrade and exchange their existing equipment when
conducting smart grid R&D applications, which will lead to a
decline in equipment utilization (E). These factors may lead to
poor performance of business performance and environmental
performance. In order to analyze the impact of enterprises
applying smart grids on their performance in more depth, this
article uses the return on equity (ROE) and equipment utilization
(E) as intermediary variables. Through the establishment of
model 9 to model 14, the Causal Steps Approach is used to
analyze the transmission mechanism of the enterprise’s
application of smart grid to its business performance and
environmental performance. This paper establishes model 15
to test whether the relationship between smart grid
applications and operating performance and the nature of
corporate property rights have a moderating effect on the
relationship between smart grid applications and operating
performance. Establishing model 16 to test whether the
relationship between smart grid applications and corporate
environmental performance and whether the nature of
corporate property rights has a moderating effect on the
relationship between smart grid applications and corporate
environmental performance.

M � α0 + α1Sit + α2ROAit + α3CERit + εit, (9)

ROE � β0 + β1Sit + β2ROAit + β3CERit + εit, (10)

M � γ0 + γ1Sit + γ2ROE + γ3ROAit + γ4CERit + εit, (11)

GML � α’0 + α’
1Sit + α’

2ROAit + α’
3CERit + εit, (12)

E � β’0 + β’1Sit + β’2ROAit + β’3CERit + εit, (13)

GML � γ’0 + γ’1Sit + γ’2E + γ’3ROAit + γ’4CERit + εit, (14)

M � α’’0 + α’’1Sit + α’’
2SitpO + α’’

3O + α’’
4ROAit + α’’

5CERit + εit,

(15)

GML � β’’0 + β’’1Sit + β’’2SitpO + β’’3O + β’’4ROAit + β’’5CERit + εit.

(16)

Among them, the dependent variable M is the power
enterprise’s total factor productivity index (M), GML is the

TABLE 5 | Machine learning model evaluation results.

Accuracy (%) Precision (%) Recall (%) F-measure (%)

LR 80.00 78.49 92.41 84.89
RF 83.51 80.60 97.01 88.05
SVM 68.00 65.61 99.49 81.54
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power enterprise’s green total factor productivity index
(GML), and the core explanatory variables are smart grid
dummy variables (S), return on equity (ROE), equipment
utilization (E) and interaction terms between smart grid
and corporate property rights (SpO). This paper sets the
enterprise’s smart grid dummy variable (S) according to the
classification results of the annual report. If the frequency of
smart grid related keywords in the enterprise’s annual report
is greater than or equal to one, then S � 1, otherwise it is 0. O is
the dummy variable of the nature of corporate property rights
set in this paper. If the enterprise is a state-owned enterprise,
then O � 1, otherwise it is 0. The dummy variables of the
nature of enterprise property rights (O), the rate of return on
assets (ROA), and the rate of cost and expense (CER) are the
control variables. εit is a random interference item. This paper
selects the panel data of 25 domestic power enterprises from
2011 to 2019 to analyze the impact of smart grids on the
improvement of power enterprises’ operating performance
and environmental performance, as well as the role of
corporate property rights in regulating green
transformation, and test the analysis results. The relevant
statistical data comes from the annual reports of listed
enterprises, and Table 6 is a descriptive statistical analysis
of relevant variables.

Empirical Results and Analysis
First, using the LM test to determine whether there is an
individual effect in the model. The result shows that there is
an individual effect, so a mixed model should not be used. After
the Hausman test of the model, the results show that the fixed-
effect model is more suitable, so this paper chooses the fixed-
effect model for estimation. Setting time dummy variables and
testing their oint significance, the result accepts the null
hypothesis that no fixed time effects are required in the
model. In this paper, the Wald test of between-group
heteroscedasticity, the Wald test of intra-group
autocorrelation, and the intra-group synchrony correlation test
were performed onModel 9 to Model 16, respectively. The results
show that the model has problems with heteroscedasticity
between groups, autocorrelation within groups, and
contemporaneous related problems. In order to solve the
above problems, this paper makes assumptions on the specific

forms of heteroscedasticity and autocorrelation and uses a
comprehensive feasible generalized least squares (FLGS)
method to perform regression analysis on Model 9 to Model
16. The regression results are shown in the first and second
columns of Table 7.

It can be seen from the first and third columns in Table 7 that
the smart grid dummy variable (S) is significantly positive, and
the smart grid dummy variable (S) in the second column is
significantly negative. This indicating that the return on equity
(ROE) has a masking effect between business performance and
business performance. It shows that although the application of
smart grid can improve its operating performance, it will also
reduce the return on equity (ROE), which will weaken the effect
of smart grid on corporate operating performance. It can be seen
from the fourth and sixth columns in Table 7 that the smart grid
dummy variable (S) is significantly positive, and the smart grid
dummy variable (S) in the fifth column is significantly negative.
This indicating that the equipment utilization rate (E) has a
masking effect between smart grid applications and business
performance. It shows that although the application of smart
grids in enterprises can improve their environmental
performance, it will also reduce equipment utilization (E),
which will weaken the effect of smart grids on the
environmental performance of enterprises.

In the seventh column of Table 7, test Hypothesis 1 by
analyzing the influence of the smart grid on the total factor
productivity index (M), and test Hypothesis 3 by analyzing the
influence of the interaction term of the nature of the smart grid
and enterprise property rights on the total factor productivity
index (M); in the eighth column of Table 7, test Hypothesis 2 by
analyzing the influence of the smart grid on the green total factor
productivity index (GML), and test Hypothesis 4 by analyzing the
influence of the interaction term of the nature of the smart grid
and enterprise property rights on the total green total factor
productivity index (GML).

The results of the seventh column shows that the smart grid
dummy variable (S) is significantly positive at the 5% significance
level, and the result is in line with Hypothesis 1, indicating that
the use of the smart grid by power enterprises can improve the
total factor productivity index. This result verifies the active role
of the smart grid in power system optimization and operating
performance improvement. Compared with the traditional power
grid, the real-time information sharing capability of the smart

TABLE 6 | Description of the main variables and their descriptive statistical analysis.

Type Variable Units No. of obs. Mean Std.Dev. Min Max

Explained variable M Total factor productivity index 225 1.01 0.14 0.43 2.52
GML Green total factor productivity index 225 1.01 0.12 0.45 2.37

Explanatory
variable

S Dummy variable 225 0.09 0.29 0 1
Return on net assets (ROE) Ratio of after-tax profit to owner’s equity 225,225 0.07 0.10 −0.42 0.31
Equipment utilization (E) The ratio of actual power generation to theoretical power

generation
225 0.45 0.12 0.12 0.72

S*O Dummy variable 225 0.06 0.23 0 1
Control variable O Dummy variable 225 0.56 0.50 0 1

Return on assets (ROA) Ratio of net profit to total assets 225 0.03 0.05 −0.10 0.47
Cost expense rate (CER) Ratio of total cost to operating income 225 0.30 0.64 −0.73 3.97
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grid can strengthen the interaction between the energy supply
side and the demand side (Anees et al., 2021). The real-time
pricing method reduces the waste of resources due to information
asymmetry, and at the same time stimulates consumers’ demand
for electricity by adjusting electricity prices, and helps enterprises
achieve better business performance (Yd and Pei, 2020).

It can also be seen from the results in the seventh column that
the interaction term (SpO) between the smart grid and the nature
of corporate property rights is significantly negative at the 5%
significance level. The result is in line with Hypothesis 3,
indicating that compared with non-state-owned enterprises,
state-owned enterprises’ investment in the smart grids has
little effect on improving the total factor productivity index.
This result is different from the view of Qu and Richard
(2018), because the state-owned enterprise, as the “leader”, will
take the lead in the investment and research and development of
smart grid projects. Due to immature technology and imperfect
related supporting facilities, it faces higher investment risks. Not
only that, since the development of state-owned enterprises is
relatively stable, their green transformation is not only to make
profits, but more importantly, to assume more social
responsibilities. The purpose is to help China achieve the goal
of carbon neutrality as soon as possible (Zy et al., 2021).

The results of the eighth column shows that the smart grid
dummy variable (S) is significantly positive at the 5%
significance level, and the result is in line with Hypothesis
2, indicating that the use of the smart grid by power
enterprises can improve the green total factor productivity
index. This result verifies the active role of the smart grid in
power system optimization and corporate environmental
performance improvement. The demand response
mechanism in the smart grid can effectively solve the
problem of clean energy grid connection and improve the
feasibility of the wide application of clean energy (Zhou et al.,
2013). The mechanism can also combine thermal power

generation methods with clean energy power generation
methods such as wind power and photovoltaic power
generation, effectively solving the additional load on the
grid caused by the instability of clean energy power
generation, and helping power enterprises improve their
energy consumption structure (Yan et al., 2015).

It can also be seen from the results in the eighth column that
the interaction term (SpO) between the smart grid and the nature
of enterprise property rights is significantly negative at the 5%
significance level. The result is in line with Hypothesis 4,
indicating that compared with non-state-owned enterprises,
state-owned enterprises’ investment in the smart grids has
little effect on improving the green total factor productivity
index. The reason for this result is that, on the one hand, the
efficient incentive and competition mechanism existing in non-
state-owned enterprises will stimulate the employees to carry out
productive activities more effectively. On the other hand,
compared with state-owned enterprises, non-state-owned
enterprises face greater pressure from environmental
protection supervision, and they pay more attention to the
effect of green transformation on improving environmental
performance (Hoffmann and Pfeil, 2018). In addition, the
scale of production and operation of non-state-owned
enterprises is relatively small, and the transformation
dividends brought about by their R&D and application of
smart grids can more significantly improve the environmental
performance of enterprises.

Robustness Test
This paper uses the sub-sample regression method and
supplementary variable method to test the robustness of the
model. According to the power generation structure of power
enterprises, 25 enterprises are divided into two groups. The first
group of power enterprises has a single power generation
structure, and the second group of power enterprises has a

TABLE 7 | Regression results.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

M ROE M GML E GML M GML

S 0.0466* −0.0371*** 0.0189* 0.0150* -0.0314*** 0.0104* 0.0502*** 0.0569***
(0.0255) −0.0371*** 0.0189 (0.0125) (0.0104) (0.0146) (0.0104) (0.0120)

ROE — — 0.1862*
— — (0.1090)

E — — — 0.2603***
— — — (0.0670)

S*O — — — -0.0450** -0.0712***
— — — (0.0217) (0.0111)

O — — — 0.0416 0.0498
— — — (0.0507) (0.1046)

ROA 0.3940 1.1056*** −0.0708 0.2702*** 0.0873*** 0.1593** 0.5435*** 0.5936***
(0.2603) (0.0604) (0.3189) (0.0531) (0.0320) (0.0734) (0.1013) (0.1075)

CER −0.0233 0.0621*** 0.0406 0.0077 0.0288 -0.0483 -0.0119 -0.0251***
(0.0414) (0.0098) (0.0610) (0.0145) (0.0292) (0.0475) (0.0191) (0.0066)

_cons 1.0032*** −0.0304 0.9777*** 0.9896*** 0.9896*** 0.5215*** 0.9675*** 1.0175***
(0.0084) (0.0268) (0.0139) (0.0205) (0.0205) (0.0309) (0.0210) (0.0188)

Enterprise YES YES YES YES YES YES YES YES
N 225 225 225 225 225 225 225 225

Note: ***, **, * represent their respective significance levels of 1, 5 and 10%.
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diversified power generation structure. This paper uses the
second group of power enterprises as the research object to
perform regression analysis, and the results are shown in the
first to fourth columns of Table 8. It can be seen that the masking
effect of return on net assets (ROE) and equipment utilization (E)
still exists. Power enterprises with a diversified power generation
structure can apply the smart grids to effectively improve the
efficiency of clean energy power generation, improve the
corporate total factor productivity index and the green total
factor productivity index; compared with state-owned
enterprises, non-state-owned enterprises use the smart grids to
produce better results. Taking into account the possible
endogenous problems in the model, this article takes the
lagging period of the explained variable and part of the
explained variable as the new explanatory variable, and uses
the dynamic panel system generalized moment estimation
(SYS-GMM) to perform the model 9 to model 16. Regression
analysis, the regression results are shown in Table 9. It can be
seen that the core explanatory variables in Model 9 to Model 16
indicate that the estimation results in this paper are robust.

CONCLUSION

Existing articles mainly focus on the analysis of the impact of
green innovation activities on operating performance and
environmental performance, and seldom pay attention to
the optimization effect of enterprise application of advanced
technology on operating performance and environmental
performance, and the moderating effect of the heterogeneity
of property rights on this process. This paper uses the panel
data of 25 domestic power enterprises from 2010 to 2019, uses
the Malmquist index model and the Malmquist-Luenberger
index model to evaluate the operating performance and
environmental performance of power enterprises, and then

conducts text mining of the power enterprise’s annual report
and compares them based on keyword combinations. The
annual report is classified. Logistic Regression (LR),
Random forest (RF), and Support Vector Machine (SVM)
are used to test the classification results. Finally, dummy
variables are set according to the classification results of the
annual report and the feasible generalized least squares
method (FLGS) and Dynamic Panel System Generalized
Moment Estimation (SYS-GMM) analyzes the impact of
enterprise application of the smart grid on green
transformation and the moderating role played by the
heterogeneity of property rights in this process. The results
show that the overall fluctuation trend of the total factor
productivity index (M) of power enterprises and the green
total factor productivity index (GML) is W-shaped; the
technological progress efficiency index (TC) plays a leading
role in the total factor productivity index (M), the green
technical progress efficiency Index (GMLTC) plays a
leading role in the green total factor productivity index
(GML); the coefficient of the smart grid dummy variable (S)
is significantly positive, indicating that the use of the smart
grids by power enterprises can improve the total factor
productivity index and the green total factor productivity
index; The coefficient of the interaction term (SpO) between
the smart grid and enterprise property rights is significantly
negative, indicating that compared with state-owned
enterprises, non-state-owned enterprises can better play the
role of the smart grid in adjusting the total factor productivity
index and the green total factor productivity index.

POLICY RECOMMENDATIONS

Based on the above research conclusions, we should explore the
transformation and development path of Chinese power

TABLE 8 | Robustness test (1).

Variable (1) (2) (3) (4) (5) (6) (7) (8)

M ROE M GML E GML M GML

S 0.0249*** −0.0058** 0.0213*** 0.0195* −0.0409*** 0.0282*** 0.1003*** 0.0916***
(0.0039) (0.0049) (0.0028) (0.0115) (0.0024) (0.0035) (0.0069) (0.0174)

ROE — — 0.3382*** — — — — —

— — (0.0147) — — — — —

E — — — — — 0.2515*** — —

— — — — — (0.0188) — —

S*O — — — — — — −0.1363*** −0.1449***
— — — — — — (0.0100) (0.0185)

O — — — — — — −0.0102 0.0075
— — — — — — (0.0305) (0.0249)

ROA 2.0680*** 5.5559*** 0.0568 1.6187*** 0.7441*** 1.5438*** 2.1698*** 1.7716***
(0.0694) (0.1497) (0.1272) (0.1322) (0.0484) (0.1348) (0.0852) (0.1739)

CER −0.1819*** −0.3551*** −0.0614*** −0.1461*** −0.0912*** −0.1245*** −0.1860*** −0.1615***
(0.0112) (0.0184) (0.0152) (0.0199) (0.0066) (0.0181) (0.0139) (0.0252)

_cons 0.9677*** −0.0305*** 1.0057*** 0.9910*** 0.4226*** 0.8644*** 0.9796*** 0.9903***
(0.0114) (0.0099) (0.0114) (0.0133) (0.0146) (0.0117) (0.0158) (0.0131)

Enterprise YES YES YES YES YES YES YES YES
N 90 90 90 90 90 90 90 90

Note: ***, **, * represent their respective significance levels of 1, 5 and 10%.
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enterprises from the perspective of corporate green innovation
activities. First of all, power enterprises should pay attention to
the role of digital technologies such as smart grids in improving
their business performance and environmental performance.
Through the application of 5G, artificial intelligence and big
data analysis and other cutting-edge technologies to build an
intelligent management and control system and information
sharing platform, strengthen the exchange and communication
between all participants in the power system. This can effectively
solve the problems of resource waste caused by information
asymmetry and the difficulty of grid connection of distributed
photovoltaic power stations. Second, state-owned power
enterprises should make full use of their resource advantages
and “leadership” status to actively apply smart grid and other
digital technologies to achieve green transformation and upgrading
while taking on more social and environmental responsibilities. At
present, many state-owned power enterprises are actively
undergoing transformation. For example, Guodian Holdings has
incorporated “three types and five modernizations” into its

development strategy, Yuneng Holdings has adopted “building a
new smart energy enterprise” as its new corporate vision, and
Mindong Holdings plans to follow “Internet + technical services”
requires the construction of smart hydropower stations.
Furthermore, Although non-state-owned power enterprises
have a relatively high level of internal management and
sensitivity to performance changes, their lack of resource
advantages leads to higher risks of transformation. Non-
state-owned power enterprises should strengthen
cooperation with state-owned power enterprises, exchange
and share experience in transformation and development,
and avoid falling into the “digital transformation trap”.
Finally, the Chinese government should help power
enterprises achieve green transformation and development
as soon as possible. It not only needs to introduce policies
to adjust the production and operation methods of enterprises,
but also strengthens the investment and construction of new
energy supporting facilities to stimulate clean energy
production and consumption activities. In 2021, the

TABLE 9 | Robustness test (2).

Variable (1) (2) (3) (4) (5) (6) (7) (8)

M ROE M GML E GML M GML

S 0.0863** −0.1030** 0.0956** 0.0486* −0.0723** 0.0515* 0.1503** 0.1236**
(0.0313) (0.0372) (0.0429) (0.0275) (0.0331) (0.0281) (0.0558) (0.0486)

ROE — — 0.3539*** — — — — —

— — (0.1069) — — — — —

E — — — — — 0.2462* — —

— — — — — (0.1240) — —

S*O — — — — — — −0.1573** −0.1304**
— — — — — — (0.0740) (0.0571)

O — — — — — — −0.0685 −0.0452
— — — — — — (0.0406) (0.0291)

ROA 0.0787 0.9754*** −0.2472** 0.1769 0.0235 0.2143 1.2996** 1.1269**
(0.1216) (0.3117) (0.1157) (0.1765) (0.0725) (0.1722) (0.5978) (0.5150)

CER 0.1045 0.1708 0.0512 0.0735 0.0600 0.0267 0.0155 −0.0052
(0.0767) (0.1090) (0.0577) (0.0646) (0.0411) (0.0383) (0.0257) (0.0184)

L.M −0.2447*** — −0.2412*** — — — −0.2875*** —

(0.0727) — (0.0494) — — — (0.0402) —

L.GML — — — −0.3427*** — −0.3570*** — −0.3368***
— — — (0.0398) — (0.0427) — (0.0473)

L.S −0.0513** 0.0208 −0.0455 −0.0285 0.0522* −0.0296** −0.0642* −0.0420
(0.0197) (0.0294) (0.0284) (0.0172) (0.0256) (0.0119) (0.0354) (0.0303)

L.ROE 0.0308 0.2394** −0.2299* — — — — —

(0.0218) (0.1142) (0.1264) — — — — —

L.E — — — −0.0418 0.3472*** 0.0071 — —

— — — (0.0986) (0.0853) (0.0933) — —

L. S*O — — — — — — 0.0904* 0.0729
— — — — — — (0.0525) (0.0437)

L.ROA — — — — — — −1.2115*** −0.6882**
— — — — — — (0.3445) (0.2991)

L.CER −0.0904 −0.1384* −0.0303 −0.0491 −0.0466 −0.0255 — —

(0.0680) (0.0775) (0.0481) (0.0442) (0.0311) (0.0343) — —

_cons 1.1969*** 0.0272** 1.2094*** 1.3305*** 0.3130*** 1.2893*** 1.2990*** 1.3570***
(0.0823) (0.0129) (0.0542) (0.0407) (0.0412) (0.0454) (0.0434) (0.0477)

AR (1) 0.007 0.019 0.019 0.022 0.021 0.019 0.008 0.011
AR (2) 0.541 0.385 0.289 0.830 0.989 0.873 0.531 0.843
Sargan 0.332 0.121 0.218 0.273 0.509 0.671 0.045 0.293
Enterprise YES YES YES YES YES YES YES YES
N 200 200 200 200 200 200 200 200

Note: ***, **, * represent their respective significance levels of 1, 5 and 10%.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 78378615

Li et al. Smart Grid Impacts Green Transformation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


National Energy Administration of China plans to promote the
investment and construction of power source network load
storage integration and multi-energy complementary projects,
and is committed to using advanced digital technologies such
as virtual power plants to create an integrated intelligent joint
control system. By releasing the potential of energy regulation
on the production and consumption sides and realizing the
mutual complementation of various energy sources, China’s
energy structure will be accelerated to a clean and low-carbon
direction.

LIMITATIONS AND FUTURE RESEARCH
OPPORTUNITIES

This article analyzes the role of smart grids in improving the
operating performance and environmental performance of
Chinese power enterprises, as well as the active role of the
nature of corporate property rights in this process, but there
are also the following shortcomings. First of all, this article
mainly studies the impact of smart grids on the power
generation sector of the power system, without considering
the impact of the technology on the transmission, distribution
and use of electricity, as well as the interaction between various
sectors. Secondly, due to the limitations of research data and
research methods, it is impossible to quantitatively analyze the
specific impact of smart grids on the production and operation
activities of enterprises. Finally, although power enterprises
can achieve transformation and development through the
application of digital technologies such as smart grids, there
may be potential risks in the transformation process.
Therefore, the future can be studied from two aspects. The
first is to analyze the impact of smart grids on other sectors of
the power system and the possible synergies between various
sectors. The second is to evaluate the bankruptcy risks that
may exist in the transformation process by combining the
numerical data of power enterprises (Aziz et al., 2021) to help
power enterprises avoid the “digital transformation trap” and
successfully achieve green transformation and

development(Cominola et al., 2021Hu et al., 2017Pan et al.,
2020).
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