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Abstract. The question of how swiftly entanglement spreads over a system has attracted vital interest.
In this regard, the out-of-time-ordered correlator (OTOC) is a quantitative measure of the entanglement
spreading process. Particular interest concerns the propagation of quantum correlations in the lattice
systems, e.g., spin chains. In a seminal paper of Roberts et al. (J. High Energy Phys. 03:051, 2015), the
concept of the OTOC’s radius was introduced. The radius of the OTOC defines the front line reached by
the spread of entanglement. Beyond this radius operators commute. In the present work, we propose a
model of two nanomechanical systems coupled with two nitrogen-vacancy (NV) center spins. Oscillators
are coupled to each other directly, while NV spins are not. Therefore, the correlation between the NV spins
may arise only through the quantum feedback exerted from the first NV spin to the first oscillator and
transferred from the first oscillator to the second oscillator via the direct coupling. Thus, nonzero OTOC
between NV spins quantifies the strength of the quantum feedback. We show that NV spins cannot exert
quantum feedback on classical nonlinear oscillators. We also discuss inherently quantum case with a linear
quantum harmonic oscillator indirectly coupling the two spins and verify that in the classical limit of the
oscillator, the OTOC vanishes.

1 Introduction

A sudden quench of parameters on the quantum state
of a system leads to reshuffling of quantum information,
such as the entanglement stored in a many-body corre-
lated initial quantum state [1–9], during the subsequent
time evolution. An important question is the swiftness
of the spreading of the quantum entanglement. The
maximum rate at which correlations build up in the
quantum system is limited by the Lieb–Robinson bound
[10], while a quantitative criterion is provided by the
out-of-time-ordered correlation (OTOC) of the opera-
tors in question. The concept of the OTOC was intro-
duced by Larkin and Ovchinnikov [11], and since then,
OTOC has been seen as a diagnostic tool of quantum
chaos. Interest in the delocalization of quantum infor-
mation (i.e., the scrambling of quantum entanglement)
was renewed only recently; see Refs. [12–26] and refer-
ences therein. In the present work, we show that OTOC
can be exploited as a quantifier of quantum feedback.
In particular, we propose a model of two nanomechani-
cal systems (nonlinear oscillators) coupled with two NV
spins. We prove that entanglement between two NV
centers can spread only if NV centers are connected
through the quantum channel. In the semiclassical and
classical channel limit, entanglement decays to zero.

a e-mail: sunilkm.app@iitbhu.ac.in (corresponding author)

Let us consider two unitary operators V̂ and Ŵ ,
describing the local perturbations to the system, and
their unitary time evolution under a Hamiltonian Ĥ,
which we will specify as Ŵ (t)=exp(iĤt) Ŵ exp(−iĤt).
Here, we measure time such that � = 1. Then, the
OTOC is defined as

C (t) =
1
2

〈[
Ŵ (t), V̂

]† [
Ŵ (t), V̂

]〉
, (1)

or in an equivalent form as

C (t) = 1 − Re F (t) , (2)

where F (t) =
〈
Ŵ (t)†V̂ †Ŵ (t)V̂

〉
. Here, parentheses

〈. . .〉, if not otherwise specified, denote either the quan-
tum mechanical ground state average 〈. . .〉=〈ψ| . . . |ψ〉,
or the finite temperature thermal average 〈. . .〉 =
Z−1Tr

(
e−βĤ . . .

)
with inverse temperature β = 1/T

and the Boltzmann constant scaled to kB = 1. At the
initial moment of time, as follows from the definition,
the OTOC is zero C(0) = 0, provided [Ŵ , V̂ ] = 0.

OTOCs demonstrate several interesting physical fea-
tures in the integrable and nonintegrable systems.
For example, magnetization OTOCs (V = W =
magnetization) point to dynamical phase transitions
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[2]. Disorder slows the growth of C (t) in time, and
therefore, scrambling can be used to identify the many-
body localization phase [16]. Scrambling itself is noth-
ing other than the zero-velocity Lieb–Robinson bound
[27].

C (t) = ||[W (t), V ]|| = min (|t|, 1) e−ηd(Ŵ ,V̂ ) (3)

where η = const, d(Ŵ , V̂ ) is the distance between oper-
ators on the lattice (i.e., spin operators exp(Ŝz

n) of a
spin chain), and the Frobenius norm of the unitary
operator Â is defined as ‖Â‖ = Tr(Â†Â).

Rather interesting and enlightening is a semiclassi-
cal interpretation of scrambling. For canonical momen-
tum and coordinate operators V ≡ P , W (t) ≡ q(t) one
deduces the equation, valid on the short time scale [12],
C (t) = �

2 exp (2λLt). The scrambling time is specified
in terms of the classical Lyapunov exponent λL and is
equal to the Ehrenfest time τ ≈ 1

λL
ln 1/�. On the other

hand, a purely quantum analysis shows that the radius
of the operator linearly increases in time, independent
of whether the quantum system is integrable or chaotic
[13]. This means that in the qubit system (for exam-
ple, a Heisenberg spin chain), the time required for the
formation of correlations between initially commuting
operators

[
σj

n, σk
m

]
= 2iδnmεjklσl will increase linearly

with the distance d = |n − m| between them, and hence[
σj

n (t) , σk
m

] �= 0, for n �= m. Note that customarily
scrambling is an irreversible process after entanglement
is spread across the system, it cannot be unscrambled
[19].

Indeed, OTOC can be interpreted in terms of two
wave functions time evolved in a different manner. Let
|ψ(0)〉 be the initial pure state wave function which
is time evolved in the following steps: First, it is per-
turbed at t = 0 with a local unitary operator V̂ and
then evolved forward under the unitary evolution oper-
ator Û = exp(−iĤt) until t = τ ; it is then perturbed at
t = τ with a local unitary operator Ŵ and evolved back-
ward from t = τ to t = 2τ under Û†. Hence, the time-
evolved wave function is |ψ(2τ)〉 = Û†Ŵ Û V̂ |ψ(0)〉 =
Ŵ (t)V̂ |ψ(0)〉. For the second wave function, the order
of the applied perturbations is permuted, i.e., first Ŵ at
t = τ and then V̂ at t = 2τ . Therefore, the second wave-
function is |φ(2τ)〉 = V̂ Û†Ŵ Û |ψ(0)〉 = V̂ Ŵ (t)|ψ(0)〉
and their overlap is equivalent to the OTOC F(t) =
〈φ(t)|ψ(t)〉. What breaks the time inversion symmetry
for the OTOC is the permuted sequence of operators Ŵ
and V̂ . Concerning the interplay between OTOC and
dynamical phase transitions, we admit a recent experi-
mental work [28]. Analyzing the behavior of the chaotic
quantum system, authors experimentally observed the
sudden change in the system’s memory behavior.

Recently, interest has been focused on the hybrid
quantum–classical nanoelectromechanical systems
(NEMS) [29–56]. Typically, a NEMS consists of two
parts: quantum NV center and classical cantilever (in
what follows oscillator). Therefore, NEMS may man-

ifest binary quantum–classical features. A spin of the
NV center couples with a cantilever through the mag-
netic tip attached to a cantilever. An oscillator performs
the classical oscillations if not cooled down to the cryo-
genic temperatures. We are interested in the question
if classical coupled nonlinear oscillators may transfer
the quantum correlations. In other words, we aim to
explore the problem of scrambling quantum informa-
tion through the classical channel. To answer this ques-
tion, we study a system of two strongly coupled nonlin-
ear NEMS.

The devices consist of three layers of gallium arsenide
(GaAs): a 100-nm n-doped layer, a 50-nm insulating
layer, and a 50-nm p-doped layer. For more details
about the system, we refer to the work [57]. We assume
that each of the oscillators is coupled to the spin of
NV center and consider OTOC as a measure of the
quantum feedback. In this manuscript, we will first dis-
cuss the model in Sect. 2 and the scheme for numerical
solution of the model. Afterward, in Sect. 3 we will dis-
cuss the analytical solution of the model in the absence
of quantum feedback followed by a discussion on the
numerical calculation of the system in various regimes.
In Sect. 4, we will discuss a system of two spins coupled
indirectly with a quantum linear oscillator. Finally, we
will conclude in Sect. 5.

2 Model

The schematics of the system in question is shown in
Fig. 1.

The two oscillators are coupled to each other directly.
The strength of the coupling between the oscillators

Nickel Layer
External Driving

Magnetic tips

Spin-1

Spin-2

Fig. 1 Schematics of two NV spins coupled via coupled
oscillators. Oscillators are coupled to each other directly,
while NV spins are not
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Fig. 2 Autonomous linear oscillators and weak connectivity regime: position and phase space plots in (a) and (b), and spin
dynamics and OTOC in (c) and (d). Inset in (d) shows two-point time-ordered correlation. The values of the parameters
are ω0 = 1.5, ω1 = 1.0, ω2 = 1.5, F1 = F1 = 0, ξ = 0, γ = 0, g = 1, K = 0.1, α = π/3

depends on the coupling constant and eigenfrequencies
of the oscillators. We quantify this coupling strength
through the “connectivity.” We coupled the first NV
spin to the first oscillator and the second NV spin to
the second oscillator. On the other hand, spins are not
coupled directly and the correlation between NV spins
may arise only through the quantum feedback exerted
from the first NV spin to the first oscillator and trans-
ferred from the first oscillator to the second oscillator
via the direct coupling. The Hamiltonian of the two NV
spins coupled to the nonlinear oscillators reads [58]

Ĥs =
1
2
ω0 (σ̂z

1 + σ̂z
2) + gx1(t)Ŝz

1 + gx2(t)Ŝz
2 . (4)

where ω0 = (ω2
R +δ2)1/2, ωR is the Rabi frequency, and

δ is the detuning between the microwave frequency and
the intrinsic frequency of the NV spin. The operator Ŝz

in the eigenbasis of the NV center has the form Ŝz
1,2 =

1
2 (cos α σ̂z

1,2 + sinα (σ̂+
1,2 + σ̂−

1,2)), where σ̂± = 1
2 (σ̂x ±

iσ̂y) and tan α = −ωR/δ and g is interaction constant
between the oscillators and the spins. A magnetic tip is
attached to the end of the nanomechanical resonators.
During the oscillation performed by the resonators, the
distance between the NV spin and the magnetic tip x
changes. Oscillations produce a time-varying magnetic
field, and therefore, the NV spin senses the motion of
the magnetized resonator tip. For more details about
the origin of the coupling between resonator and NV
spin, we refer to the work [54].

The classical subsystem of the NEMS is the essence
of two coupled non-autonomous nonlinear oscillators.

Apart from the Hamiltonian part

H0 =
1
2

(
ẋ2
1 + ẋ2

2

)
+

1
2
ω2
1x

2
1 +

1
2
ω2
2x

2
2 +

1
4
ξx4

1

+
1
4
ξx4

2 +
1
2
D (x1 − x2)

2
, (5)

time dependence of the oscillators x1(t) and x2(t) is
governed by external driving and damping terms [47,48]
and supplemented by quantum feedback term.

f1 + F cos Ωt = ẍ1 + ω2
1x1 + D(x1 − x2) + g〈ψ|Ŝz

1 |ψ〉,
f2 + F cos Ωt = ẍ2 + ω2

2x2 − D(x1 − x2) + g〈ψ|Ŝz
2 |ψ〉,

d|ψ〉
dt

= − i

�
Ĥs|ψ〉,

d〈σ̂j
1,2〉

dt
=

iω0

2�
〈ψ(x1, x2)|

[
σ̂z
1,2, σ̂

j
1,2

]
|ψ(x1, x2)〉

+
ig

�
x1,2(t)〈ψ(x1, x2)|

[
Ŝz
1,2, σ̂

j
1,2

]
|ψ(x1, x2)〉. (6)

where

f1,2 = −2γẋ1,2 − ξx3
1,2 (7)

describes the effect of the nonlinear and damping terms
on the dynamics where γ is damping constant, ξ is
nonlinearity constant, F , Ω are the amplitude and fre-
quency of the external driving, and D is the linear
coupling term. The feedback terms 〈ψ|Ŝz

1,2|ψ〉 describe
the effect of the NV spin on the oscillator dynam-
ics. We numerically solve the set of coupled equations
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Fig. 3 Autonomous linear oscillators and strong connectivity regime: position and phase space plots in (a) and (b), and
spin dynamics and OTOC in (c) and (d). Inset in (d) shows two-point time-ordered correlation. The values of the parameters
are ω0 = 1.5, ω1 = 1.0, ω2 = 1.5, F1 = F1 = 0, ξ = 0, γ = 0, g = 1, K = 10, α = π/3

Eq. (6) using Runge–Kutta method (RK45) to integrate
the wave function. The resonator is quantum if cooled
down below the extremely low temperature T < 50
nanokelvin [59]. Otherwise, resonator performs classical
oscillations and nonlinear terms are relevant when oscil-
lation amplitude is large. Due to the feedback effect,
Eq. (6) is the essence of the coupled quantum–classical
dynamics. The remarkable fact is that NV spins are not
coupled to each other directly but through the nonlin-
ear classical oscillators. Later, we will also consider the
inherently quantum case where the quantum case for
oscillators will be considered. The coupling strength
between the oscillators is quantified through the con-
nectivity

K =
D

|ω2
1 − ω2

2 |
. (8)

In the case of weak connectivity, K < 1 oscillators
perform independent oscillations, and therefore, we do
not expect arise of quantum correlations between the
spins. The strong connectivity K > 1 leads to the cor-
relations between oscillators. Therefore, the wave func-
tion is not separable |ψ(x1, x2, σ̂1, σ̂1, )〉 �= |ψ(x1, σ̂1)〉⊗
|ψ(x2, σ̂2)〉. Due to non-separability, evolved spin oper-
ators are function of the position of both the oscil-
lators σ̂1,2(t) ≡ σ̂1,2(x1(t), x2(t)). However, correla-
tion between the spins [σ̂1,2(t), σ̂2,1] �= 0 occurs only
if they exert quantum feedback on the oscillators,
i.e., x1,2(t, σ̂1,2), and σ̂1(x1(t), x2(t, σ̂2(t))). To exclude
the artefacts of different dynamical regimes, we solve
Eq. (6) numerically for all the possible cases of inter-
est:

1. Autonomous linear system F = 0 and f1,2 = 0.
2. Autonomous nonlinear system F = 0, γ = 0 and

ξ �= 0.
3. Driven linear system F �= 0, γ �= 0 and ξ = 0.
4. Driven nonlinear system F �= 0, γ �= 0 and ξ �= 0.

We note that Hamiltonian of the spin system Eq. (4)
is coupled with the nonlinear resonator Eq. (5), [57,
60]. We explore scrambling for the weak K 	 1
and strong K > 1 connectivity in all these cases.
Taking into account the solution of the Schrödinger
equation |ψ(t)〉 = Û(t, t0)|ψ(t0)〉, where Û(t, t0) =
exp{−i

∫ t

t0
dτĤs(τ)} is the evolution operator, we cal-

culate F = 〈ψ(t0)|Û−1σ̂z
1Û σ̂z

2Û
−1σz

1Û σ̂z
2 |ψ(t0)〉. Here-

inafter, we consider the initial spin state |ψ(t0)〉 = |01〉
unless specified otherwise and evaluate OTOC through
Eq. (2).

3 Results and discussion

3.1 Analytical solution in the absence of feedback

In the absence of quantum feedback, the system admits
exact analytical solution; for more details, see [48]. The
derivation is cumbersome, and we present only the final
result:

x1,2(t)

=
F

(
ω2
2,1 − Ω2 + 2D

)
cos Ωt

4ν1ν2
√

(ν1 + δ1 − Ω)2 + γ
√

(ν2 + δ2 − Ω)2 + γ
,
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Fig. 4 Autonomous nonlinear oscillators and weak connectivity regime: position and phase space plots in (a) and (b),
and spin dynamics and OTOC in (c) and (d). Inset in (d) shows two-point time-ordered correlation. The values of the
parameters are ω0 = 1.5, ω1 = 1.0, ω2 = 1.5, F1 = F1 = 0, ξ = 1, γ = 0, g = 1, K = 0.1, α = π/3

ν1,2 = ω2
1 + ω2

2 + 2D ∓ ω2
2 − ω2

1

2

√
1 + K2,

δ1 =
3ξ

8

√
2

ω2
1 + ω2

2

(A2
1 + A2

2),

δ2 =
3ξ

8

√
2

ω2
1 + ω2

2 + 4D
(A2

1 + A2
2), (9)

where F and Ω are the amplitude and frequency of
the external driving, D is the linear coupling coef-
ficient, ω1,2 are frequencies of the individual res-
onators, γ, ξ are damping and nonlinearity constant,
δ1,2 are nonlinear corrections, and A1,2 are the ampli-
tudes of the induced resonator oscillations. We insert
the solution Eq. (9) in Ĥs(x1(t), x2(t)) (given by
Eq. 4) and finally get the propagated wave func-
tion |ψ(t)〉=exp

{
−i

∫ t

t0
dτĤs(τ)

}
|ψ(t0)〉, which is pre-

sented in the form:

|ψ(t)〉 = C1(t)|00〉 + C2(t)|01〉
+C3(t)|10〉 + C4(t)|11〉. (10)

where C1(t), C2(t), C3(t), and C4(t) are normalization
constants and |0〉, |1〉 are the computational basis of NV
spins. The spin dynamics reads

〈σ̂x
1 〉 = 2Re(C∗

1 (t)C2(t) + C∗
3 (t)C4(t)),

〈σ̂y
1 〉 = −2Im(C∗

1 (t)C2(t) + C∗
3 (t)C4(t)),

〈σ̂z
1〉 = (|C1(t)|2 + |C3(t)|2 − |C2(t)|2 − |C4(t)|2),

(11)

and

〈σ̂x
2 〉 = 2Re(C1(t)C∗

3 (t) + C2(t)C∗
4 (t)),

〈σ̂y
2 〉 = −2Im(C1(t)C∗

3 (t) + C2(t)C∗
4 (t)),

〈σ̂z
2〉 = (|C1(t)|2 + |C2(t)|2 − |C3(t)|2 − |C4(t)|2).

(12)

Expressions of coefficients are cumbersome and are not
presented in the explicit form.

3.2 Autonomous case

In the presence of quantum feedback, we use Eq. (6)
and solve the system numerically for various cases
of interest. In Fig. (2), we present results obtained
for the linear autonomous oscillators coupled with the
weak connectivity. Dynamics of the oscillators in this
case is the essence of the harmonic oscillation with
a slight modulation of amplitudes. Modulation occurs
due to the exchange of energy between the oscillators.
In the phase portraits (Fig. 2b), we see the limit cycles,
closed-phase trajectories of periodic motion. Figure 2c
describes the spin dynamics, the exchange of energy
between the oscillator and the spin. We see periodic
switching of the spin mediated by the weakly coupled
to linear autonomous oscillators. The right-bottom plot
Fig. 2d shows the absence of OTOC in the system
which shows a justification of the absence of quan-
tum feedback. Two-point time-ordered correlation is
not zero and shows periodic switching in time (see inset
of Fig. 2d). In the case of strong connectivity, Fig. 3
dynamics of oscillators is synchronized. The exchange
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Fig. 5 Autonomous nonlinear oscillators and strong connectivity regime: position and phase space plots in (a) and (b),
and spin dynamics and OTOC in (c) and (d). Inset in (d) shows two-point time-ordered correlation. The values of the
parameters are ω0 = 1.5, ω1 = 1.0, ω2 = 1.5, F1 = F1 = 0, ξ = 1,γ = 0, g = 1, K = 10, α = π/3

of energy between the oscillators is faster leading to
the trembling of the spin projection. The spin switch-
ing is slower as shown in Fig. 3c, and OTOC (Fig. 3d) is
again zero. Even the strong connectivity regime could
not inject the effects of quantum feedback in the system.
Two-point time-ordered correlation shows slow switch-
ing in this case (Inset, Fig. 3d).

Let us invoke the nonlinearity in the oscillators and
explore the spin dynamics and quantum feedback in the
system. In the beginning, we consider the weak connec-
tivity regime (see Fig. 4). As compared to the linear
oscillators and the weak connectivity case, the NV spin
σ̂2 coupled with the faster oscillator of position coor-
dinate x2(t) is not switched completely. However, the
NV spin σ̂1 switches the direction completely during the
course of time. Apparently, the reason is a faster change
of direction of the energy flow between the spin and
the oscillator. At the halfway of switching, the energy
starts to flow back to the oscillator. The quantum feed-
back is absent in this case also (see Fig. 4d). We see in
(Fig. 4d) inset that time ordering two-point correlation
shows oscillations in time with a frequency smaller than
the linear case.

Next, we explore spin dynamics and quantum feed-
back in the case of strongly coupled nonlinear oscillators
as shown in Fig. 5. We see that NV spins are frozen
and perform small trembling oscillations in the vicin-
ity of the initial values (Fig. 5c). The quantum feed-
back quantified in terms of OTOC (Fig. 5d) is again
zero in this dynamical regime. We see in inset (Fig. 5d)
that two-point time-ordered correlation shows oscilla-
tions with the peak increasing in time. The nonlinear-

ity deters the switching of the two-point time-ordered
correlation in the given observation.

3.3 External driving

We know that the forced oscillations are the essence
of two different evolution steps. At the early stage, the
oscillation frequency coincides with the eigenfrequency
of the system. However, after a specific time, the sys-
tem switches to the frequency of the driving force. At
first, we consider the weak connectivity regime. Dur-
ing the transition step, we observe switching of the NV
spins Fig. 6c. However, after reaching the forced oscilla-
tion regime, the NV spins are frozen. We note that the
amplitude of oscillations does not increase resonantly
due to the nonlinearity destroying the nonlinear reso-
nance.

In the case of a strong connectivity (see Fig. 7), oscil-
lators are well synchronized. The NV spins and oscil-
lator mode periodically exchange energy. In both the
cases of weak and strong connectivity, OTOC and quan-
tum feedback are absent. We see in the inset of Figs. 6d
and 7d that two-point time-ordered correlation is not
zero and shows switching.
In order to explain the absence of the quantum feed-
back and scrambling in the strong connectivity case, we
plot the energies of classical oscillators and the quan-
tum NV spin system. We neglect the coupling with the
external driving field and dissipation process to analyze
the autonomous system. In this case, the total energy of
the system comprising the NV spins and the oscillator is
conserved. As shown in Fig. 8a and b, the ratio between
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Fig. 6 Driven nonlinear oscillators and weak connectivity regime: position and phase space plots in (a) and (b), and spin
dynamics and OTOC in (c) and (d). Inset in (d) shows two-point time-ordered correlation. The values of the parameters
are ω0 = 1.5, ω1 = 1.0, ω2 = 1.5, F1 = F1 = 0.5, ξ = 1,γ = 0.15, g = 1, K = 0.1, α = π/3

Fig. 7 Driven nonlinear oscillators and strong connectivity regime: position and phase space plots in (a) and (b), and spin
dynamics and OTOC in (c) and (d). Inset in (d) shows two-point time-ordered correlation. The values of the parameters
are ω0 = 1.5, ω1 = 1.0, ω2 = 1.5, F1 = F1 = 0.5, ξ = 1,γ = 0.15, g = 1, K = 10, α = π/3

energies 〈HNV 〉/H0 = 0.02 is rather small, meaning
that the energy of the oscillator is much larger than
the energy of the spin system. The interaction between
the oscillators and spins strongly affects NV spins and
only slightly affects the oscillators. Another argument

is that the relative modulation depth of energies is
much larger for the quantum system: δH0/H0 ≈ 0.1,
δ〈HNV 〉/〈HNV 〉 ≈ 3 and δH0 + δ〈V 〉 + δ〈HNV 〉 = 0.
This argument becomes even stronger when external
driving is switched on. The external driving field sup-
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Fig. 8 Plot of average energy versus time for (a) the oscil-
lator and (b) the NV spin, in the strong connectivity regime.
The values of the parameters are: ω0 = 1.5, ω1 = 1.0,
ω2 = 1.5, F1 = F1 = 0, ξ = 0, γ = 0, g = 1, K = 10,
α = π/3. The modulation depth of energies δ〈HNV 〉 = 0.5,
δH0 = 1.5

plies the energy to the oscillators and smears out the
quantum feedback effect. OTOC has also been calcu-
lated for the initial state |ψ(t0)〉 = 1√

2
(|01〉 − |10〉). It

turned out to be zero even for the Bell states; however,
the entanglement is preserved during the process.

4 Inherently quantum case: Nonzero
OTOC, geometric measure of
entanglement, and concurrence

In the case of strong connectivity, to some extent, cou-
pled oscillators physically are the essence of a single
effective oscillator. We show that the effective oscillator
interacting with both spins indirectly couples spins. We
study three measures of quantum correlations: OTOC,
concurrence, and a geometric measure of entanglement
[61–63]. We consider Bell’s state as an initial state of
the system and show that concurrence and a geometric
measure of entanglement do not capture the effect of the
quantum feedback. On the other hand, OTOC precisely
quantifies the effect of quantum feedback. However, this
effect disappears in the classical limit. Before proceed-
ing further, once again, we specify the Hamiltonian of

the system.

Ĥ = Ĥ0 + gV̂ ,

Ĥ0 = ω0 (σ̂z
1 + σ̂z

2) + ωâ+â,

V̂ = {â+(σ̂−
1 + σ̂−

2 ) + â(σ̂+
1 + σ̂+

2 )}. (13)

where ω0 is the frequency of NV spin, ω is the frequency
of oscillator, and g is NV spin–oscillator coupling con-
stant. For the sake of simplicity, we limit the discussion
of the quantum case to the linear system only. We note
that inclusion of nonlinear terms leads to the dynamical
Stark shift (ω0 + ξâ+â)σ̂1,2 and two-photon processes
σ̂+
1,2â

2, σ̂−
1,2(â

+)2; see [43] for more details. Nonlinear
terms may affect results only quantitatively.

We follow the Fröhlich method [64] and consider
transformation of the Hamiltonian H̃ = exp(−Ŝ)
Ĥ exp(−Ŝ), where operator Ŝ satisfies the condition
gV̂ +

[
Ĥ0, Ŝ

]
= 0 and ensures the absence of the lin-

ear non-diagonal terms proportional to g term in the
transformed Hamiltonian [64]. Hamiltonian of effective
interaction between two NV spins mediated by linear
quantum cantilever can be derived as follows [59]:

Ĥeff =
ig2

2

0∫
∞

dτ
[
V̂ (τ), V (0)

]
,

V̂ (t) = exp(−iĤ0t)V̂ exp(iĤ0t). (14)

Taking into account Eqs. (13) and (14), we deduce

Ĥeff =
g2 (2â+a + 1)

ω0 − ω

×
{

(σ̂z
1 + σz

2) +
σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2

(2â+a + 1)

}
. (15)

The total Hamiltonian has the form:

Ĥtot = Ĥ0 + Ĥeff . (16)

In what follows, we replace n = 〈â+a〉 and rescale the
total Hamiltonian Ĥtot/ (2n + 1). In case of local uni-
tary and Hermitian Pauli matrices the following expres-
sion of OTOC can be deduced from Eq. (2):

C(t) = 1 − Re [〈σ̂z
1(t)σ̂

z
2 σ̂

z
1(t)σ̂

z
2〉] (17)

where time dependence is governed by total Hamilto-
nian as σ̂z

1(t) = e−itĤtot σ̂1e
itĤtot . Taking into account

Eq. (16) and the initial Bell’s state |Φ−〉 = 1/
√

2(|01〉−
|10〉) (which is also an eigenstate of the system), for
OTOC from Eq. (17), we deduce

C(t) = 2 sin2 (4Ωnt) , (18)

123



Eur. Phys. J. D (2022) 76 :17 Page 9 of 12 17

Fig. 9 Plot of thermally averaged OTOC vs time at fixed
temperature (T). The parameters used are g = 1, ω0 = 3,
ω = 2, T = 100, n = 10(red), n = 100(Green), n =
1000(Gray), n = 10000(blue). For very large n, the oscil-
lations die out

where Ωn = g2

(ω0−ω)(2n+1) . As we see from Eq. (18), in
the initial moment of time OTOC is zero C(t = 0) =
0 and becomes non zero for t > 0. However, in the
semiclassical limit n → ∞, Ωn → 0 and to detect effect
of the quantum feedback we need to wait rather long
time t ≈ 1/Ωn, meaning that the effect of the quantum
feedback is rather weak (zero).

For a two-qubit system, geometric measure of entan-
glement (GME) and concurrence are related to each
other [62]. To calculate concurrence we follow standard
recipes:

C [t] = max (0, R1 − R2 − R3 − R4) , (19)

where Rn(t) are the square roots from the eigenvalues
of the following matrix

R̂(t) = �̂R(t) (σ̂y
1 ⊗ σ̂y

2 ) �̂∗
R(t) (σ̂y

1 ⊗ σ̂y
2 ) , (20)

�̂R(t) = Trfield (�̂(t)) is the reduced density matrix
�̂(t) = e−itĤtot �̂(0)eitĤtot , �̂(0) = |Φ−〉〈Φ−| and σ̂y

1,2
are Pauli matrices acting on the first and the second
spins. The GME is given by GME= (1 − √

1 − C [t])/2
[62]. For the Hamiltonian Eq. (16) and the initial Bell’s
state |Φ−〉 = 1/

√
2(|01〉 − |10〉), we calculate C [t] = 1

and GME= 0.5. Thus, in the case of a particular ini-
tial state, the concurrence and GME are constant, and
through them, we cannot quantify quantum feedback
exerted by spins on the oscillator. On the other hand,
the quantum feedback if described by OTOC will be
nonzero if present (as in quantum case) and vanish if
absent (as in the classical limit).

We can also check the finite temperature case. At a
finite temperature, in the equilibrium state, the density
matrix in the basis of Hamiltonian is given as


̂ = Z−1

⎛

⎜⎜
⎝

e−2β(Ω0+ω0R) 0 0 0

0 e−βΩn 0 0

0 0 eβΩn 0

0 0 0 e2β(Ω0+ω0R)

⎞

⎟⎟
⎠ ,

Z = 2 coshβ2(Ω0 + ω0R) + 2 coshβΩn, (21)

where we introduced the notations Ω0 = g2

(ω0−ω) , ω0R =
ω0

2n+1 and β = 1/T is the inverse temperature. Ther-
mally averaged OTOC Cρ = 1 − Re(Tr{�̂σ̂z

1(t)σ̂
z
2 σ̂

z
1(t)

σ̂z
2}) is calculated (for details see Appendix 1) as

Cρ = 1 − cosh 2β(Ω0 + ω0R) + cos 4Ωnt cosh βΩn

cosh 2β(Ω0 + ω0R) + cosh βΩn
,

(22)

and the thermal concurrence Cρ[t] is calculated using
Eq. (19) as

Cρ[t] = 2 × max(
0,

| sinh βΩn| − 1
(2 cosh 2β (Ω0 + ω0R) + 2 cosh βΩn)

)
. (23)

Thermally averaged OTOC as a function of time is plot-
ted in Fig. (9) for different n. At the finite temperatures,
in the semiclassical limit n → ∞, we have Ωn → 0,
ω0R → 0, Cρ = 0 and Cρ[t] = 0. On the other hand,
at a zero temperature dynamical effect, i.e., the quan-
tum feedback is captured only by OTOC. Both at finite
or zero temperature, OTOC is not zero if spin exerts
feedback on the oscillator, and it becomes zero when
n → ∞.

5 Conclusion

Out-of-time correlation function is widely used as a
quantitative measure of spreading quantum correla-
tions. In the present work, we propose an experimen-
tally feasible model of the nanomechanical system for
which OTOC can be exploited as a quantifier of quan-
tum feedback. In particular, we consider two NV spins
coupled with two different oscillators. Oscillators are
coupled to each other directly, and NV spins are not.
Therefore, any quantum correlation between the NV
spins may arise only due to the quantum feedback
exerted by NV spins on the corresponding oscillators.
The OTOC operator between the NV spins is the
essence of the quantifier of the quantum feedback. To
exclude the artefacts of a particular type of oscillations,
we considered different dynamical regimes: linear vs.
nonlinear, free, and forced oscillations and showed that
the OTOC and quantum feedback are zero in all the
cases. We also considered quantum oscillator and quan-
tum spins case where the indirect coupling between the
spins is invoked by a quantum harmonic oscillator. We
have shown nonzero OTOC, GME, and concurrence
in this case. In a classical limit of the oscillator, the
OTOC vanishes. Thus, we conclude that entanglement
between two NV centers can spread only if NV cen-
ters are connected through the quantum channel. In the
semiclassical and classical channel limit, entanglement
decays to zero.
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Appendix: Calculation of thermally averaged
OTOC Cρ

From Eq. (16) after re-scaling, the total Hamiltonian
will be written as

Htot = (ω0R + Ω0)(σz
1 + σz

2)
+Ωn(σ+

1 σ−
2 + σ−

1 σ+
2 ) (24)

or in the matrix form, in the standard basis,

⎛
⎜⎝

2(Ω0 + ω0R) 0 0 0
0 0 Ωn 0
0 Ωn 0 0
0 0 0 −2(Ω0 + ω0R)

⎞
⎟⎠ , (25)

where n = 〈a†a〉, ω0R = ω0
2n+1 , and Ω0 = g2

ω0−ω , and

Ωn = g2

(ω0−ω)(2n+1) . The eigenstates of the above Hamil-
tonian are

|φ1〉 = |0, 0〉, (26)

|φ2〉 =
1√
2
(|1, 0〉 + |0, 1〉), (27)

|φ3〉 =
1√
2
(|1, 0〉 − |0, 1〉), (28)

|φ4〉 = |1, 1〉, (29)

with corresponding eigenvalues:

E1 = 2(Ω0 + ω0R) (30)
E2 = Ωn (31)
E3 = −Ωn (32)
E4 = −2(Ω0 + ω0R). (33)

At a finite temperature, in the equilibrium state the
density matrix �̂ = Z−1e−βHtot of the system in the
diagonal basis of the Hamiltonian is

�̂ = Z−1
(
e−βE1 |φ1〉〈φ1|

+e−βE2 |φ2〉〈φ2| + e−βE3 |φ3〉〈φ3|
+e−βE4 |φ4〉〈φ4|

)
(34)


̂ = Z−1

⎛

⎜⎜
⎝

e−2β(Ω0+ω0R) 0 0 0

0 e−βΩn 0 0

0 0 eβΩn 0

0 0 0 e2β(Ω0+ω0R)

⎞

⎟⎟
⎠ ,

Z = 2 coshβ2(Ω0 + ω0R) + 2 coshβΩn. (35)

Pauli operators σz
1 and σz

2 in the diagonal basis of
Hamiltonian are written as

σz
1 = |φ1〉〈φ1| + |φ3〉〈φ2| + |φ2〉〈φ3| − |φ4〉〈φ4|

(36)
σz
2 = |φ1〉〈φ1| − |φ3〉〈φ2| − |φ2〉〈φ3| − |φ4〉〈φ4|

(37)

Also, the time evolution operators exp (−iHtott) in the
diagonal basis can be given as

exp (−iHtott) = e−iE1t|φ1〉〈φ1| + e−iE2t|φ2〉〈φ2|
+e−iE3t|φ3〉〈φ3| + e=iE4t|φ4〉〈φ4|,

(38)

We calculate σz
1(t) as

σz
1(t) = eiHtottσz

1e
−iHtott = |φ1〉〈φ1| + e−2iΩnt|φ3〉〈φ2|

+e2iΩnt|φ2〉〈φ3| − |φ4〉〈φ4|. (39)

By successive application of operators in the sequence
σz
1(t)σ

z
2σ

z
1(t)σ

z
2 , we get

σz
1(t)σ

z
2σ

z
1(t)σ

z
2 =

(|φ1〉〈φ1| − e4iΩnt|φ2〉〈φ2|
−e−4iΩnt|φ3〉〈φ3| + |φ4〉〈φ4|

)
.

(40)

We can calculate ρσz
1(t)σ

z
2σ

z
1(t)σ

z
2 as

ρσz
1(t)σ

z
2σ

z
1(t)σ

z
2 = Z−1

(
e−2β(Ω0+ω0R)|φ1〉〈φ1|

−e−βΩne4iΩnt|φ2〉〈φ2|
−eβΩne−4iΩnt|φ3〉〈φ3|
+e2β(Ω0+ω0R)|φ4〉〈φ4|

)
. (41)

Further, we calculate the thermally averaged OTOC
Cρ(t) = 1 − Re(Tr{ρσz

1(t)σ
z
2σ

z
1(t)σ

z
2}) as

Cρ(t) = 1

−2 cosh 2β(Ω0 + ω0R) + 2 cos 4Ωnt cosh βΩn

Z
,

(42)
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