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Stochastic Arrow-Hurwicz Algorithm for Path Selection and Rate
Allocation in Self-Backhauled mmWave Networks

Abhinav Sharma , K. Lakshmanan, Ruchir Gupta , Senior Member, IEEE, and Atul Gupta

Abstract— One of the key promoters of 5G deployment using
millimetre waves is multi-hop self-backhauling. However, the rate
allocation and path selection for these networks are challenging
tasks. For this purpose, we consider a network utility maximiza-
tion problem with probabilistic stability constraints. We propose
a novel and simple method based on the stochastic Arrow-
Hurcwicz algorithm to the optimization problem with gradient
estimation using a smoothed functional technique. Numerical
results show an improved utility and faster performance com-
pared to the benchmark.

Index Terms— Smoothed functional algorithms, Arrow-
Hurwicz algorithm, simulation, mmWave networks, stochastic
optimization, ultra-dense small cells.

I. INTRODUCTION

SELF-BACKHAUL millimetre Wave (mmWave) [1]
deployed with Ultra-Dense Network (UDN) using small

cell base station (SCBS) [2] is one of the most promising
technology for 5G transmission. Here, a large number of
SCBSs are placed for each macro base station (MBS), which
is essential in mmWave transmission. The major hurdle in
this setup is capacity and resource allocation [3]. To improve
the throughput over longer distances [4] massive MIMO
technology has been employed, which allows a high degree
of spatial multiplexing [5]. MBS uses a massive number
of antennas to transmit mmWave to SCBS and vice-versa.
This architecture uses multi-hop and multi-path data transfers
where the MBS selects paths and allocates power to SCBS.
However, hopping results in increased delay for the data
packet transfers. Additionally, the shared bandwidth of the
self-backhaul architecture needs to be optimized for optimal
data rate allocation of different data flows. Thus, optimizing
path selection and rate allocation for efficient communication
are crucial components of this architecture.

One of the most notable works in this regard is done
by Vu et al. [3] who formulated the problem of joint path
selection and rate allocation into a network utility optimization
problem with network stability and bounded latency con-
straints. They divided the problem into sub-problems and
solved them with reinforcement learning (RL) and successive
convex approximation techniques. A major issue in handling
this non-convex optimization is the non-linear probability
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constraint on network queues. Their model [3] approximates
the probability constraint with constraint in expectation using
Markov inequality. However, the approach is rather crude
as the probability constraint need not be satisfied even if
the condition in expectation is satisfied. It then uses SOCP
based approximation method, which is complicated. Thus,
we believe there is room for significant improvement.

We propose a novel technique to solve the path selection and
rate allocation problem of self-backhaul mmWave networks
by using smoothed functional approach in the Arrow-Hurwicz
algorithm. First, we approximate the probabilistic stability
constraint with an indicator function using the smoothed
stochastic technique. Then, we utilize the framework of the
Arrow-Hurwicz algorithm [6] and smoothed functional gradi-
ent estimates [7] for the optimization. This resultant algorithm
is faster, shows improved network utility and has a lower
average queue length compared to the work of Vu et al. [3].

The rest of the letter is organized as follows: Section II
describes the problem definition. Section III introduces the
proposed algorithm. Section IV provides the numerical results
against benchmark. Conclusions are drawn in Section V.

II. PROBLEM DEFINITION

Consider a downlink transmission with one macro base sta-
tion (MBS) of a multi-hop heterogeneous cellular network [3].
Assume a set B of self-backhauled SCBS and set K of UEs.
Let {0, 1, . . . , B} be the indices for the base stations with
MBS getting index 0. Let, the total SCBS and UEs be N .
At the MBS, let there is a set F of F independent data flows.
We consider discrete time intervals. Each flow f ∈ F is split
by MBS into two or more sub-flows which are joined together
at UEs. The paths of these sub-flows are disjoined and decided
by the MBS from among Zf number of disjoint paths. For a
disjoint path m, Zm

f denotes the path state, which has queue
state information along with the topology for every hop. Let
Zf denote the state observed by flow f and zf denote the flow-
split indicator vector. Here, the vector Zf = {Z1

f , . . . ,ZZf

f }
and zf = (z1

f , . . . , z
Zf

f ) where, zm
f sets to 1 whenever the

path m is selected to send data for flow f .
Let the set of next hops from node i via a directional edge

be N (o)
i . Let the upper limit of the transmit power for any

node i be Pmax
i . For any flow f , transmit power is assigned

from transmitter node i to receiver node j and is denoted
by pf

(i,j). Next, as the transmit power cannot be negative for
any network, we have:

P =

{
pf
(i,j) ≥ 0, i, j ∈ N ,

∣∣∣ ∑
f∈F

∑
j∈N (o)

i

pf
(i,j) ≤ Pmax

i

}
. (1)
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Fig. 1. 5G multi-hop self-backhauled mm-wave network.

as the power constraint. We assume the queue length at BS i
to be Qi

f(t) for flow f and time slot t. For flow f , let

r
(i,j)
f (H , p) denote the data rate in edge (i, j) with channel

state H and transmit power p as arguments. Let, r be
used to refer data rates vector over all the flows. Figure 1
shows MBS communicating with UE-1 and UE-2, where the
communication links are shown as a dashed and solid line,
respectively.

A. Optimization Problem

The probability that a particular path m is selected for a
sub-flow of flow f is denoted by Pr

(
zf = zm

f

)
= πm

f . Thus
for all the sub-flows of f we can define a probability mass
function πf = (π1

f , . . . , π
Zf

f ) where
∑Zf

m=1 Pr(zm
f ) = 1. Let

the probability distribution and the set containing all possible
global probability mass functions of all flow-split vectors be
denoted by Π and π respectively where π ∈ Π. Note that,
π = {π1, . . . , πf , . . . , πF }.

Further, let the achievable average rate of flow x̄f for the
flow f be:

x̄f
�
= lim

t←∞
1
t

t−1∑
τ=0

xf (τ),

with xf (τ) be given as:

xf (τ) =
Zf∑

m=1,i
(o)
f ∈Zm

f

EH,p

[
πm

f r
(i,i

(o)
f )

f (τ)
] ∣∣∣

i=0
.

Now, assume that xf (t) is non negative, and is bounded
from above with a maximum achievable rate amax

f at all times
for flow f . The constraint on this rate is:

0 ≤ xf (t) ≤ amax
f (2)

The vector x̄ = (x̄1, . . . , x̄F ) is the rate averaged over a
period of time over all flows. We can now define the objective
function as a network utility function U0(x̄), which is a
twice differentiable, concave and increasing L-Lipschitz for all
x̄ ≥ 0. Formally, U0(x̄) =

∑
f∈F U(x̄f ) [8], [9].

The objective is to allocate resources across the network,
such that the overall utility is maximized, while confirming to
latency, power and reliability constraints. Thus, the optimiza-
tion problem is modelled as a network utility maximization
problem, which is given by:

max
π,x,p

U0(x̄) s.t. (3a)

Pr
(

Qi
f (t)
āf

≥ dmax

)
≤ �, for all t, f ∈ F, i ∈ B,

(3b)

lim
t→∞

E

[
|Qi

f |
]

t
= 0, for all f ∈ F, i ∈ B (3c)

x(t) ∈ R, (3d)

π ∈ Π, (3e)

and constraints (1), (2).

In equation (3b), the ratio of queue length (Qi
f (t)) and average

arrival rate (āf ) represents average queuing delay, which is
considered in accordance to Little’s law [10]. Hence, the
constraint dictates that the probability of average queuing
delay being greater than dmax is less than � for each flow f
at node i. This constraint is essential to ensure reliable and
ultra-low latency communication [11]. This avoids congestion
in the network by limiting the queue build-up at any BS.
The following constraint (3c) is to ensure the stability of
the network. Other constraints are boundary conditions on
rates (3d, 2), flow split probabilities (3e), and power (1).

III. SMOOTHED FUNCTIONAL STOCHASTIC

ARROW-HURWICZ ALGORITHM

The basic idea of the proposed model is to consider the
probability constraint as a constraint on the expected value
of an indicator function. Then use a standard stochastic
gradient-based technique to solve the problem. Finally, since
the indicator function is itself discontinuous, we consider
a smoothed approximation of it using approximation by
convolution (AC) [6].

Algorithm 1 Arrow-Hurwicz Algorithm
1: Set NUM-ITERATIONS to a large number.
2: for k = 1 → NUM-ITERATIONS do
3: Draw an independent sample εk+1.
4: Compute the stochastic gradient ∇uJ(uk, εk+1) and

∇uG(uk, εk+1).
5: Update uk+1 and Lagrangian multiplier ζk+1 as follows:

uk+1 = JU

(
uk − ωk

( −∇uJ(uk, εk+1)

+ ∇uG(uk, εk+1)ζk
))

, (4)

ζk+1 = J+

(
ζk + ρk

(
G(uk+1, εk+1) − α

))
. (5)

6: end for
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A. Stochastic Arrow-Hurwicz Algorithm

Before moving on to the proposed solution, we first discuss
the Arrow-Hurwicz algorithm.

Consider the following stochastic optimization problem:

max
u∈U

−J(u) such that G(u) ≤ α (6)

where u be the decision variable in a Hilbert space U , J : U →
R

d is the cost function, and G : U → R be the constraint
function. Then the Lagrangian is given by:

L(u, ζ) = J(u) + ζ(G(u) − α) (7)

where ζ ∈ R
d is a multiplier.

If G = E(G(u, ε)) in the above equation, i.e., constraint in
expectation, then equation (6) can be written as:

max
u∈U

−J(u, ε) s.t. E(G(u, ε)) ≤ α (8)

Now, if equation (3b) can be written in form of expectation,
then the equation (8) can correspond to equation (3a).

The Arrow-Hurwicz algorithm (in 1), finds the unbiased
estimate of the gradient of the Lagrangian L. J denotes a
projection operator. As in any stochastic approximation algo-
rithm the step-size sequences ωk should satisfy the following
two conditions.∑

k∈N

ωk = ∞,
∑
k∈N

(ωk)2 < ∞, same goes for ρk (9)

B. Smoothed Stochastic Gradient

Suppose we have the probability constraint
P (G(u, ε) ≤ α) ≥ π. This can written as expectation
constraint using an indicator function as:

S(u) ≥ π, where S(u) = E

(
IR+ (α − G(u, ε))

)
. (10)

where IR+ is the indicator function and S(u) = P(G(u,
ε) ≤ α). This gradient is difficult to compute because of the
discontinuity in the indicator function [6]. The standard way
is to derive a smooth approximation of this function and then
find the gradient.

Consider a smooth function h : R → R such that: h has a
unique maximum at x = 0,

∀x, h(x) = h(−x); h(x) ≥ 0;
∫ +∞

−∞
h(x)dx = 1. (11)

Then, convolute this with the indicator function IR+ and get

Sk(u) =
1
k

E

( ∫ +∞

0

h

(
y − α + G(u, ε)

k

)
dy

)
.

The expectation can be denoted by E (sk(u, ε)). We can then
derive the following:

(sk)�u(u, ε) = −1
k
h

(
G(u, ε) − α

k

)
G�u(u, ε). (12)

Hence,

S�k(u) = E ((sk)�u(u, ε)) . (13)

Thus the previous equation (12) can be used as an unbiased
estimate of S�(u). We note that this bias vanishes when
r approaches 0 [6].

C. Changed Objective Function

Let Qi
f (t) denote the queue length for flow f at BS i and

time slot t. At the MBS (i = 0), the update equation for the
queue length is

Qi
f(t + 1) =

(
Qi

f(t) −
Zf∑

m=1,i
(o)
f ∈Zm

f

r
(i,i

(o)
f )

f (t), 0
)+

+ af (t),

(14)

where af (t) is the data arrival at the MBS for flow f at time
slot t, which is independent and identically distributed (i.i.d.)
over time with a mean value as āf .

Let A(π, p, ε) = mini,f

[
Qi

f (t)

āf

]
, then the probability

constraint is given by

Pr (A(π, p, ε) ≥ dmax) ≤ �

in equation (3b) corresponds to P (G(u, ε) ≤ α) ≥ π in equa-
tion (10). Note that, by introducing a minima of Qi

f(t)/āf ,
the inequality of (3b) still holds. Thus, from equation (3b)
and equation (10), the modified constraint in place of (3b) is
given by:

S (π, p) ≤ �, (15)

where S(π, p) denotes the expected value of the
indicator function and is given by, S(π, p) =
E (IR+ (−dmax + A (π, p))) := E(g1(π, p)).

Now, to find the gradient estimate, assume that h(·) : R =⇒
R is a smooth function that follows equation (11), the gradient
for S(π, p) is calculated according to equation (12), i.e., :

S�k(π, p) = E ((∇g1)π,p(π, p, ε)) . (16)

where

∇πg1(π, p, ε) =
1
k

h

(A(π, p, ε) − dmax

k

)
∇πA(π, p, ε)

(17)

∇pg1(π, p, ε) =
1
k

h

(A(π, p, ε) − dmax

k

)
∇pA(π, p, ε)

(18)

To apply Arrow-Hurwicz, we approximate the limiting
constraint in equation (3c) in the following way:

E

(
|Qi

f |
)

tc
≤ 1, ∀t, f ∈ F, i ∈ B (19)

where 0 < c < 1 is a constant. This constraint is to ensure
the stability of the network. Next, we denote g2(π, p) =
maxi,f

[
E

(
−|Qi

f |
)
/tc

]
and to be consistent with the algo-

rithm, the inequality is denoted as g2(π, p) ≥ −1, ∀t, f ∈
F, i ∈ B.

It is unknown whether g2(π, p) is differentiable or not.
Therefore, for gradient estimation, we perform a smoothed
functional gradient estimation which involves convolu-
tion with a Zf -dimensional multivariate (0, β2

2)-distributed
Gaussian [7]. For some small scalar β2 > 0 and a large
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positive integer M2, the gradient estimator with respect to π
is given by:

∇πg2(π, p)≈ 1
M2

1
β2

M2∑
t=1

η(t)(g2(π + β2η(t), p) − g2(π, p))

(20)

Here η(t) � (η1(t), . . . , ηN (t))T , with ηi(t), i =
1, . . . , N, n ≥ 0 , being independent Zf (0, 1)-distributed ran-
dom variables. Similarly, the gradient estimator with respect
to p is given by:

∇pg2(π, p) ≈ 1
M2

1
β2

M2∑
t=1

η(t)(g2(π, p + β2η(t)) − g2(π, p))

(21)

Similar treatment is required for the estimation of ∇g1(·) in
equation (17), (18), as it is difficult to determine whether
A is differentiable or not. Thus, the gradient estimate for
∇πA(π, p, ε) and ∇pA(π, p, ε) is given by:

∇πA(π, p, ε) =
1

M1β1

M1∑
t=1

ζ(t)
(
A(π + β1ζ(t), p, ε)

−A(π, p, ε)
)

(22)

∇pA(π, p, ε) =
1

M1β1

M1∑
t=1

ζ(t)(A(π, p + β1ζ(t), ε)

−A(π, p, ε)) (23)

where, M1 is a large positive integer, β1 belongs to Zf

dimensional multivariate (0, β2
1) distributed Gaussian and

ζ is a Zf (0, 1) distributed random variable similar to η. Thus
equation (17), (18) can be expressed as:

∇πg1(π, p, ε) =
1

kM1β1
h

(A(π, ε) − dmax

k

) M1∑
t=1

ζ(t)

×(A(π + β1ζ(t), p, ε) −A(π, p, ε)) (24)

Similarly:

∇pg1(π, p, ε) =
1

kM1β1
h

(A(π, p, ε) − dmax

k

) M1∑
t=1

ζ(t)

×(A(π, p + β1ζ(t), ε) −A(π, p, ε)) (25)

To estimate the gradient of utility function, we use an i.i.d.
random variable η3 and generate two simultaneous simulations
of x̄ with respect to each π and p.

∂U(x̄)
∂π

≈ 1
β3

(U(x̄π+β3γ3) − U(x̄π)) (26)

∂U(x̄)
∂p

≈ 1
β4

(U(x̄p+β4γ3) − U(x̄p)) (27)

As we have the gradient estimates, the update parameters
for the Arrow-Hurwicz algorithm can be formulated as:

πk+1 = JΠ

[
πk − ωk

(
−∇πU0(πk, εk+1)

+∇πg1(πk, pk, εk+1)ζk
1 +∇πg2(πk, pk, εk+1)ζk

2

)]
(28)

pk+1 = JP
[
pk − ωk

(
−∇pU0(pk, εk+1)

+∇pg1(πk, pk, εk+1)ζk
1 +∇pg2(πk, pk, εk+1)ζk

2

)]
(29)

ζk+1
1 = J+

[
ζk

1 + ρk
(
g1(πk+1, pk+1, εk+1) − �

) ]
. (30)

ζk+1
2 = J+

[
ζk

2 + ρk
(
g2(πk+1, pk+1, εk+1) + 1

) ]
. (31)

Algorithm 2 Arrow-Hurwicz Smoothed Functional Algorithm
1: Set NUM-ITERATIONS to a large number.
2: for t = 1 → NUM-ITERATIONS do
3: Compute the stochastic gradient for the objective (equa-

tion (3a)) w.r.t. π and p, i.e., ∇πU0(x̄) and ∇pU0(x̄).
4: Compute the gradient estimates for constraints from

equation (20), (21), (24), (25).
5: Update π(t+1), p(t+1) and Lagrangian multiplier ζ(t+1)

as per equation (28)-(31).
6: end for

IV. NUMERICAL ANALYSIS

All the experiments are performed in MATLAB 2017b on
a Intel® CoreTM i5 CPU@1.80GHz and 8-GB RAM running
on Windows 10 OS.

We consider one MBS and eight SCBS with a one-hop
distance ranging from 50m to 100m. For each SCBS and
MBS, the maximum transmits power is capped at 30 dBm and
43 dBm, respectively. The small antenna arrays for BS is 8
and for UE is 2. Here, the SC antenna gain is set to 5 dBi.
We use the general channel model of arbitrary antenna arrays.
The number of RF chains assigned at BS is eight, and UE is
two, the same as the flows from MBS to each UE. For each
flow, MBS selects two paths from a total of four available
routes [9].

In experiments, we have taken the utility function as U(x̄) =
log(x̄ + 1) [3], [12], but the results will be valid for other
utility functions too, if they satisfy the necessary requirements
mentioned in Section-II. Each traffic flow is divided equally
into two sub-flows for which the arrival rate varies from
2 to 5 Gbps. The maximum delay requirement is set to 10 ms
whereas the target reliability probability is 5% [11].

We model distance-based path loss for blockage, line-of-
sight (LOS), or non-LOS (NLOS) states as PL(i, j) at 28 GHz
with 1 GHz system bandwidth for urban environments [13].
For a distance d, the LOS probability is set to exp(−0.006d)
and NLOS probability is 1−exp(−0.006d). The side lobe gain
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TABLE I

COMPUTATIONAL TIME (IN 103 sec) OF ALGORITHM

Fig. 2. Average queue length with different mean arrival rates.

Fig. 3. The utility versus the number of iterations.

for analog beamforming is taken as 0.25. The beamwidth is
set to π/4 radians at transmitter and π/3 radians at receiver.

We have compared our model with the current state-of-
art [3], which is considered as the baseline. For the baseline,
the boltzman temperature is set to 10 and the learning rates
considered are 1/(t + 1)0.51, 1/(t + 1)0.55, and 1/(t + 1)0.6.

The proposed approach results in a shorter queue length as
conveyed in Figure 2. Table I shows the computational time
of two models for different mean arrival rates. It shows that
the proposed model is computationally more efficient than the
baseline. The reason might be that Vu el al.’s work uses an RL
model for path selection, requiring more training time. This
additional overhead is reflected in the total computational time
of the two models.

When comparing the network utility, it is observed that the
utility of the proposed algorithm is 5.6 ± 0.25. In contrast,
the baseline is 4.62 ± 0.34, and thus the proposed algorithm
scores 21.2% ± 0.36% better utility score than the baseline
(Figure 3).

V. CONCLUSION

This letter presents an algorithm for maximization under
uncertainty constraints using the stochastic Arrow-Hurwicz
algorithm with smoothed functional gradient estimates. First,
the probability constraints are approximated with an indicator
function using the smoothed stochastic approach. Then Arrow-
Hurwicz algorithm is used for optimization with the help of
smoothed stochastic gradient estimates. Finally, we provided
numerical results on the problem of path selection and rate
allocation in self-backhauled mmWave networks where our
proposed algorithm outperformed the state-of-the-art tech-
nique. For future work, we will provide the convergence results
of the proposed algorithm.
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