CONTENTS

Chapter I: Introduction and Literature Review	1-69
1.1 Introduction	1
1.2 Complex Structure and Properties of Perovskite Manganites	2
1.3 General Description of Perovskite Oxide	4
1.4 Classification of Magnetic Materials	7
1.4.1 Diamagnetism	7
1.4.2 Paramagnetism	8
1.4.3 Ferromagnetism	9
1.4.4 Antiferromagnetism	11
1.5 Magnetic Interactions	14
1.5.1 Direct Exchange	14
1.5.2 Indirect Exchange	16
1.5.3 Super exchange interaction	16
1.5.4 Double Exchange Interaction	18
1.6 Crystal Field Splitting and Jahn-Teller Distortion	20
1.7 Complex Ordering Phenomena in Perovskite Manganites	22
1.7.1 Charge Ordering	23
1.7.2 Orbital Ordering	24
1.8 Magnetoresistance	26
1.8.1 Colossal Magnetoresistance (CMR)	26
1.8.2 Giant Magnetoresistance (GMR)	28

1.9 Review of Crystal Structure and Magnetism in Mixed-Valence	
Perovskite Manganites	30
1.9.1 Magnetic and Phase Transition in La _{1-x} Ca _x MnO ₃ Manganites	31
1.9.2 Lattice parameter, Unit Cell Volume, Magnetization and	
Resistivity variation in La _{0.5} Ca _{0.5} MnO ₃ Manganites	34
1.9.3 Structure and Magnetization of Nanocrystalline	
La _{0.5} Ca _{0.5} MnO ₃ Manganites	36
1.9.4 Magnetic and Phase Transition in Nd _{1-x} Sr _x MnO ₃ Manganites	44
1.9.5 Structural and Phase Transition in Nd _{1-x} Sr _x MnO ₃ Manganites	46
1.9.6 Lattice parameter, Unit Cell Volume, Magnetization and	
Resistivity variation in Nd _{0.5} Sr _{0.5} MnO ₃ Manganites	48
1.9.7 Structure, Phase Transition and Magnetic Behavior of	
Nanocrystalline Nd _{0.5} Sr _{0.5} MnO ₃ Manganites	50
1.9.8 Magnetic Behavior and Phase Transitions in Sm _{1-x} Ca _x MnO ₃	
Manganites	58
1.9.9 Lattice parameter, Unit Cell Volume, Magnetization and	
Resistivity variation in Sm _{0.5} Ca _{0.5} MnO ₃ Manganites	60
1.9.10 Nanocrystalline half doped Sm _{0.5} Ca _{0.5} MnO ₃ Manganites	62
1.10 Objective of the Present Thesis Work	69

1.9 Review of Crystal Structure and Magnetism in Mixed-Valence

Chapter II: Synthesis of Various Half Doped Nanocrystalling	Chapter	II: 5	Svnthesis	of V	arious	Half	Doped	Nanocr	vstallin
---	---------	-------	------------------	------	--------	------	-------	--------	----------

Manganites by Combustion and Sol-Gel Method	70-91		
2.1 Introduction			
2.2 Basic Process of Combustion Synthesis	71		
2.3 Basic Principles of Calculations	72		
2.4 Characterization Tools			
2.4.1 X-ray Diffraction			
2.4.2 Scanning Electron Microscopy	75		
2.4.3 Transmission Electron Microscopy			
2.4.4 Magnetic Measurements			
2.4.4.1 Vibrating Sample Magnetometer (VSM)	77		
2.4.4.2 SQUID Magnetometer	78		
2.4.4.3 SQUID–Vibrating Sample Magnetometer			
(SQUID-VSM)	79		
2.4.5 X-ray Photoelectron Spectroscopy (XPS)			
2.5 Samples Prepration			
2.5.1 By Chemical Combustion Technique	81		
2.5.2 Synthesis of La _{0.5} Ca _{0.5} MnO ₃ by Chemical			
Sol-Gel technique	89		
2.6 Summary	91		

Chapter III: Investigation of the Origin for Suppression of Charge

Ordering Transition in Nanocrystalline

$Ln_{0.5}Ca_{0.5}MnO_3$ (Ln = La, Nd, Pr) Ceramics	92-129
3.1 Introduction	92
3.2 Experimental detail	94
3.3 Results and Discussion	95
3.3.1 Microstructural and Spectroscopic Analysis of the Samples	95
3.3.2 Rietveld Structural Analysis of Samples Prepared by	
Combustion Method	99
3.3.3 Variation of Mn-O Bond Lengths with Crystallite Size	112
3.3.4 Magnetic Measurements	115
3.3.5 Rietveld Structural Analysis of LCMO Samples Prepared	
by sol-gel Method	120
3.4 Origin of Suppression of Charge Ordering Transition	125
3.5 Summary	129
Chapter IV: Emergence of a New Modulated Phase and	
Ferromagnetism in Nanocrystalline Nd _{0.5} Sr _{0.5} MnO ₃ Ceramic	130-161
4.1 Introduction	130
4.2. Experimental and Characterization Details	131
4.3. Results and Discussion	132
4.3.1 Micro-structural and Spectroscopic Analysis of the	
Samples	132

4.3.2 Magnetic Phase Transitions in Nanocrystalline and	
Bulk NSMO Samples	136
4.3.3 Structural Phase Transitions in Bulk NSMO Sample	143
4.3.4 Structural Analysis of the Nanocrystalline	
NSMO Samples	152
4.4 Summary	161
Chapter V: Emergence of two New Modulated Phases and	
Suppression of Charge Ordering Transition in	
Nanocrystalline Sm _{0.5} Ca _{0.5} MnO ₃ Ceramic	162-182
5.1 Introduction	162
5.2. Experimental details	162
5.3. Results and discussion	163
5.3.1. Microstructure Analysis	163
5.3.2. Structural Analysis	165
5.3.2.1 Rietveld Refinement of the Structure of Bulk Samples	167
5.3.2.2 Rietveld Refinement of the Structure of Sample	
Calcined at 1100 °C	167
5.3.2.3 Rietveld refinement of the Structure of sample	
Calcined at 900 °C	170
5.3.2.4 Rietveld Refinement of the Structure of Sample	
Calcined at 700 °C	172

List of publications	
References	187-206
6.2 Suggestions for future work	185
6.1 Summary of the present work	183
Chapter VI: Conclusion and Suggestions for Future Work	183-186
5.4. Summary	182
below Room Temperature	177
5.3.3 Magnetic Phase Transitions in SCMO Samples	
Calcination Temperature	175
5.3.2.5 Variation of Unit Cell Parameters with	

Participated in Schools/ Workshops/ Symposiums/ Conferences