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Abstract The steady state and phase ordering kinetics in a pure active Brownian particle system are
studied in recent years. In binary mixture of active and passive Brownian particles passive particles are
used as probe to understand the properties of active medium. In our present study, we study the mixture
of passive and active Brownian particles. Here, we aim to understand the steady state and kinetics of small
passive particles in the mixture. In our system, the passive particles are small in size and large in number,
whereas ABPs are large in size and small in number. The system is studied on a two-dimensional substrate
using overdamped Langevin dynamic simulation. The steady state and kinetics of passive particles are
studied for various size and activity of active particles. Passive particles are purely athermal in nature
and have dynamics only due to bigger ABPs. For small size ratio and activity, the passive particles remain
homogeneous in the system, whereas on increasing size ratio and activity they form periodic hexagonal close
pack (HCP) spanning clusters in the system. We have also studied the kinetics of growing passive particle
clusters. The mass of the largest cluster shows a much slower growth kinetics in contrast to conserved
growth kinetics in ABP system. Our study provides an understanding of steady state and kinetics of
passive particles in the presence of bigger active particles. The mixture can be thought of as effect of big
microorganism moving in passive medium.

1 Introduction

Collection of active Brownian particles (ABPs) under-
goes a motility-induced phase separation (MIPS) with-
out any cohesion at packing density much lower than
the density for phase separation in corresponding pas-
sive systems [1–5]. Unlike for other active particle sys-
tems, where alignment interaction among the parti-
cle is responsible for the phase separation [6–9], the
mechanism of phase separation in ABPs is due to the
enhanced persistent motion of active particles [10,11].

Recent research have focussed the kinetics and steady
state of pure ABPs or in the mixture of passive parti-
cles [12–16]. In a recent work of [17], a monodisperse
mixture of active passive particles is studied for vary-
ing activity and packing fraction of ABPs, whereas in
other studies a field theoretic approach is used to under-
stand the propagation of active passive interface in the
mixture of passive and active particles [18]. In the study
of [19], a mixture of active passive particle is studied,
and different phases and dynamics of system are stud-
ied. A variety of interesting properties and phases have
been found when ABPs are placed in the mixture with
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passive particles. Asymmetric passive particles lead to
directional transport and trapping when placed in the
sea of ABPs [20–23]. Such systems can be useful in
industrial and pharmaceutical applications. Symmet-
ric passive particles in the mixture of ABPs have also
been used as a probe to characterise the properties of
ABPs [24–26]. Experiments on the dynamics of large
passive beads in active bacterial fluid show the persis-
tence motion of bead in bacterial solution [25]. In the
binary mixture of ABPs with passive bead, large passive
particles experience an effective attractive interaction
analogous to depletion-induced attraction in asymmet-
ric equilibrium binary mixture [5,26,27].

Most of the above studies of binary active-passive
mixture are studied where passive particles are bigger
in size and treated as a probe to characterise the prop-
erties of active medium [28–30] or monodisperse mix-
ture of active passive particles and dynamics of different
phases are explored [17–19]. Here, we ask the question,
how the ABPs which are bigger in size can influence
the characteristics of athermal passive particles ? The
system resembles big microorganisms moving in passive
fluid. In general, thermal and hydrodynamic effects are
important in normal passive fluid, but we ignore it here
to make the model simple and only study the effect of
activity on the properties of passive particles.
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We consider a minimal model of mixture of small
passive and big active Brownian particles on a two-
dimensional substrate. Both types of particles interact
through a short-range soft-repulsive interaction. The
dynamics of active particles is driven by the active self-
propulsion force and interaction with the particles in its
surroundings, whereas passive particles can move only
due to the interaction with other particles. The pack-
ing fraction of both particles are same and total packing
fraction is kept fixed at 0.6. The dynamics and steady
state of passive particles are studied for various size
ratios of active and passive particles and dimensionless
activity of ABPs.

Our main results are as follows: Starting from the
random homogeneous mixture of active and passive
particles, passive particles start to phase separate with
time. The phase separation order parameter of passive
particles grows with time and reaches a steady state
with ∼ 1 for large size ratio and activity and remains
much lower than 1 for small size ratio and activity.
Hence, a phase diagram is found in the plane of size
ratio and activity. For moderate size ratio and activity,
the clustered passive particles form hexagonal close-
packed structures and start to overlap for large size
ratio and activity. The cluster size distribution changes
from exponential to power law and power converges to
−2. Hence, passive particles form the spanning clusters
[31] for larger size ratio and activity.

We further studied the kinetics of the phase separa-
tion. The mass of the largest cluster grows as a power
law with time, with a much slower growth kinetics in
contrast to conserved passive equilibrium and active
systems [28,32–34]

The rest of the article is divided in the following man-
ner. In Sect. 2, we describe the model in detail. Section
3 discusses the results of our study and finally in Sect. 6,
we conclude our results.

2 Model

We consider a binary mixture of small athermal passive
particles in the presence of large active Brownian parti-
cles (ABPs) on a two-dimensional substrate. The active
and passive particles are modelled as discs of radius ra

and rp, respectively. We choose ra > rp, active particles
are larger in size compare to passive particles. The size
ratio S = ra

rp
is one of the control parameters in the

model. The radius of the passive particles is kept fixed
and radius of active particles is tuned to vary the size
ratio. We keep the packing fractions of both types of

particles φa = πr2
aNa

L2 = φp = πr2
pNp

L2 = 0.3, hence the
number of active particle Na are less in comparison to
that of passive particles Np. Both active and passive
particles are defined by their position ri(t) and active
particles are also having their orientation θi(t), which
determines their direction of self-propulsion. They self-
propel along their direction of orientation θi(t) with
a constant self-propulsion speed v0. The dynamical

Langevin’s equations of motion for position and ori-
entation of active particles are

dra
i (t)
dt

= v0n̂i(t) + μFi(t) (1)

where ni(t) = (cos(θi(t)), sin(θi(t)) is the unit direction
of self-propulsion of ABP. The change in the orientation
of the active particle is given by:

dθi

dt
=

√
νrηi(t) (2)

here ηi(t) is the random Gaussian white noise with
mean zero and variance, < ηr

i (t)ηr
j (t′) >= δijδ(t − t′),

where νr is the rotational diffusion constant of active
particles. The equation of motion for the passive parti-
cle is given as:

drp
i (t)
dt

= μFi(t) (3)

Here, the mobility, μ is chosen to be the same for
both types of particles. Fi(t) is the force acting on the
ith particles, due to all other particles interacting with
it

Fi(t) =
∑

j �=i

Fij(t) (4)

The force is obtained from the soft-repulsive pair poten-
tial Fij = −∇U(rij), where U(rij) = K(rij − (rαi +
rα′j))2 if rij ≤ (rαi + rα′j) and 0 otherwise. rij=|ri -
rj | and K is the force constant and rα, is the radius of
active or passive particles for α and α′= a or p, respec-
tively. ν−1

r is the time scale over which the orientation
of an active particle changes. Hence, lp = v0ν

−1
r , is

the persistence length or run length, is the typical dis-
tance travelled by an active particle before it changes its
direction. In our study, lp = (100rp to 600rp) is tuned
by tuning SPPs v0. The (μK)−1 = 0.7 defines the elas-
tic time scale in the system. We define the dimension-
less activity v̄ = lp

rp
as the ratio of persistent length to

the size of passive particles. The size ratio S and v̄ are
the two tuning parameters in the model. A schematic
cartoon of system is shown in Fig. 1, where red big
particles are ABPs and small grey particles are passive.
The white dots on red particles represent their instan-
taneous direction of orientation θ.

We start with random non-overlapping arrangement
of active and passive particles on a two-dimensional
square substrate of linear dimension L = 250rp with
periodic boundary condition. Eqs. (1)–(3) are updated
and one simulation step is counted after updation of all
the particles once. The time step τ = 5×10−4 and total
6× 104 simulation steps are used to get the results. We
have used 20 independent realisations to get averaged
data and different realisations are obtained by initial-
ising the system with the similar initial conditions but
different configurations.
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Fig. 1 (Color online) Schematic diagram of the model. It
shows the initial homogeneous state of the system. Here,
the colours and sizes represent two types of particles. Big-
ger particles (red) are active particles and smaller particles
(grey) are passive particles. Small white dot on red particles
denote the instantaneous orientation direction θ of ABPs

We first characterise the effect of size ratio and activ-
ity on the steady state of the athermal passive parti-
cles in the mixture. Then, we study the kinetics to the
steady state.

3 Results

We start with the random homogeneous distribution of
active and passive particles and Eqs. (1)–(3) are inte-
grated to update the position and orientation of active
and position of passive particles. In Fig. 2, we plot the
time evaluation snapshot of local density of passive par-
ticles at different times = 0.05, 0.5 and 30.0 and for
two different size ratios S = 10 and 6 and for v̄ =
100, 300 and 600. The bright and dark regions show
the lower and higher local density of passive particles,
respectively. Local density ρp is defined as: the num-
ber of passive particles in the small coarse-grained area
(a = 5rp × 5rp). In Fig. 2(h-i), we plot the probability
distribution function (PDF) of local density P (ρp) for
the same parameters as in Fig. 2a–f. The tail of the
distribution is larger for large size ratio S = 10 and
activity v̄ = 600. As time progresses, the passive parti-
cle starts to come close to each other. Hence, local den-
sity ρp of passive particle rich region grows or passive
particles phase separate. To characterise the phase sep-
aration, we calculate the phase separation order param-
eter (PSOP),φ(t). The analogy of (PSOP) comes from
standard liquid gas phase separation [35]. Using the
same analogy, in our system we define (PSOP), as
φ(t) =< (np(t) − na(t))/(np(t) + na(t)) >, where np(t)
and na(t) are calculated as the number of active and
passive neighbouring particles around a passive parti-
cle. < .. > means average over all passive particles and
20 independent realisations. With the above definition
if passive particles are mainly surrounded by passive

particles then the φ(t) will be close to 1 and if, found in
the mixture of active and passive, then it will be close
to 0.

With time φ(t) grows and approaches a steady state,
we calculate the steady state φ =< φ(t) >t, where <
.. >t is the average of φ(t) over a time interval in the
steady state. In Fig. 2g, we plot the phase diagram in
the plane of activity and size ratio (S, v̄). The colour
shows the magnitude of PSOP, φ(t). For large activity
and size ratio, phase separation increases in the system.

4 Characteristics of steady state

4.1 Radial distribution function (RDF) gpp(r)

As discussed in previous section, system shows the
phase separation for larger size ratio and activity.
Hence, clustering increases with increasing S and v̄.
We further characterise the structure of the clusters by
calculating the radial distribution function (RDF) of
passive–passive particles for different size ratio S and
v̄. The RDF, gpp(r) gives the probability of finding a
passive particle at a radial distance r from the centre
of the given passive particle. In Fig. 3, we plot the gpp(r)
vs. scaled distance r/rp, for passive–passive particles for
three different activities v̄ = 100, 300 and 600 and vary-
ing the size ratio S = 6, 8 and 10. For small activity
and S = 6 as shown in Fig. 3a, the first peak appears at
r/rp ≈ 2 and second peak is at 4 and few more higher
order peaks are present. But as we increase S > 8, the
location of first peak remains almost the same but a
small hump in second peak appears at r/rp = 2

√
3,

which is due to the presence of hexagonal close packed
structure (HCP) in the clusters. Also for S > 6, higher
order peaks are more pronounced. The zoom in plot
in Fig. 3a (inset) shows the enlarged second peak for
three S = 6, 8 and 10. As we increase, v̄ = 300, the
location of the first peak shifts at distance smaller than
r/rp ≈ 2, which suggests overlapping particles due to
soft-repulsive interaction. The second peak of gpp(r)
appears at r/rp ≈ 2

√
3, for size ratio S > 6, hence

HCP structure of clusters. Also the distinct higher order
peaks are found for larger size ratio S > 8. Again the
inset Fig. 3b shows the zoom in second peak of the
gpp(r). On further increasing v̄ = 600, the first and sec-
ond peak of gpp(r), systematically shifts towards the
small scaled distance, hence more overlapping parti-
cle clusters, the distinct nature of higher order peaks
decreases on increasing S. As we increase S and activ-
ity, the passive particles start to overlap and it leads to
weaker periodic clusters as shown in the inset Fig. 3c.

The figure shows the zoom in second peak, where
the structure in second peak has been disappeared for
large activity v̄ = 600. In the bottom panel of Fig. 3d–f
we show the zoom in structure of particle clusters for
v̄ = 300 for size ratios S = 6, 8 and 10, respectively.
As it is very clear that for this intermediate activity
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Fig. 2 (Color online) The real space snapshots of local
density of passive particles at different times. a–c are for
size ratio 10 and v̄= 100, 300 and 600, respectively. d–f are
for size ratio 6 and v̄= 100, 300 and 600, respectively. From
bottom to top panels are for times, t = 0.05, t = 0.5 and
t = 30.0. The colour bar shows the local density of passive

particles. g The lower colour plot shows the phase separa-
tion order parameter (PSOP) in the plane of size ratio and
activity (S, v̄). h–i Probability distribution function (PDF)
of local density of passive particles P (ρp) is plotted for two
different size ratios 10 and 6 ((h) and (i)), respectively, and
for three v̄= 100, 300 and 600

v̄ = 300 (Fig. 3b) as we increase S the periodicity within
the cluster increases.

Hence, using RDF, we find the periodic HCP nature
of particle clusters first increases on increasing activity
and size ratio and again for very large v̄ = 600 and
S = 10, overlapping large clusters. Now, we further
characterise the characteristics of large clusters by cal-
culating the cluster size distribution (CSD) of different
size clusters.

4.2 Cluster size distribution (CSD)

To further understand the characteristics of clusters, we
calculate the probability distribution function of differ-
ent sized clusters. A cluster is defined as set of particles
connected by a distance smaller or equal to 2rp (diam-
eter of the particle). A cluster of size n has n −particles
connected cluster. Then, we calculate the number of dif-
ferent sized cluster in the total system. In this manner,
all particles are part of a single particle cluster. Hence,
number of clusters of size n = 1 is total number of par-
ticles [5]. We further calculate the fraction of cluster
of size n, or cluster size distribution (CSD). In Fig. 4,
we plot the normalised cluster size distribution (CSD)

P (n)/P (1), where P (i) is obtained from the counting
all the clusters of size i = 1, 2, ..., n. In Fig. 4a, we plot
the CSD for activity v̄ = 100 for three different size
ratios S = 6, 8 and 10. For small activity, v̄ < 300
and size ratio S < 8, the CSD decay exponentially at
n > 20. Hence, for small activity and size ratio, we
find small clusters and particles are well separated from
each other (as shown in Fig. 4b). Hence, weak clusters
as found in the RDF, gpp(r) plot as shown in Fig. 3a.
As we increase size ratio S > 6, for v̄ = 100, clustering
increases and CSD decay as a power law. The power
approaches −2.5 for large size ratio S = 10. The real
space snapshots of particles show the enhanced clus-
tering on increasing S. For moderate activity v̄ = 300,
CSD for small size ratio S = 6, is exponential with large
exponential tail and for large size ratio S > 6, the expo-
nential tail approaches to power law tail −2. Also the
real space snapshots show the clustering increases on
increasing S. But for larger size ratio S = 10, particles
start to overlap and HCP structure weakens as shown
in Fig. 3b. As we further increase activity v̄ = 600, the
CSD is power law for all size ratios S = 6, 8 and 10
and power slowly converges to −2 for largest size ratio
10. The power −2 suggests that for large activity pas-
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Fig. 3 (Color online) Passive–passive radial distribution
function (RDF), gpp(r) is plotted for different parameters.
a–c is for fixed activity and varying size ratio. v̄ is varied for
three different values, 100, 300 and 600. a is for v̄ = 100 b is
for v̄ = 300 and c is for v̄ = 600 and size ratio S is taken 6,
8 and 10 for black ◦, red � and green �, respectively. Inset

figures are zoomed for the same parameters as mentioned
in (a), (b) and (c). At the bottom d, e and f are real space
(zoomed) snapshots to support the cluster formation by fix-
ing the activity v̄ = 300 and t = 30 for size ratios 6, 8 and
10, respectively

sive particles form the percolating clusters spanning the
whole system [31].

5 Growth kinetics

After understanding the steady state properties of the
mixture, we study the kinetics of phase separation of
athermal passive particles. We study the kinetics of
growing cluster by calculating the mass of the largest
cluster at different times, < m(t) >.

In Fig. 5, we plot the < m(t) > for two different size
ratios S = 10 and 6 and for different v̄. where < .. > is
mean over 50 independent realisations. In Fig. 5a, we
plot < m(t) > for size ratio 10 for three different activi-
ties v̄ = 100, 300 and 600. For all activities and S = 10,
at very early time t < 10−2, < m(t) > grows with
time and then for an intermediate times t (10−2, 10),
growth becomes slow and < m(t) > develops a plateau
and again starts to grow for late times t ≥ 10. The
plateaus region decreases with increasing activity since
activity is enhancing the clustering in passive particles.
The only mechanism of motion of passive particles is
due to the interaction of them with other passive and
active particles. For small activity and size ratio, active
particles have lesser probability to interact with passive
particles, hence slower dynamics of passive particles.

This led them to stuck for some intermediate times. At
late times, they do experience the effect of active parti-
cles and show the enhanced motion and hence cluster-
ing. This is the reason for the decrease in the plateaus
region for larger activity and size ratio. For S = 6 and
small v̄ = 100, the very early time (t � 0.001 − 0.02),
when the initial configuration equilibrate, dynamics is
fast and hence the < m(t) > grows with time. Then,
particles are stuck in regions with not many active par-
ticles in their surroundings hence slow dynamics and
we experience plateaus region for intermediate time
(t � 0.02 − 10) Fig. 5c–d. Then, they further get more
interaction with active particles and < m(t) > grow as
t1/3 with time for late time (t � 10 − 100) Fig. 5e–f.
After time t � 90 the < m(t) > shows saturation due
to finite system size. Increasing the activity leads the
passive particles to spend less time in intermediate time
region and so the size of plateau decreases with increas-
ing activity. The late time growth of < m(t) >∼ t1/3

for all activities. In Fig. 5(right panel), we show the
plot of < m(t) > for size ratio S = 6. The growth of
< m(t) > shows the same behaviour as for S = 10 Fig.
5(right panel), only the plateaus region is increased for
S = 6. For largest activity v̄ and size ratio S = 10,
< m(t) > increases monotonically with time t with
< m(t) >∼ t1/3.
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Fig. 4 (Color online) Cluster size distribution (CSD) and
real space snapshots of part of the system are plotted
for different parameters. Different panels a–d are for fixed
v̄ = 100, e–h are for v̄ = 300 and i–l are for v̄ = 600 and

black, red and green colours are for size ratios 6, 8 and 10,
respectively. CSD is shown in (a),(e) and (i) for v̄ = 100, 300
and 600, respectively, and for size ratio 6, 8 and 10. Symbols
have the same meaning as in Fig. 3

6 Conclusion

We have studied the phase separation and ordering
kinetics of a binary mixture of passive and active
Brownian particles on a two-dimensional substrate with
periodic boundary condition. The passive particles are
smaller in size in comparison to the ABPs. The ABP
moves along the direction of their heading and both
types of particles interact through a short-range soft-
core repulsive interaction. Hence, the dynamics of pas-
sive particles are only due to interaction force among
the particles. The system is studied for various size
ratios S and activities v̄ of active particles. We focus
our study on the steady state and kinetics of small pas-
sive particles in the presence of big passive particles.
Starting from the random homogeneous state, the clus-
tering of small passive particle is measured by calcu-
lating phase separation order parameter (PSOP). The
PSOP is small for size ratio S < 6 and small activ-
ity v̄ < 300, whereas for large size ratio S > 8 and
higher activity v̄ > 300, PSOP approaches ∼ 1. The
clusters of passive particles are random small clusters
for small size ratio and activity and HCP structures are
formed for intermediate size ratio S = 8 and activity

v̄ = 300 and then overlapping clusters are found for
large size ratio and activity S > 8 and v̄ = 300. The
Cluster size distribution decays exponentially for small
size ratio and activity and approaches to a power law
decay with exponent −2 for large size ratio and activ-
ity. The power law decay with power −2 indicates the
formation of connected clusters as in [31] for large size
ratios and activities.

We have also calculated the kinetics of growing clus-
ter of passive particles. The mean mass of the largest
cluster grows with time as a power law. The growth
law is much smaller than the conserved growth kinet-
ics of corresponding equilibrium and active Brownian
systems [33,34,36–38].

Hence, our study gives the steady state of collection
of passive particles moving under the effect of dynam-
ics of active Brownian particle. It focuses on the steady
state and kinetics for binary mixture where passive par-
ticles are much smaller than the ABPs. The system
resembles the effect of big microorganism moving in
passive medium.
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Fig. 5 (Color online) Mean mass of the largest cluster <
m(t) > is plotted for activities v̄ = 100, 300 and 600. Left
panel is for size ratio 10 and right panel is for size ratio 6.
Black, red and green show the activities 100, 300 and 600,
respectively. Straight line is the line with slope 1/3. c, d and
e, f are the zoomed plot for intermediate (t � 0.01 − 10)
and late time (t � 10−100) region for the same parameters
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12. F. Kümmel, P. Shabestari, C. Lozano, G. Volpe, C.

Bechinger, Soft Matter. 11, 6187 (2015)
13. L. Angelani, C. Maggi, M.L. Bernardini, A. Rizzo, R.

Di Leonardo, Phys. Rev. Lett. 107, 138302 (2011)
14. R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G.

Ruocco, V. Iebba, S. Schippa, M.P. Conte, F. Mecarini,
F. De Angelis, E. Di Fabrizio, PNAS 107(21), 9541
(2010)

15. D. Ray, C. Reichhardt, C.J. Olson Reichhardt, Phys.
Rev. E. 70, 013019 (2014)

16. J.P. Singh, S. Mishra, Physica A. 544, 123530 (2020)
17. J. Stenhammar, R. Wittkowski, D. Marenduzzo, M.E.

Cates, Phys. Rev. Lett. 114, 018301 (2015)
18. A. Wysocki, R.G. Winkler, G. Gompper, New J. Phys.

18, 123030 (2016)
19. R. Wittkowski, J. Stenhammar, M.E. Cates, New J.

Phys. 19, 105003 (2017)
20. S. Pattanayak, R. Das, M. Kumar, S. Mishra, Eur. Phys.

J. E 42, 62 (2019)
21. P. Malgaretti, H. Stark, J. Chem. Phys. 146, 174901

(2017)
22. C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. E.

97, 052613 (2018)
23. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C.
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