CONTENTS

List	t of Tables	XV						
List of Figures List of Symbols								
					List of Abbreviations Preface Chapter-1			
Int	roduction and Literature Review							
1.1	Introduction	1						
1.2	Human Olfaction System	2						
1.3	Machine Olfaction and Electronic Nose	5						
1.4	Advancement in Artificial Olfaction 1.4.1 Solid State Sensors Technology	8						
	1.4.2 Micro Gas Sensors	11						
	1.4.3 Advancements in Sensor's Signal Preprocessing	15						
1.5		18						
1.0	1.5.1 Traditional Statistical Discrimination Methods	20						
	1.5.2 Biological Inspired Discrimination Methods	21						
1.6	Literature Review	21						
1.7	Scope of the Present Thesis	32						
1.8	Specific Aspects of the Present Work	33						
1.9	Thesis Organization	34						
Cha	apter-2							
	sign, Fabrication and Characterization of SnO_2 Based asor Array	l Thick Film						
2.1	Introduction	37						
2.2	Crystalline Structure and Electronic Properties of SnO ₂	37						

2.3	Surfa	ce Properties of SnO ₂	39
	2.3.1	Adsorption	41
	2.3.2	Adsorption Isotherms	44
	2.3.3	Gas Sensing Mechanism in SnO ₂	45
	2.3.4	Doping	51
	2.3.5	Sensor Operating Temperature	52
2.4	Fabri	cation of Gas Sensor Using Thick Film Technology	53
	2.4.1	Artwork Generation for Sensor Array	54
	2.4.2	Screen Preparation	55
	2.4.3	Substrate	58
	2.4.4	Thick Film Paste	59
	2.4.5	Doped Tin Oxide Pastes	59
	2.4.6	Deposition Equipment Properties and Screen Printing	60
	2.4.7	Monitoring and Controlling Film Thickness	63
	2.4.8	Drying and Firing Process	63
2.5	Gas S	ensing Properties of Thick Film Gas Sensor	66
	2.5.1	Sensitivity	66
	2.5.2	Selectivity	66
	2.5.3	Response and Recovery Time	67
	2.5.4	Concentration of the Test Gas	68
2.6	Electi	rical Characterization of the Sensor Array	68
2.7	Valid	ation of the Experimental Results	78
2.8	Concl	usion	80
Cha	apter-	3	
	forma	ance Comparison of LDA and PCA for Classification lors	of
3.1	Intro	luction	82
3.2		rials and Methods	84
	3.2.1	Experimental Background	84
	3.2.2	Data Extraction	88
	323	Principal Component Analysis	88

	3.2.4	Linear Discriminant Analysis	92
	3.2.5	Back Propagation Neural Network (BPNN)	98
	3.2.6	Training functions	102
	3.2.7	Cross Validation	105
3.3	Resul	ts and Discussion	105
3.4	Concl	usion	112
Cha	apter-	4	
Cla	ssifica	ation and Quantification of Individual Gases/Odors	Using
Dyı	namic	Responses of Thick Film Sensor Array	
4.1	Intro	duction	113
1.2		rials and Methods	115
	4.2.1	Experimental Background	116
	4.2.2	Data Extraction and Interpretation	116
	4.2.3	Average Slope Multiplication (ASM) Method	120
4.3	Resul	t and Discussion	124
	4.3.1	Classification of Individual Gases/Odors with ASM Using	126
		Combined (Response and Recovery) Dataset	
	4.3.2	Simultaneous Quantification using ASM Method	128
	4.3.3	Experiment with Exposure and Recovery Transients Data	130
		Individually	
1.4	Concl	usion	135
Cha	apter-	5	
Cla	ssifica	ation and Quantification of Binary Mixtures of Gases/Od	ors
5.1	Intro	luction	136
5.2	Mate	rials and Methods	137
	5.2.1	Experimental Background	139
	5.2.1	Data Extraction and Interpretation	139
5.3	Classi	fication and Quantification Methods	148
	5.3.1	Back Propagation Neural Network	148
	5.3.2	Support Vector Machines	149
	5.3.3	Multioutput Support Vector Regression	151

5.3.4 Correlation Coefficient	153				
5.4 Results and Discussion	154				
5.5 Conclusion	158				
Chapter-6					
Summary and Conclusion					
6.1 Summary and Conclusion	159				
References List of Publications	164-176				

Personal Profile