CONTENTS

	Page No.
List of Tables	vi
List of Figures	vii
List of Abbreviations	ix
Preface	x-xi
1. Introduction	1-7
1.1 Air pollution	1
1.2 Conventional Technologies for VOCs Control and their li	mitations 4
1.3 VOCs Control by biological Process	4
1.3.1 Biofiltration technology	4
1.3.2 VOCs Control by biotrickling filters	6
1.3.3VOCs Control by bioscrubbers	7
1.3.4VOCs Control by membrane bioreactors	7
2. Literature Survey	8-26
2.1 Parameters which affect the performance of any bio filter	8
2.1.1 Pollutant affection with water	8
2.1.2 Packing media	9
2.1.2.1 Natural packing	10
2.1.2.1.1 Compost	10
2.1.2.1.2 Peat	11
2.1.2.1.3 Agro waste	11
2.1.2.1.4 Coal	11

2.1.2.1.5 Soil	11
2.1.2.2 Synthetic/Inert packing media	12
2.1.2.2.1 Granular Activated Carbon (GAC)	12
2.1.2.2.2 PU foam	12
2.1.2.2.3 Pall rings	13
2.1.2.3 Composite media	13
2.1.2.3.1 PVA/Peat/KNO ₃	13
2.1.2.3.2 PVA/Peat/KNO3/GAC	14
2.1.3 Temperature	14
2.1.4 Moisture Content	15
2.1.5 PH Value	15
2.1.6 Nutrients Supply	16
2.1.8 Pressure Drop	16
2.1.9 Gas flow rate	17
2.1.9 Kinetic Model	18
2.2 Current Status of Work and Objectives of Research Work	19
3. Method and Material	27-36
3.1 Selection of Packing Media	27
3.2 Selection of Target VOCs	27
3.3 Chemicals and Reagents	30
3.4 Filter media	31
3.5 Inocolumn	31
3.6 Characterization of Filter Media	31
3.6.1 Dry Weight/Mass Measurement	31

3.6.2. Moisture Retention Capacity	31
3.6.3 Bed Porosity	32
3.6.4 Bulk Density	32
3.6.5 CHN Content	32
3.7 Design and Operating Parameters	32
3.8 Biofilter Setup and Operation	33
Results and Discussion	37-80
4. Biodegradation of vapor phase benzene, toluene and xylene (BTX)	36
using Compost based modified biofilter medium	
4.1 Preparation method of PVA/compost/KNO3 composite bead	36
4.2 Result and Discussions	37
4.2.1 Physico-chemical characterization results	37
4.2.2 Performance of biofilter under individual loading rates of Benzene,	37
Toluene and Xylene	
4.2.3 Effect of Inlet Loading Rate on Removal Efficiency and Elimination	39
Capacity	
4.2.4 Performance of biofilter under combined loading rates of BTX	42
4.2.5 Effect of BTX Loading Rate on Removal Efficiency (RE) and	44
Elimination Capacity (EC)	
4.3 Kinetic Analysis	45
5. Biodegradation of MEK, Toluene and Xylene (MTX) from Air Using	49-59
Modified Wood Charcoal Beads as Biofilter Media	
5.1 Preparation of PVA/Wood Charcoal/KNO3 Composite beads	49
5.2 Result and Discussions	50

5.2.	1 Physico-chemical characterization results	50
5.2.2 Perfor	mance of biofilter under individual loading rates of MEK, Toluene	50
and	xylene	
5.2.	3 Effect of Inlet Loading Rate on Removal Efficiency and Eliminati	on
	Capacity	53
5.2.	4 Performance of biofilter under combined loading rates of MTX	55
5.3 Kinetic	Analysis	57
6. Biodegra	ndation of styrene from air using modified Compost composite	60-66
beads as bi	ofilter media	
6.1 Prepara	tion of PVA/ (Wood Charcoal +compost)/KNO3 Composite beads	60
6.2 Result a	nd Discussions	61
	6.2.1 Physicochemical characterization results	61
	6.2.2 Continuous Biodegradation of Styrene Vapour Mixture	61
	6.2.3 Effect of Inlet Loading Rate on Removal Efficiency and	63
	Elimination Capacity	
6.3 Kinetic	analysis	64
7. Biodegra	ndation of styrene from air using modified Wood Charcol and	67-73
compost co	mposite beads as modified biofilter media	
7.1 Prepara	tion of PVA/ (compost)/KNO3 Composite beads	67
7.2 Result a	nd Discussions	68
	7.2.1 Physicochemical characterization results	68
	7.2.2 Biodegradation of Styrene	68
7.2.3 Effect	of Inlet Loading Rate on Removal Efficiency and Elimination	71
Capacity		

7.3 Microscopic observation	72
8. Comparison of the performance of VOC _S tested against various modified	
media	
9. Conclusion and recommendation for future work	76-80
9.1 Conclusion	76
9.2 Recommendation for future work	80
REFERENCES	81-90
APPENDIX	91-102

LIST OF PAPERS PUBLISHED/PRESENTED

PERSONAL PROFILE
