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Abstract. In this article, the concepts of gH-subgradient and gH-subdifferential of interval-valued functions

are illustrated. Several important characteristics of the gH-subdifferential of a convex interval-valued function,

e.g., closeness, boundedness, chain rule, etc. are studied. Alongside, we prove that gH-subdifferential of a gH-

differentiable convex interval-valued function contains only the gH-gradient. It is observed that the directional

gH-derivative of a convex interval-valued function is the maximum of all the products between gH-subgradients

and the direction. Importantly, we prove that a convex interval-valued function is gH-Lipschitz continuous if it

has gH-subgradients at each point in its domain. Furthermore, relations between efficient solutions of an

optimization problem with interval-valued function and its gH-subgradients are derived.
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1. Introduction

In real-life decision-making processes, we often face the

optimization problem with nonsmooth functions. To deal

with optimization problems with nonsmooth functions, the

concepts of subgradient and subdifferential inevitably arise.

Due to the inexact and imprecise nature of many real-world

occurrences the study of Interval-Valued Functions (IVFs)

and optimization problems with IVFs, known as Interval

Optimization Problems (IOPs), become substantial topics to

the researchers. In this article, we illustrate the concepts of

subgradient and subdifferential for IVFs and study several

important characteristics of subgradient and subdifferential

of IVFs. We also study the optimality conditions for non-

smooth IOPs. As intervals are the inextricable things in

IVFs and IOPs, before making a survey on IVFs and IOPs,

we make a short survey on the arithmetic and ordering of

intervals

1.1 Literature survey

In the literature of IVFs, to deal with compact intervals and

IVFs, Moore [1] introduced interval arithmetic. There are a

few limitations (see [2], for details) of Moore’s interval

arithmetic; especially, Moore’s interval arithmetic cannot

provide the additive inverse of a nondegenerate interval

(interval with unequal limits). For this inefficiency of

Moore’s arithmetic, Hukuhara [3] proposed ‘Hukuhara

difference’ of intervals. Although the Hukuhara difference

provides the additive inverse of any compact interval, it is

not applicable between all pairs of compact intervals (see

[2], for details). To overcome this difficulty, a new rule for

the subtraction of intervals, i.e, ‘nonstandard subtraction’,

was introduced by Markov [4] and named as ‘generalized

Hukuhara difference (gH-difference)’ by Stefanini [5]. The

gH-difference has the property of providing additive

inverse of any compact interval.

Unlike real numbers, any linear ordering for intervals is

still undeveloped. Isibuchi and Tanaka [6] suggested a few

partial ordering relations of intervals. In [7], some ordering

relations with the help of parametric representation of

intervals are proposed. Another ordering relation is pro-

vided in [8] by a bijective function from the set of intervals

to R2. However, all the ordering relations of [7, 8] can be

derived from the ordering relations of [6]. The concept of

variable ordering relation of intervals is introduced in [9].

Calculus is one of the most important tools for opti-

mization. Therefore, alike to the real-valued and vector-
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valued functions, the development of the calculus for IVFs

is essential to study extrema of IVFs. Towards this

endeavor, the definition of differentiability of IVFs was

initially introduced by Hukuhara [3] with the help of

Hukuhara difference of intervals. However, this definition

of Hukuhara differentiability is restrictive [10]. Based on

gH-difference, the notions of gH-derivative, gH-partial

derivative, gH-gradient, and gH-differentiability for IVFs

are provided in [4, 11–15]. Lupulescu studied the differ-

entiability and the integrability for the IVFs on time scales

in [16] and developed the fractional calculus for IVFs in

[17]. The concept of directional gH-derivative for IVF is

depicted in [15, 18]. Ghosh et al [2] have introduced the

concepts of gH-Gâteaux derivative, and gH-Fréchet

derivative of IVFs. Recently, the idea of gH-Clarke

derivative is proposed by Chauhan et al [19].

Based on the existing ordering relations of intervals and

calculus of IVFs, many authors developed the theories to

characterize the solutions to IOPs. For instance, using the

concept of Hukuhara differentiability, Wu [20] proposed

KKT conditions for IOPs. In [21], Wu presented the solu-

tion concepts of IOPs with the help of bi-objective opti-

mization. Also, Wu reported some duality conditions for

IOPs in [22, 23]. Using the concept of gH-differentiability,

Chalco-Cano et al [11] presented KKT conditions for IOPs.

Ghosh et al [24] developed generalized KKT conditions to

obtain the solution of the IOPs. Further, Ghosh developed a

Newton method [12] and a quasi-Newton method [25] to

solve IOPs. The optimality conditions for IOPs using the

concepts of directional gH-derivative and total gH-deriva-

tive of interval-valued objective functions are depicted by

Stefanini et al in [15], and using the concepts of gH-

Gâteaux derivative of interval-valued objective functions

are depicted by Ghosh et al in [2]. Also, Chauhan et al [19]

proposed the optimality conditions for IOPs using gH-

Clarke derivative of interval-valued objective function.

The authors of [26–30] proposed various optimality and

duality conditions for nonsmooth IOPs by converting them

into real-valued multiobjective optimization. However, in

this approach, one needs the closed-form of boundary

functions of the interval-valued objective and constrained

functions, which is practically difficult; even for a very

simple IVF Tðp1; p2Þ ¼ ½�1;6��p1�½3;5��p2

½�2;7��p1�½�4;0��p2
for all ðp1; p2Þ 2 R2,

the closed forms of the lower boundary function t and upper

boundary function t of T are not easy to obtain. Apart from

these, based on parametric representations of the IVFs,

some authors [7, 12, 25] studied IOPs and developed the-

ories to obtain the solutions to IOPs by converting them

into real-valued optimization problems. The authors of [31]

proposed some optimality conditions and duality results of

a nonsmooth convex IOP using the parametric representa-

tion of its interval-valued objective and constrained func-

tions. However, the parametric process is also practically

difficult since, in the parametric process, the number of

variables increases with the number of intervals involved in

the IVFs, and to verify any property of an IVF one has to

verify it for an infinite number of its corresponding real-

valued function. For instance, see definition 9 in [31].

Furthermore, using the parametric representation of IVFs

and converting an IOP into a real-valued optimization

problem, one can obtain only one solution to the IOP.

Whereas, an IOP may have infinite solutions (see example

6) of the present article.

1.2 Motivation and contribution

From the literature of IVFs and IOPs, it is observed that the

concepts of subgradient and subdifferentials for IVFs are

yet to be introduced deeply. However, the authors of [32]

proposed the concepts of subgradient and subdifferentials

for n-cell convex fuzzy-valued functions (FVFs) and

proved that the subdifferentials of convex FVFs are convex.

However, other important properties of subgradient and

subdifferentials of FVFs, such as closeness, boundedness,

chain rule, etc. of subdifferentials are not found in [32]. As

IVFs are the special case of FVFs, in this article, adopting

the concept of subgradient for convex FVFs of the article

[32] we define subgradient of convex IVFs (namely gH-

subgradient). Thereafter, we illustrate the concept of sub-

gradient for convex IVFs in terms of linear IVFs. Subse-

quently, we define the subdifferential of convex IVFs

(namely gH-subdifferential) and study its various important

properties. We prove that gH-subdifferentials of convex

IVFs are closed and bounded sets. In order to prove these

properties, the norm on the set of gH-continuous bounded

linear IVFs is defined and the idea of sequences with their

convergence on the set of n-tuple of compact intervals is

described. Although the author of [33] provided the concept

of subgradients for IVFs in terms of linear functions, our

concept is more general (please see remark 7 of this article

for details).

In this article, along with the aforementioned properties

of gH-subdifferentials, several important characteristics of

gH-subgradients are also studied in this article. Interest-

ingly, it is observed that a convex IVF is gH-Lipschitz

continuous if it has gH-subgradients at each point in its

domain. It is reported that for a convex IVF, the directional

gH-derivative is the maximum of the products of the gH-

subgradients and the concerning direction. The chain rule

of a convex IVF and the gH-subgradient of the sum of finite

numbers of convex IVFs are illustrated. Also, some opti-

mality conditions of nonsmooth convex IOP without
applying the parametric approach are explored in this

article. Most importantly, it is to mention that all the pro-

posed definitions and the results of this article are appli-

cable to all the IVFs regardless of whether or not

(i) their parametric representations can be found, or

(ii) the explicit form of their lower and upper boundary

functions are readily available.
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1.3 Delineation

The article is demonstrated as follows. The next section deals

with prerequisites of interval analysis and calculus of IVFs.

The notions of gH-subgradients and gH-subdifferentials of

IVFs with their several important characteristics are illustrated

in section 3. It is shown that the gH-subdifferential of a

convex IVF is closed and bounded. It is proved that a gH-

differentiable convex IVF has only one gH-subgradient. It is

also observed that the directional gH-derivative of a convex

IVF in each direction is the maximum of all the products of

gH-subgradients and the direction. Further in section 3, it is

shown that a convex IVF is gH-Lipschitz continuous if it has

gH-subgradients at each point in its domain. Apart from these,

the chain rule of a convex IVF and the gH-subgradient of the

sum of finite numbers of convex IVFs are illustrated. The

relations between efficient solutions of an IOP with gH-sub-

gradients of its objective function are derived in section 4.

Finally, the last section is concerned with a few future

directions for this study.

2. Preliminaries and terminologies

In this section we discuss a few basic notions on intervals.

Thereafter, we describe the convexity and calculus of IVFs.

The ideas and notations that we describe in this section are

used throughout the paper. We denote

• R as the set of real numbers

• Rþ as the set of positive real numbers

• Rn as the Euclidean space

• IðRÞ as the set of all compact intervals

• S as a nonempty subset of Rn

• X as a nonempty linear subset of Rn

• bX as the set of all gH-continuous linear IVF on X

2.1 Interval arithmetic, dominance relation
and sequence of intervals

We represent an interval A 2 IðRÞ in the following way

A ¼ ½a; a�:

Also, we represent a singleton set fxg of R by the interval

X ¼ ½x; x� with x ¼ x ¼ x. As for example,

0 ¼ f0g ¼ ½0; 0�.
In this article, along with the Moore’s interval addition (�),

substraction (�), multiplication (�), and division (ø) [1]:

U� V ¼ uþ v; uþ v½ �;U� V ¼ u� v; u� v½ �;
U� V ¼ min uv; uv; uv; uvf g;max uv; uv; uv; uvf g½ �;
UøV ¼ min u=v; u=v; u=v; u=vf g;max u=v; u=v; u=v; u=vf g½ �;

provided 0 62 V;

we use gH-difference (�gH) of intervals because U� U 6¼
0 for a nondegenerate interval U. The gH-difference [4, 5]

of the interval V from the interval U is defined by

U�gH V ¼ minfu� v; u� vg;maxfu� v; u� vg½ �

Remark 1 [34] The addition of intervals are commutative

and associative, and

U� V ¼ U� ð�1Þ � V:

The algebraic operations on the product space IðRÞn ¼
IðRÞ � IðRÞ � � � � � IðRÞ (n times) are defined as follows.

Definition 1 (Algebraic operations on IðRÞn[34]). Let

bU ¼ U1;U2; � � � ;Unð Þ and bV ¼ ðV1;V2; � � � ;VnÞ be two

elements of IðRÞn. An algebraic operation H between bU

and bV, denoted by bUHbV, is defined by

bUHbV ¼ U1HV1;U2HV2; � � � ;UnHVnð Þ;

where H 2 f�; �; �gHg.

The authors of [6] defined the ordering relations of

intervals of the following types ‘	 LR’, ‘	 CW ’, and ‘	 LC’.

In this article, we only use the ‘	 LR’ ordering relation and

simply denote it by ‘
’. Also, it is to mention that in view

of the ordering relation ‘
’, the dominance relations of

intervals are as follows.

Definition 2 (Dominance relations on intervals [34]). For

any two intervals U;V 2 IðRÞ

(i) if u	 v and u	 v, then we say that V is dominated

by U and write U 
 V;

(ii) if either u	 v and u\v or u\v and u	 v, then we

say that V is strictly dominated by U and write

U � V;

(iii) if V is not dominated by U, then we write U�V; if

V is not strictly dominated by U, then we write

U§V;

(iv) if U�V and V�U, then we say that none of U and

V dominates the other, or U and V are not

comparable.

Now we illustrate the concept of sequence in IðRÞn and

study its convergence. To do so, we need the concepts of

norms on IðRÞ and IðRÞn.

Definition 3 (Norm on IðRÞ [1]). The function

k � kIðRÞ : IðRÞ ! Rþ, defined by

kUkIðRÞ ¼ maxfjuj; jujg8U ¼ u; u½ � 2 IðRÞ;

is a norm on IðRÞ.

Definition 4 (Norm on IðRÞn). For bU ¼ U1;U2; � � � ;Unð Þ
2 IðRÞn, the function k � kIðRÞn : IðRÞ ! Rþ, defined by
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kbUkIðRÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUik2
IðRÞ

s

;

is a norm on IðRÞn. To prove that the function k � kIðRÞn
satisfies all the properties of a norm please see Appendix I

In the rest of the article, we use the symbols ‘k � k’,

‘k � kIðRÞ’, and ‘k � kIðRÞn ’ to denote the usual Euclidean

norm on Rn, the norms on IðRÞ, and the norms on IðRÞn,
respectively.

Definition 5 (Sequence in IðRÞn). A function bG : N !
IðRÞn is called sequence in IðRÞn.

Definition 6 (Bounded sequence in IðRÞn). A sequence

bGk

n o

in IðRÞn is said to be bounded from below (above) if

there exists an bU 2 IðRÞn (a bV 2 IðRÞn) such that

bU 
 bGk8n 2 Nð bGk 
 bV8n 2 NÞ;

where for any two elements bB ¼ B1;B2; � � � ;Bnð Þ and bC ¼
C1;C2; � � � ;Cnð Þ in IðRÞn,

bB 
 bC () Bi 
 Ci for all i ¼ 1; 2; � � � ; n:

A sequence bGk

n o

that is both bounded below and above is

called a bounded sequence.

Definition 7 (Convergence in IðRÞn). A sequence bGk

n o

in IðRÞn with the property:

k bGk �gH
bGkIðRÞn ! 0 as k ! 1;

where bG 2 IðRÞn, is said to be convergent sequence.

Remark 2 It is noteworthy that if a sequence bGk

n o

in

IðRÞn, where bGk ¼ ðGk1;Gk2; � � � ; GknÞ, converges to bG ¼
ðG1;G2; � � � ;GnÞ 2 IðRÞn, then according to Definition 1

and Definition 4, corresponding each sequence Gkif g in

IðRÞ converges to Gi 2 IðRÞ for all i ¼ 1; 2; � � � ; n. Also,

due to Definition 3, the sequences gki

n o

and gkif g in R

converge to gi and gi, respectively, for all i.

2.2 Convexity and calculus of IVFs

An IVF is defined by the function T : S ! IðRÞ. For each

argument point p 2 S, the value of T is presented by

TðpÞ ¼ tðpÞ; tðpÞ½ �;

where t and t are real-valued functions on S such that

tðpÞ	 tðpÞ for all p 2 S.

In [20], Wu introduced two types of convexity for IVF,

i.e., ‘LU-convexity’ and ‘UC-convexity’. However, in this

article, we only use LU-convexity for IVF and we read an

LU-convex IVF as simply a convex IVF. The definition of a

convex IVF is

Definition 8 (Convex IVF [20]). Let S be convex. An IVF

T : S ! IðRÞ is said to be convex on S if for any

p1; p2 2 S,

Tðc1p1 þ c2p2Þ 
 c1 � Tðp1Þ � c2 � Tðp2Þ

for all c1; c2 2 ½0; 1� with c1 þ c2 ¼ 1.

It is notable that in Definition 8, we have used the

notation ‘
’ instead of ‘
LC’. Because the ordering relation

‘
LC’ provided in [20] is the same as the ordering relation

‘
’.

Lemma 1 (See [20]). T is convex if both of its boundary
functions t and t are convex and vice-versa.

Definition 9 (gH-continuity [4, 12]). An IVF T on S is

said to be a gH-continuous at �p 2 S if for any d 2 Rn with

�pþ d 2 S,

lim
kdk!0

Tð�pþ dÞ �gH Tð�pÞ
� �

¼ 0:

Lemma 2 (See [34]). An IVF T on S is gH-continuous if
both of its boundary functions t and t are continuous and
vice-versa.

Theorem 1 Let S be open. If an IVF T on S is convex,
then it is gH-continuous on S.

Proof Let the IVF T be convex on S. Due to Lemma 1,

both the boundary functions t and t are convex on S.

Therefore, by the property of real-valued functions, t and t
are continuous on S. Hence, according to Lemma 2, T is

gH-continuous on S. h

Definition 10 (gH-Lipschitz continuous IVF [2]). An IVF

T on S with the following property:

kTðpÞ �gH TðqÞkIðRÞ 	Kkp� qk8p; q 2 S;

where K[ 0, is known as gH-Lipschitz continuous on S.

Definition 11 (gH-derivative [4, 14]). Let T be an IVF on

Y � R. If the following limit:

T0ð�pÞ ¼ lim
d!0

Tð�pþ dÞ �gH Tð�pÞ
d

exists at a point �p 2 Y for all d 2 R with �pþ d 2 Y, then

T0ð�pÞ is known as gH-derivative of T at �p.

Remark 3 (See [4, 35]). Let Y 
 R. If the derivatives of t
and t at �p 2 Y exist, then gH-derivative of the IVF T :
Y ! IðRÞ at �p exists and
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T0ð�pÞ ¼ min t0ð�pÞ; t0ð�pÞ
� �

;max t0ð�pÞ; t0ð�pÞ
� �� �

:

But, the converse is not true.

Definition 12 (Partial gH-derivative [11, 12]). Let T be

an IVF on S. We define a function Gi by

GiðpiÞ ¼ Tð�p1; �p2; � � � ; �pi�1; pi; �piþ1; � � � ; �pnÞ;

where �p ¼ ð�p1; �p2; � � � ; �pnÞt 2 S. If G0
i exists at �pi, then the

i-th partial gH-derivative of T at �p, denoted DiTð�pÞ, is

defined by

DiTð�pÞ ¼ G0
ið�piÞ8i ¼ 1; 2; � � � ; n:

Definition 13 (gH-gradient [11, 12]). The gH-gradient of

an IVF T on S at a point �p 2 S, denoted rTð�pÞ, is defined by

rTð�pÞ ¼ D1Tð�pÞ; D2Tð�pÞ; � � � ; DnTð�pÞð Þt:

Definition 14 (Directional gH-derivative [15, 18]). Let T
be an IVF on S. Let �p 2 S and h 2 Rn such that �pþ ch 2 S
for any small c. The directional gH-derivative of T at �p in

the direction h, denoted by T0ð�pÞðhÞ, is defined by

lim
c!0þ

1

c
� Tð�pþ chÞ �gH Tð�pÞ
� �

; provided the limit exists.

Definition 15 (Linear IVF [2]). An IVF L : X ! IðRÞ
with the following properties:

(i) LðcpÞ ¼ c� LðpÞ8p 2 S and for all c 2 R,

(ii) for all p; q 2 X , either

LðpÞ � LðqÞ ¼ Lðpþ qÞ

or none of LðpÞ � LðqÞ and Lðpþ qÞ dominates the

other,

is known as linear IVF.

Remark 4 (See [2]). The IVF L : Rn ! IðRÞ that is defined

by

LðpÞ ¼ pt � bU ¼ a
n

i¼1
pi � Ui ¼ a

n

i¼1
pi � ½ui; ui�

is a linear IVF, where ‘a
n

i¼1
’ denotes successive addition

of n number of intervals.

Remark 5 It is to mention that if the boundary functions l

and l of an IVF L : Rn ! IðRÞ are linear, then the IVF L
must be linear. However, converse is not true.

For instance, consider the IVF LðpÞ ¼ ½�1; 1� � jpj on

R. For any c 2 R,

LðcpÞ ¼ ½�1; 1� � jcpj ¼ c� ½�1; 1� � jpjð Þ ¼ c� LðpÞ:

Further, for all p; q 2 R,

Lðpþ qÞ ¼ ½�1; 1� � jpþ qj ¼ ½�jpþ qj; jpþ qj�

and

LðpÞ þ LðqÞ ¼ ½�jpj; jpj� � ½�jqj; jqj�
¼ ½�jpj � jqj; jqj þ jqj�:

Since �jpþ qj � � jpj � jqj and jpþ qj 	 jqj þ jqj, there-

fore Lðpþ qÞ and LðpÞ þ LðqÞ are either equal or none of

them dominates other. Hence, the IVF L is linear. However,

the real-valued boundary functions lðpÞ ¼ �jpj and lðpÞ ¼
jpj are not linear.

In [15], the definition of gH-differentiability for IVFs is

provided using the midpoint-radius representation
tþt
2
;
t�t
2

h i

of an IVF T. However, as our main intention in this article

is to illustrate all the things regarding IVF whether its lower

boundary function t and upper boundary function t are

readily available or not, we consider the Proposition 7 of

[15] as the definition of gH-differentiability for IVFs, which

is as follows.

Definition 16 (gH-differentiability [13, 15]). An IVF T on

S is said to be gH-differentiable at �p 2 S if there exists an

IVF L �pðdÞ ¼ dt � bU, where d 2 Rn and bU 2 IðRÞn, an IVF

EðTð�pÞ; dÞ and a k[ 0 such that

Tð�pþ dÞ �gH Tð�pÞ
� �

¼ L �pðdÞ � kdk � EðTð�pÞ; dÞ

for all d with kdk\k, where EðTð�pÞ; dÞ ! 0 as kdk ! 0.

Theorem 2 (See [15]). Let an IVF T on S be gH-differ-
entiable at �p 2 S. Then, T has directional gH-derivative at
�p for every direction d 2 Rn and

T0ð�pÞðdÞ ¼ dt �rTð�pÞ ¼ a
n

i¼1
di � DiTð�pÞ8d 2 Rn:

Theorem 3 (See [34]). Let S be convex and an IVF T on
S be gH-differentiable at p 2 S. Then

ðq� pÞt �rTðpÞ 
 TðqÞ �gH TðpÞ8p; q 2 S;

if T is convex on S.

3. Subdifferentiability of IVFs

In this section we describe the concepts gH-subgradient and

gH-subdifferential for convex IVFs and study their char-

acteristics. In order to do this, we adopt the concept of

subgradient for convex FVFs provided in [32].

Definition 17 (gH-subgradient). Let S be convex. An

element bG ¼ ðG1;G2; � � � ;GnÞ 2 IðRÞn is said to be a gH-

subgradient of the convex IVF T : S ! IðRÞ at �p 2 S if

ðp� �pÞt � bG 
 TðpÞ �gH Tð�pÞ8p 2 S: ð1Þ

Due to Remark 4, we can also define gH-subgradient as a
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gH-continuous linear IVF. A gH-continuous linear IVF L �p :
X ! IðRÞ is said to be gH-subgradient of T at �p 2 S if

L �pðp� �pÞ 
 TðpÞ �gH Tð�pÞ8p 2 S; ð2Þ

where X is the smallest linear subspace of Rn containing S.

Definition 18 (gH-subdifferential). The set oTð�pÞ of all

gH-subgradients of the convex IVF T : S 
 Rn ! IðRÞ at

�p 2 S, where S is convex, is called gH-subdifferential of T
at �p.

Throughout this article, we express an element of oTð�pÞ
either as as an element of IðRÞn satisfying (1) or as an

element of bX satisfying (2).

Remark 6 In view of Theorem 3, it is to be noted that if T
is gH-differentiable at �p 2 S, then rTð�pÞ 2 oTð�pÞ.

Example 1 Let Y � R be convex and an IVF T : Y !
IðRÞ be defined by TðpÞ ¼ jpj � B, where 0 
 B. If G 2
IðRÞ is a gH-subgradient of T at �p ¼ 0, then according to

Definition 17, we have

ðp� �pÞt �G 
 TðpÞ �gH Tð�pÞ ¼) G� p 
 B� jpj:

Therefore, for p	 0, we have

G� p 
 ð�1Þ � B� p ¼) ð�1Þ � B 
 G ð3Þ

and for p� 0, we have

G� p 
 B� p ¼) G 
 B: ð4Þ

With the help of (3) and (4), we obtain

ð�1Þ � B 
 G 
 B:

Hence, oTð0Þ ¼ fG : ð�1Þ � B 
 G 
 Bg.

Considering B ¼ ½1; 3�, the IVF T is delineated in

figure 1 by the shaded region within dashed lines, and

two possible subgradients G1, G2 2 oTð0Þ of T are

delineated by black and dark gray regions, respectively.

Example 2 Let S be convex and an IVF T : S ! IðRÞ be

defined by TðpÞ ¼ jpjj � U, where j 2 f1; 2; � � � ; ng and

0 
 U. If bG ¼ ðG1;G2; � � � ;GnÞ 2 IðRÞn is a gH-subgra-

dient of T at �p ¼ ð�p1; �p2; � � � ; �pj � � � ; �pnÞ, where �pj ¼ 0, then

due to Definition 17, we have

ht � bG 
 Tð�pþ hÞ �gH Tð�pÞ8h 2 S;

which implies

a
n

i¼1
Gi � hi 
 U� jhjj8h 2 S: ð5Þ

Let us choose bG ¼ 0; 0; � � � ; 0;Gj; 0; � � � 0
� �

. From the

relation (5) we obtain that

Gj � hj 
 U� jhjj:

Thus, for all h with hj 	 0, we get

Gj � hj 
 ð�1Þ � U� hj ¼) ð�1Þ � U 
 G: ð6Þ

Hence, for all h with hj � 0,

Gj � hj 
 U� hj ¼) Gj 
 U: ð7Þ

By (6) and (7), we have

ð�1Þ � U 
 Gj 
 U: ð8Þ

Therefore, bG ¼ 0; 0; � � � ; 0;Gj; 0; � � � 0
� �

that satisfies the

condition (8) is a gH-subgradient of T at �p.

Remark 7 It is noteworthy that

(i) the author of [33] in Definition 2 has proposed the

concept of subgradient for IVFs by considering L as

linear real-valued function. However, in Definition

17 of the present article, we consider L �p as linear

IVF. That’s why our concept of subgradient in terms

of linear function is more general.

(ii) as IVFs are the special case of FVFs, one may think

that we can adopt the concept of subgradient for

FVFs of the article [36] as the concept of subgradient

for IVFs. However, according to Definition 3.1 of

[36], if we define the gH-subgradient bG satisfying the

condition

ðp� �pÞt � bG � Tð�pÞ 
 TðpÞ ð9Þ

instead of satisfying the condition (1) in Definition

17, then Definition 17 will be quite restrictive even

for a gH-differentiable IVF. The following example

reveals that case.

Figure 1. The IVF T of example 1 is depicted by the shaded

region within dashed lines, and two possible subgradients G1 and

G2 of T are illustrated by black and dark gray regions,

respectively.
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Example 3 Let an IVF T : ½0; 2:5� ! IðRÞ be defined by

TðpÞ ¼ ½1; 1� � p4 � ½0; 1� � ðp2 � p4 þ 34Þ � ½1; 6�
¼ ½p4 þ 1; p2 þ 40�
¼ ½tðpÞ; tðpÞ�

Clearly, t and t are differentiable at �p ¼ 1. Hence, the gH-

derivative T0ð�pÞ of T at �p ¼ 1 exists due to Remark 3, and

rTð1Þ ¼ T0ð1Þ ¼ ½2; 4�:

Since

rTð1Þ � ð2 � 1Þ ¼ ½2; 4� 
 ½3; 15� ¼ Tð2Þ �gH Tð1Þ

but

rTð1Þ � ð2 � 1Þ � Tð1Þ ¼ ½4; 45�� ½17; 44� ¼ Tð2Þ

therefore, rTð1Þ 2 oTð1Þ with respect to condition (1), not

respect to the condition (9).

Remark 8 One may think that the study of gH-subgra-

dients and gH-subdifferentials of an IVF T is equivalent

to the study of subgradients and subdifferentials of its

real-valued boundary functions t and t together. Practi-

cally, it is not true. The following two reasons clarify the

fact.

(i) From the definition of subgradient (Definition 17), it

is clear that a gH-subgradient of an IVF T is a linear

IVF (L say); also, it is well known that the

subgradients of the real-valued boundary functions t
and t are linear. Therefore, one may think that the

boundary functions of the subgradient L must be

linear. However, Remark 5 reveals that real-valued

boundary functions of a linear IVF are not necessar-

ily linear. Hence, just by the properties of the

boundary functions of L, one cannot expect to

capture the properties of gH-subgradient of the IVF

T.

(ii) Further, it is noteworthy that the subgradients g and g

of the real-valued boundary functions t and t can be

defined by

ðp� �pÞtgþ tð�pÞ	 tðpÞ

and

ðp� �pÞtgþ tð�pÞ	 tðpÞ

respectively. However, example 3 shows that we

cannot define gH-subgradient of the IVF T by the

relation (9).

So, it can be said that gH-subgradients and gH-subdiffer-

entials of an IVF T are not the obvious extension of the

subgradients and subdifferentials of the real-valued

boundary functions t and t together.

Now we provide an example of gH-subdifferential as a

collection of gH-continuous linear IVF through Theorem 4.

To do so, we introduce the concept of a norm on the set bX of

all gH-continuous linear IVFs on a linear subspace X of Rn.

Definition 19 (Norm on bX ). A norm on the set bX of all

gH-continuous linear IVF L on X is defined by the function

k � k
bX
: bX ! Rþ such that

kLk
bX
¼ sup

p 6¼0

kLðpÞkIðRÞ
kpk ;where p 2 X :

To prove that the function k � k
bX

satisfies all the properties

of a norm please see Appendix II.

Lemma 3 Let L 2 bX be such that

LðpÞ 
 B� kpk8p 2 X ;

where B 2 IðRÞ. Then,

kLðpÞkIðRÞ 	 kBkIðRÞkpk8p 2 X :

Proof Please see Appendix III. h

Theorem 4 Let T : X ! IðRÞ be a convex IVF, defined
by

TðpÞ ¼ B� kpk8p 2 X ;

where B 2 IðRþÞ. Then,

oTð0Þ ¼ L0 2 bX j kL0k
bX
	kBkIðRÞ

n o

:

Proof Let L0 2 oTð0Þ. Therefore, for all nonzero p 2 X ,

L0ðp� 0Þ 
 TðpÞ �gH Tð0Þ
¼)L0ðpÞ 
 B� kpk
¼)kL0ðpÞkIðRÞ 	 kBkIðRÞkpk; by Lemma 3

¼)
kL0ðpÞkIðRÞ

kpk 	kBkIðRÞ

¼) sup
p 6¼0

kL0ðpÞkIðRÞ
kpk 	kBkIðRÞ

¼)kL0k
bX
	kBkIðRÞ:

Hence,

oTð0Þ ¼ L0 2 bX j kL0k
bX
	kBkIðRÞ

n o

:

h

Next, we show that a gH-differentiable convex IVF has

only one gH-subgradient, which is the gH-gradient of the

IVF. Thereafter, we show that on a real linear subspace if

the gH-subgradients of a convex IVF at a point exists, then

the directional gH-derivative of the IVF at that point in
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each direction is the maximum of all the products of gH-

subgradients and the direction.

Lemma 4 Let S be convex and T be a convex IVF on S.

Then, for an arbitrary �p 2 Rn

oTð�pÞ ¼ bG 2 IðRÞn j ht � bG 
 T0ð�pÞðhÞ8h 2 S
n o

:

Proof For an arbitrary bG 2 oTð�pÞ, we have

ðp� �pÞt � bG 
 TðpÞ �gH Tð�pÞ8p 2 S:

Replacing p by �pþ ch, where c[ 0, we get

ðchÞt � bG 
 Tð�pþ chÞ �gH Tð�pÞ;

which implies

ht � bG 
 lim
c!0þ

1

c
� Tð�pþ chÞ �gH Tð�pÞ
� �

¼)ht � bG 
 T0ð�pÞðhÞ:

h

Theorem 5 Let an IVF T on S is gH-differentiable at
�p 2 S, then

oTð�pÞ ¼ rTð�pÞf g:

Proof Let G 2 oTð�pÞ. Since T is gH-differentiable at �p, in

view of Theorem 2 and Lemma 4, we have

ht � bG 
 ht �rTð�pÞ8h 2 Rn: ð10Þ

Replacing h by �h in the last relation we get

ð�hÞt � bG 
 ð�hÞt �rTð�pÞ;

which implies

ht �rTð�pÞ 
 ht � bG8h 2 Rn: ð11Þ

Thus, the relations (10) and (11) together yield

ht �rTð�pÞ ¼ ht � bG8h 2 Rn: ð12Þ

For each i 2 f1; 2; � � � ; ng, by choosing h ¼ ei, we have

DiTð�pÞ ¼ Gi:

Therefore,

rTð�pÞ ¼ bG

and hence,

oTð�pÞ ¼ rTð�pÞf g:

h

Theorem 6 Let an IVF T be a convex and gH-continuous
IVF on X . If gH-subdifferential oTð�pÞ of T at �p 2 X is
nonempty, then

T0ð�pÞðhÞ ¼ max ht � bG j bG 2 oTð�pÞ
n o

8h 2 X :

Proof Let gH-subdifferential oTð�pÞ of T at �p 2 X is

nonempty. Since T is convex on X , the directional gH-

derivative of T at �p in every direction h 2 X exists due to

Theorem 3.1 in [2]. By Lemma 3.1 in [2], we have

1

c
� Tð�pþ chÞ �gH Tð�pÞ
� �


 Tð�pþ hÞ �gH Tð�pÞ;

where c[ 0

¼)T0ð�pÞðhÞ 
 Tð�pþ hÞ �gH Tð�pÞ

for all h 2 X . Hence, in view of Lemma 4, we obtain

T0ð�pÞðhÞ ¼ max bGt � h j bG 2 oTð�pÞ
n o

8h 2 X :

h

Next, we show that gH-subdifferentials of a convex IVF

are bounded and closed. To do so, we use the mapping

W : IðRÞn ! Rn defined in [2] by

WðbUÞ ¼WðU1;U2; � � � ;UnÞ
¼ðwu1 þ w0u1;wu2 þ w0u2; � � � ;wun þ w0unÞt;

ð13Þ

where w, w0 2 ½0; 1� with wþ w0 ¼ 1.

Lemma 5 For any bU 2 IðRÞn and d 2 Rn,

dt � bU 
 ½c; c� ¼) dtW bU
	 


	 2c;

where the map W is defined by (13).

Proof Please see Appendix IV. h

Lemma 6 For any bU 2 IðRÞn,

kW bU
	 


kis finite ¼) kbUkIðRÞn is finite;

where the map W is defined by (13).

Proof Please see Appendix V. h

Theorem 7 Let S be compact and convex and T be a
convex IVF on S. Then,

S

p2S
oTðpÞ is bounded.

Proof We claim that the set
S

p2S
oTðpÞ is bounded. On

contrary, there exists a sequence fpkg on S and an

unbounded sequence f bGkg, where bGk 2 oTðpkÞ, such that

0\k bGkk\k bGkþ1k; k 2 N:
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Let us take dk ¼
W bGk

� �

kW bGk

� �

k
, where the mapping W is defined

by (13). By Definition 17 we have

dtk � bGk 
 Tðpk þ dkÞ �gH TðpkÞ
¼ max tðpk þ dkÞ � tðpkÞ; tðpk þ dkÞ � tðpkÞf g

¼)dtk � bGk 
 ½c; c�;where max tðpÞf jp 2 Sg	 c

¼)dtkW
bGk

	 


	 2c; by Lemma 3

¼)kW bGk

	 


k	 2c:

Since T is convex on Rn, in view of Theorem 1 and

Lemma 2, t and t are continuous on Rn. As fpkg and fdkg
are bounded and the boundary functions t and t are

continuous, by the property of real-valued function, c is

finite. Thus, kW bGk

	 


k is finite and hence, due to Lemma

6, k bGkkIðRnÞ is finite. Therefore, the sequence f bGkg is

bounded, which is a contradiction. Hence, the set
S

p2S
oTðpÞ is bounded.

Theorem 8 Let S be convex and T be a convex IVF on S.

Then, for every �p 2 S, oTð�pÞ is closed.

Proof Let bGk

n o

be an arbitrary sequence in oTðpÞ which

converges to bG 2 IðRÞn, where bGk ¼
�

Gk1;Gk2; � � � ;Gkn

�

and bG ¼ G1;G2; � � � ;Gnð Þ.
Since, bGk 2 oTð�pÞ, for all d 2 S we have

dt � bGk 
 Tð�pþ dÞ �gH Tð�pÞ;

i.e.,

a
n

i¼1
di �Gki 
 Tð�pþ dÞ �gH Tð�pÞ: ð14Þ

In view of Remark 1, without loss of generality, let the first

m components of d be nonnegative and the rest n� m
components be negative. Therefore, from (14), we get

a
m

i¼1
di �Gki �a

n

j¼mþ1
dj �Gkj 
 Tð�pþ dÞ �gH Tð�pÞ

¼)a
m

i¼1
gkidi; gkidi

h i

�a
n

j¼mþ1
gkjdj; gkjdj

h i


 Tð�pþ dÞ �gH Tð�pÞ

¼)
X
m

i¼1

gkidi þ
X
n

j¼mþ1

gkjdj;
X
m

i¼1

gkidi þ
X
n

j¼mþ1

gkjdj

" #


 Tð�pþ dÞ �gH Tð�pÞ:

Therefore, we get

X
m

i¼1

gkidi þ
X
n

j¼mþ1

gkjdj 	 min tð�pþ hÞf

�tð�pÞ; tð�pþ hÞ � tð�pÞg
ð15Þ

X
m

i¼1

gkidi þ
X
n

j¼mþ1

gkj

dj 	 max tð�pþ hÞ � tð�pÞ; tð�pþ hÞ � tð�pÞf g
ð16Þ

Since the sequence bGk

n o

converges to bG, in view of

Remark 2, the sequences gki

n o

and gkif g converge to gi

and gi, respectively, for all i. Thus, by (15) and (16), we

have

X
m

i¼1

gkidi þ
X
n

j¼mþ1

gkjdj

 !

!
X
m

i¼1

gidi þ
X
n

j¼mþ1

gjdj

 !

	 min
n

tð�pþ hÞ � tð�pÞ;

tð�pþ hÞ � tð�pÞ
o

and

X
m

i¼1

gkidi þ
X
n

j¼mþ1

gkjdj

 !

!
X
m

i¼1

gidi þ
X
n

j¼mþ1

gjdj

 !

	 max
n

tð�pþ hÞ � tð�pÞ;

tð�pþ hÞ � tð�pÞ
o

:

Hence,

X
m

i¼1

gidi þ
X
n

j¼mþ1

gjdj;
X
m

i¼1

gidi þ
X
n

j¼mþ1

gjdj

" #


 Tð�pþ dÞ �gH Tð�pÞ

¼)a
m

i¼1
gidi; gidi

h i

�a
n

j¼mþ1
gjdj; gjdj

h i


 Tð�pþ dÞ �gH Tð�pÞ
¼)a

m

i¼1
di �Gi �a

n

j¼mþ1
dj �Gj 
 Tð�pþ dÞ �gH Tð�pÞ

¼)dt � bG 
 Tð�pþ dÞ �gH Tð�pÞ

for all d 2 S. Therefore, bG 2 oTð�pÞ and hence, oTð�pÞ is

closed. h

In the following theorem, we prove that if a convex IVF

has gH-subgradients in all over its domain, then the IVF is

gH-Lipschitz continuous on its domain.

Lemma 7 For any p 2 Rn and bU ¼ U1;U2; � � � ;Unð Þ
2 IðRÞn,

pt � bU 
 kpk � kbUkIðRÞn ; kbUkIðRÞn
h i

:

Proof Please see Appendix VI. h

Lemma 8 Let T be an IVF on S such that

TðpÞ �gH TðqÞ 
 B� kp� qk8p; q 2 S;
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where B ¼ ½b; b� ¼ ½b; b�. Then,

kTðpÞ �gH TðqÞkIðRÞ 	 bkp� qk8p; q 2 S:

Proof Please see Appendix VII. h

Theorem 9 Let S be compact and convex, and T be a
convex IVF on S such that T has gH-subgradient at every
p 2 S. Then, T is gH-Lipschitz continuous on S.

Proof Since T has gH-subgradient at every p 2 S, there

exists a bG 2 IðRÞn such that

ðq� pÞt � bG 
 TðqÞ �gH TðpÞ

¼)ð�1Þ � ðp� qÞt � bG
	 



 TðqÞ �gH TðpÞ

¼)TðpÞ �gH TðqÞ 
 ðp� qÞt � bG

¼)TðpÞ �gH TðqÞ 
 kp� qk � k bGkIðRÞn ; k bGkIðRÞn
h i

;

by Lemma 3

¼)kTðpÞ �gH TðqÞkIðRÞ 	 k bGkIðRÞnkp� qk; by Lemma 3.

Considering K ¼ sup
bG2
S

p2S
oTðpÞ

k bGkIðRÞn , we have

kTðpÞ �gH TðqÞkIðRÞ 	Kkp� qk8p; q 2 S:

Hence, T is gH-Lipschitz continuous on S. h

Now we show another two important characteristics of

gH-subdifferential of a convex IVF.

Theorem 10 (Chain rule). Let S be convex and an IVF T
be defined by

TðpÞ ¼ HðApÞ8p 2 S;

where H : Rm ! IðRÞ is a convex IVF and A is a m� n
matrix with real entries. Then,

oTðpÞ ¼ fAt � bGm j bGm 2 oHðApÞg;

where bGm 2 IðRÞm and p 2 S.

Proof By the definition of gH-subdifferentiability of H at

A(p), for any p 2 S, we have a bGm 2 IðRÞm such that

ðAy� ApÞt � bGm 
 HðAyÞ �gH HðApÞ8q 2 S;

which implies

ðAðq� pÞÞt � bGm 
 HðAyÞ �gH HðApÞ
¼)ðq� pÞt � ðAt � bGmÞ 
 HðAyÞ �gH HðApÞ
¼)ðq� pÞt � ðAt � bGmÞ 
 TðqÞ �gH TðpÞ:

Since ðAt � bGmÞ 2 IðRÞn, by Definition 17,

oTðpÞ ¼ fAt � bGm j bGm 2 oHðApÞg;

where bGm 2 IðRÞm and p 2 S. h

Remark 9 (gH-subdifferential of a sum). Let S be a con-

vex set and an IVF T be defined by

TðpÞ ¼ a
m

i¼1
TiðpÞ8p 2 S;

where each Ti : S ! IðRÞ is a convex IVF on S. We write

TðpÞ ¼ HðApÞ8p 2 S;

where A is a matrix, defined by Ap ¼ ðp; p; � � � ; pÞt for all

p 2 S and H : Rmn ! IðRÞ is an IVF, defined by

HðqÞ ¼ Hðq1; q2; � � � ; qmÞ ¼ a
m

i¼1
TiðqiÞ8q 2 Rmn:

Thus, by Theorem 10, we have

oTðpÞ ¼ a
m

i¼1
oTiðpÞ8p 2 S:

4. Convex IOP and its optimality conditions

Here we explore the relation of efficient solutions (ESs) to

the following IOP:

min
p2S

TðpÞ; ð17Þ

where S is convex and T is a convex IVF on S, with the

gH-subgradients of T. The IOP with convex IVFs is known

as convex IOP.

The following definition reveals the concept of an ES to

the IOP (17).

Definition 20 (ES [2]). Let �p 2 S. If

TðpÞ§Tð�pÞ8pð6¼ �pÞ 2 S, then �p is known as an ES to the

IOP (17).

Remark 10 Let S be a convex set and T : S ! IðRÞ be a

convex IVF. If b0 2 oTð�pÞ for some �p 2 S, where

b0 ¼ ð0; 0; � � � ; 0Þ, then �p is an ES to the IOP (17). The

reason is follows. If b0 2 oTð�pÞ, then for all p 2 S,

ðp� �pÞt � b0 
 TðpÞ �gH Tð�pÞ ¼)0 
 TðpÞ �gH Tð�pÞ
¼)Tð�pÞ 
 TðpÞ
¼)TðpÞ§Tð�pÞ:

Hence, �p is an ES to the IOP (17).

An important point to note for the result in this remark is

that the result is applicable for any general convex IVF,

irrespective of gH-differentiability. Thus, this result is not

identical to Theorem 3 in [37], which is applicable only for

gH-differentiable IVFs.

The following two examples reveal that Remark 10 is

true.

Example 4 Consider the following IOP:
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min
p2S¼½�2;6�

TðpÞ ¼
½�2; 5��gH ½�1; 0� � jp� 2j; for

1 6 p 6 3

½�2; 3� � ½1; 2� � jp� 2j; otherwise:

8

<

:

ð18Þ

Choosing �p ¼ 2 we have

TðpÞ�gHTð�pÞ ¼

½0; jp� 2j�; for 1 6 p 6 3

½2jp� 2j � 2; jp� 2j�; for 0 6 p 6 1

and 3 6 p 6 4

½jp� 2j; 2jp� 2j � 2�; otherwise:

8

>

>

<

>

>

:

Thus,

0 ¼ ðp� �pÞt � 0 
 TðpÞ �gH Tð�pÞ8p 2 S:

Therefore, 0 2 oTð�pÞ.

The graph of the IVF T is presented by the gray shaded

region in figure 2. From figure 2, it is to be observed that

there does not exist any pð6¼ �pÞ 2 S such that

TðpÞ � Tð�pÞ ¼ ½�2; 5�. Hence, �p ¼ 2 is the ES to the IOP

(18).

Remark 11 As in example 4, the result has been tested at

p ¼ 2, which is an ES of the problem (18), readers may

wonder how to determine the point of interest in general

cases. For a detailed answer to this aspect, we refer to the

article [38].

Example 5 Consider the following IOP:

min
p2S¼½�6;6��½�6;6�

TðpÞ ¼ ½2; 7� � jp1j � ½1; 3� � jp2j � ½6; 15�:

ð19Þ

Taking �p ¼ ð0; 0Þ we have

TðpÞ �gH Tð�pÞ ¼ ½2; 7� � jp1j � ½1; 3� � jp2j

Therefore,

0 ¼ ðp� �pÞt � b0 
 TðpÞ �gH Tð�pÞ8p 2 S:

So, b0 2 oTð�pÞ.

The graph of the IVF T is shown by the gray region in

figure 3 and the interval Tð�pÞ is represented by the vertical

line near Tð�pÞ. From figure 3, it is to observe that there does

not exist any pð6¼ �pÞ 2 S such that TðpÞ � Tð�pÞ ¼ ½6; 15�.
Hence, �p ¼ ð0; 0Þ is an ES to the IOP (19).

The converse of Remark 10 is not true, which will be

proved by the next example.

Example 6 Consider the following IOP:

min
p2S

TðpÞ ¼ ½1; 2� � p2 � ½0; 2� � ðpþ 1Þ � ½4; 6�; ð20Þ

where S ¼ ½�1; 2�.
Since tðpÞ ¼ p2 � 2pþ 2 and tðpÞ ¼ 2p2 þ 6 are convex

on S, the IVF T is convex on S by Lemma 1. Further, as t
and t are differentiable in S, the IVF T is gH-differentiable

in S by Remark 3. Hence,

oTðpÞ ¼ rTðpÞf g ¼ ½2; 4� � p� ½0; 2�f g8p 2 S:

The graph of the IVF T is presented by the gray shaded

region in figure 4. From figure 4, It is clear that for any

�p 2 ½0; 1�, there does not exist any pð6¼ �pÞ 2 S such that

TðpÞ � Tð�pÞ. Therefore, each �p 2 ½0; 1� is an ES to the IOP

(20). The region of the ESs of the IOP (20) is illustrated by

bold black line on the x-axis in figure 4. However, for each

p 2 ½0; 1�,

rTðpÞ ¼ ½2p� 2; 4p� 6¼ 0

and hence, 0 62 oTðpÞ.Figure 2. IVF T of the IOP (18) is depicted by gray region.

Figure 3. IVF T of the IOP (19) is illustrated by gray region and

the value of Tð�pÞ is represented by blue line.
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Theorem 11 (Optimality condition). Let S be convex and

T : S ! IðRÞ be a convex IVF. If there exists a bG 2 oTð�pÞ
for some �p 2 S, such that

ðp� �pÞt � bG§08p 2 S; ð21Þ

then �p is an ES to the IOP (17).

Proof Let there exists a bG 2 oTð�pÞ for which the relation

(21) is true. Then, by definition 17 of gH-subgradient and

the relation (21), we obtain

TðpÞ �gH Tð�pÞ§0

¼)TðpÞ§Tð�pÞ

for all p 2 S. Hence, �p is an ES to the IOP (17). h

Remark 12 The converse of theorem 11 is not true. For

example, consider the IOP (20) of example 6. We have seen

that each point �p 2 ½0; 1� is an ES to the IOP (20). However,

at �p ¼ 0,

ðp� �pÞt � bG ¼ ðp� �pÞt �rTð�pÞ ¼ ½�2; 0� � p � 0

for all p 2 ð0; 2� 
 S.

5. Conclusion and future directions

The concepts of gH-subgradients and gH-subdifferentials of

convex IVFs with their several important characteristics

have been provided in this article. It has been shown that

the gH-subdifferential of a convex IVF is closed (Theo-

rem 7) and convex (Theorem 8); the gH-subdifferential of a

gH-differentiable convex IVF contains only gH-gradient

(Theorem 5). It has been observed that on a real linear

subspace if the gH-subgradients of a convex IVF at a point

exists, then the directional gH-derivative of the IVF at that

point in each direction is the maximum of all the products

of gH-subgradients and the direction (Theorem 6). Also, it

has been shown that a convex IVF is gH-Lipschitz con-

tinuous if it has gH-subgradient at each point in its domain

(Theorem 9). The chain rule of a convex IVF (Theorem 10)

and the gH-subgradient of the sum of finite numbers of

convex IVFs (Remark 9) have been depicted. Furthermore,

the relations between ESs of an IOP with gH-subgradient of

its objective function have been illustrated (Remark 10 and

theorem 11).

Although in this article, we have studied various prop-

erties of gH-subgradients and gH-subdifferentials of convex

IVFs, we could not make any conclusion about the

nonemptiness of gH-subdifferentials. In the future, we shall

try to make a conclusion about the nonemptiness of gH-

subdifferentials. Also, based on the proposed research,

future research can be performed in the following

directions.

• The concept of subdifferential of the dual problem of a

constrained convex IOP can be illustrated.

• A gH-subgradient technique to obtain the whole

solution set of a nonsmooth convex IOP can be

derived.

• The derived results can be applied to solve lasso
problem with interval-valued data.

• The notions of quasidifferentiability for IVFs without

the help of its parametric representation can be

illustrated.

• As IVFs are the special case of FVFs and IOPs are the

special case of fuzzy optimization problems, similar

results can be extended for FVFs and nonsmooth fuzzy

optimization problems.

Appendix I. Proof of norm on IðRÞn

Proof

kbUkIðRÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUik2
IðRÞ

s

;

(i) For any element bU ¼ U1;U2; � � � ;Unð Þ 2 IðRÞn, we

have

kbUkIðRÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUik2
IðRÞ

s

� 0; sincekUikIðRÞ � 08i

and

kbUkIðRÞn ¼ 0 () kUikIðRÞ ¼ 08i
() Ui ¼ 08i
() bU ¼ b0 ¼ 0; 0; � � � ; 0ð Þ:

Figure 4. IVF T and ESs of the IOP (20) are depicted by gray

shaded region and bold black line on x-axis, respectively.
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(ii) For any c 2 R and an element bU 2 IðRÞn, we obtain

kc� bUkIðRÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kc� Uik2
IðRÞ

s

¼jcj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUik2
IðRÞ

s

¼jcjkbUkIðRÞn :

(iii) For any two elements bU; bV 2 IðRÞn, we have

kbU � bVkIðRÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUi � Vik2
IðRÞ

s

:

Without loss of generality, due to Definition 3, let

kUi � VikIðRÞ

¼
jui þ vij for i ¼ 1; 2; � � � ;mð	 nÞ
jui þ vij for i ¼ mþ 1; pþ 2; � � � ; n:

�

Therefore,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUi � Vik2
IðRÞ

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
m

j¼1

juj þ vjj
2 þ

X
n

k¼mþ1

juk þ vkj2
v

u

u

t

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
m

j¼1

jujj2 þ
X
n

k¼mþ1

jukj2
v

u

u

t

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
m

j¼1

jvjj
2 þ

X
n

k¼mþ1

jvkj2
v

u

u

t

by Minkowski inequality

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUik2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kVik2

s

due to Definition 2.1:

Thus,

kbU � bVkIðRÞn 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUik2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kVik2

s

Hence, the function k � kIðRÞn is a norm on IðRÞn. h

Appendix II. Proof of norm on bY

Proof

(i) Since kLðpÞkIðRÞ � 0 and kpk[ 0,

kLk
bX
¼ sup

p 6¼0

kLðpÞkIðRÞ
kpk � 08p 2 X ;

and

kLk
bX
¼ 0 () sup

p 6¼0

kLðpÞkIðRÞ
kpk ¼ 0

()kLðpÞkIðRÞ ¼ 08p2X

() LðpÞ ¼ 08p2X

() Lis the interval-valued zero mapping;

by an interval-valued zero mapping we mean an IVF

which maps each element of its domain to

0 ¼ ½0; 0�:
(ii) Let L 2 bX and c 2 R. Then,

kðc� LÞk
bX
¼ sup

p 6¼0

kðcLÞðpÞkIðRÞ
kpk ¼ jcjkLk

bX
:

(iii) Let L1;L2 2 bX . Then,

kL1 � L2k
bX
¼ sup

p6¼0

kL1ðpÞ � L2ðpÞkIðRÞ
kpk

	 sup
p6¼0

kL1ðpÞkIðRÞ þ kL2ðpÞkIðRÞ
kpk

¼kL1k
bX
þ kL2k

bX
:

h

Appendix III. Proof of Lemma 3

Proof For all p 2 X , we have

LðpÞ 
 B� kpk; ð22Þ

i.e.,

lðpÞ; lðpÞ
� �


 bkpk; bkpk
� �

:

Therefore,

lðpÞ	 bkpk and lðpÞ	 bkpk: ð23Þ

Replacing p by �p in the relation (22), we get

Lð�pÞ 
 B� kpk
¼)ð�1Þ � LðpÞ 
 B� kpk
¼)ð�1Þ � B� kpk 
 LðpÞ
¼) �bkpk;�bkpk
� �


 lðpÞ; lðpÞ
� �

;

which implies

lðpÞ� � bkpk and lðpÞ� � bkpk: ð24Þ
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By the inequalities (23) and (24) we obtain

� bkpk	 lðpÞ	 bkpk and � bkpk	 lðpÞ	 bkpk
¼)jlðpÞj 	 max jbjkpk; jbjkpk

� �

andjlðpÞj 	 max jbjkpk; jbjkpk
� �

¼)max jlðpÞj; jlðpÞj
� �

	 max jbjkpk; jbjkpk
� �

¼)kLðpÞkIðRÞ 	 kBkIðRÞkpk

for all p 2 X . h

Appendix IV. Proof of Lemma 5

Proof In view of Remark 1, without loss of generality, let

the first m components of d be nonnegative and the rest

n� m components be negative. Therefore, dt � bU can be

written as

dt � bU ¼a
n

i¼1
di � Ui

¼a
m

i¼1
di � Ui �a

n�p

j¼mþ1
dj � Uj

¼a
m

i¼1
uidi; uidi
� �

�a
n

j¼mþ1
ujdj; ujdj

h i

¼
X
m

i¼1

uidi þ
X
n

j¼mþ1

ujdj;
X
m

i¼1

uidi þ
X
n

j¼mþ1

ujdj

" #

:

Therefore,

dt � bU 
 ½c; c�

¼)
X
m

i¼1

uidi þ
X
n

j¼mþ1

ujdj 	
X
m

i¼1

uidi þ
X
n

j¼mþ1

ujdj 	 c

¼)w
X
n

i¼1

uidi þ w0
X
n

i¼1

uidi 	 2c

¼)
X
n

i¼1

ðwui þ w0uiÞdi 	 2c

¼)dtW bU
	 


	 2c:

h

Appendix V. Proof of Lemma 6

Proof Let

kW bU
	 


k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wu1 þ w0u1ð Þ2þ wu2 þ w0u2ð Þ2þ � � � þ wun þ w0unð Þ2
q

:

be finite. Therefore, all ui’s and ui’s are finite. Hence,

kbUkIðRÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

kUik2
IðRÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
n

i¼1

max juij; juij
� �2

s

is finite. h

Appendix VI. Proof of Lemma 7

Proof Let pt � bU ¼ V. According to Definition 3, we have

pt � bU ¼ V 
 kVkIðRÞ; kVkIðRÞ
h i

;

which implies

pt � bU 
 kpk � kbUkIðRÞn ; kbUkIðRÞn
h i

because

kVkIðRÞ ¼kp1 � U1 � p2 � U2 � � � � � pn � UnkIðRÞ
	 kp1 � U1kIðRÞ þ kp2 � U2kIðRÞ þ � � �

þ kpn � UnkIðRÞ
¼jp1jkU1kIðRÞ þ jp2jkU2kIðRÞ þ � � � þ jpnjkUnkIðRÞ
	 kpk kU1kIðRÞ þ kU2kIðRÞ þ � � � þ kUnkIðRÞ

	 


¼kpkkbUkIðRÞn :

h

Appendix VII. Proof of Lemma 8

Proof Since TðpÞ �gH TðqÞ 
 B� kp� qk, for all

p; q 2 S, we have

tðpÞ � tðqÞ	 bkp� qk and tðpÞ � tðqÞ	 bkp� qk: ð25Þ

Interchanging p and q in the inequalities (25), we obtain

tðpÞ � tðqÞ	bkp� qk and tðpÞ � tðqÞ	bkp� qk8p;q 2 S:

ð26Þ

With the help of the inequalities (25) and (26), we get

jtðpÞ � tðqÞj 	 bkp� qk and

jtðpÞ � tðqÞj 	 bkp� qk8p; q 2 S;

which implies

kTðpÞ �gH TðqÞkIðRÞ 	 bkp� qk8p; q 2 S:

h
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