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In recent years, the idea of sub- and super-Chandrasekhar limiting mass white dwarfs (WDs), which are 
potential candidates to produce under- and over-luminous type Ia supernovae, respectively, has been a 
key interest in the scientific community. Although researchers have proposed different models to explain 
these peculiar objects, modified theories of Einstein’s gravity, particularly f (R) gravity with R being the 
scalar curvature, seem to be one of the finest choices to explain both the regimes of these peculiar 
WDs. It was already shown that considering higher-order corrections to the Starobinsky model with 
two parameters, the structure of sub- and super-Chandrasekhar progenitor WDs can be explained self 
consistently. It is also well-known that WDs can be considered Newtonian objects because of their large 
size. In this paper, we derive the weak-field limit of f (R) gravity, which turns out to be the higher-
order correction to the Poisson equation. Later, we use this equation to obtain the structures of sub-
and super-Chandrasekhar limiting mass WDs at various central densities incorporating just one model 
parameter.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Over the years, several theoretical, as well as phenomenologi-
cal outcomes, have served as motivations to consider alternatives 
to general relativity (GR). As far as weak gravitational background 
is concerned, GR can quite accurately explain several phenomena, 
starting from the perihelion precession of Mercury to the pre-
diction of black holes and gravitational waves [1]. However, the 
disagreements between observations and expected results, lead-
ing to deviations from GR at the high-density regime with large 
scalar curvature R , demand significant modifications to this theory. 
Recent cosmological observations suggest that even though GR is 
well tested at the solar system level, it is not sufficient to explain 
the Universe at the cosmological level. It has been well estab-
lished that the expansion of the Universe is accelerating [2,3]. In an 
attempt to explain this shortcoming, the �CDM model, which con-
sists of the cold dark matter, cosmological constant, and ordinary 
matter, was put forward. Despite its success at a large scale, this 
theory faces severe issues on the sub-galaxy scales, known as the 
‘Small Scale Crisis’ [4]. Moreover, it is flawed with the cosmologi-
cal constant problem, resulting in disagreements between the ob-
served and theoretically predicted values of the vacuum energy [5]. 
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These cosmological observations are thus being increasingly stud-
ied using the modified theory of gravity, involving modifications to 
the Einstein-Hilbert action in GR.

Proposed by Buchdal, one such class of modified theory of grav-
ity is the f (R) gravity [6,7], which involves the replacement of R
with an arbitrary function f (R) in the Einstein-Hilbert action. In 
order to derive the modified field equations, one can use either of 
the two variational principles, each leading to a different formal-
ism. The metric f (R) gravity formalism leads to the fourth-order 
field equation, on varying the action with respect to the metric. 
In contrast, the Palatini f (R) gravity leads to a second-order field 
equation upon varying the action with respect to the metric and 
the connection independently. The success of any modified the-
ory of gravity lies in the fact that it should be verifiable at all 
scales and should reduce to GR in the weak-field limit. Therefore, 
as a testbed, the weak-field limit of f (R) gravity has been rig-
orously studied in order to compare it with the well-established 
results of GR at the solar system level [8–10]. In recent times, us-
ing different forms of f (R) and the model parameter, the f (R)

theory is being extensively used to study a wide range of phenom-
ena, starting from inflation [11,12], gravitational waves [13,14], to 
compact objects [15–18]. Moreover, it has been used to address 
the dark energy problem [19] and also acts as a means of uni-
fying the under- and over-luminous type Ia supernovae (SNe Ia) 
produced from the sub- and super-Chandrasekhar limiting mass 
white dwarfs (WDs) [20–23].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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WD marks as the endpoint of stellar evolution for a progenitor 
star of mass (10 ± 2)M� [24]. They are supported by the elec-
tron degeneracy pressure, which acts against the inward force of 
gravity. However, there is a limit up to which the electron degen-
eracy pressure can maintain this equilibrium configuration. Com-
bining relativistic energy dispersion with Fermi degeneracy, Chan-
drasekhar showed that the mass of a non-rotating, non-magnetized 
WD cannot exceed about 1.4M� , which is now known as the 
Chandrasekhar mass-limit [25]. If a WD accumulates matter more 
than this mass-limit, it undergoes a runaway thermonuclear re-
action, leading to an explosion known as the SNe Ia [26]. Due to 
this unique mass-limit, SNe Ia have nearly similar light curves, and 
hence, they are used as standard candles. Recently, there have been 
several observations of peculiar over-luminous [27–29] and under-
luminous SNe Ia [30–33], which questions the uniqueness of the 
Chandrasekhar mass-limit. The over-luminous SNe Ia were found 
to have a surprisingly large 56Ni mass content of up to 1.8M� , 
which clearly violates the Khokhlov pure detonation limit [34]. 
This suggests that such over-luminous SNe Ia cannot originate 
from WDs following Chandrasekhar mass-limit and thus identifies 
super-Chandrasekhar limiting mass WDs as their possible candi-
dates. Similarly, the under-luminous SNe Ia with 56Ni mass-content 
estimate approximately ranging from 0.05M� to 0.35M� infer in-
direct evidences of the sub-Chandrasekhar limiting mass WDs [35].

Various models were initially propounded for the formation of 
these peculiar SNe Ia. Upon the merger of two sub-Chandrasekhar 
mass WDs (double-degenerate scenario) to form another sub-
Chandrasekhar mass WD and explodes due to the accretion of 
a helium layer, under-luminous SNe Ia can be formed [36,37]. 
In contrast, several models were proposed to explain the super-
Chandrasekhar WDs and thereby the over-luminous SNe Ia. Some 
such models are double-degenerate scenario [38], presence of mag-
netic fields [39,40], presence of a differential rotation [41], pres-
ence of charge in the WDs [42], ungravity effect [43], lepton 
number violation in magnetized WD [44], noncommutativity ef-
fect [45,46], and many more. Note that these models can at best 
explain only one class of peculiar SNe Ia. Moreover, each of them 
has some incompleteness, primarily based on stability [47,48]. 
Even numerical simulations showed that the merger of two mas-
sive WDs could never lead to a WD with mass as high as 2.8M�
due to the off-center ignition and formation of a neutron star 
rather than an over-luminous SN Ia [49,50]. Hence, most of these 
pictures failed to explain the full inferred masses ranges for pecu-
liar SNe Ia incorporating the same physics.

Das and Mukhopadhyay first initiated the exploration by con-
sidering f (R) = R +αR2 gravity with α being the model parameter 
and showed that this model could explain both the regimes of sub-
and super-Chandrasekhar progenitor WDs [20]. They showed that 
negative values of α give super-Chandrasekhar WDs while positive 
α gives sub-Chandrasekhar limiting mass WDs. Thus one single 
mass–radius curve could not explain both the mass regimes of 
WDs. Moreover, α is a fundamental parameter of the model, and 
varying this parameter to explain similar phenomena is generally 
not considered to be physical. Furthermore, for this choice of the 
gravity model, it can be shown that negative α may give rise to a 
ghost mass [14,51]. Hence, Kalita and Mukhopadhyay later consid-
ered various higher-order corrections to this model by introducing 
one more model parameter [21]. In this case, the parameters are 
fixed throughout, and the central density of the WDs, ρc is varied 
such that low ρc gives sub-Chandrasekhar limiting mass WDs and 
high ρc gives the super-Chandrasekhar limiting mass WDs. Hence 
these models can be considered superior to the earlier model. Note 
that two parameters in f (R) gravity are the minimal requirement 
to simultaneously explain both the WD mass regimes in the con-
text of general relativistic extensions. However, the lesser the num-
ber of parameters, the better the model is. We aim to explore the 
2

weak-field regime of f (R) gravity in this context. Because WDs are 
bigger in size, it is reasonable to approximate them as Newtonian 
objects. Moreover, besides f (R) gravity, some researchers inves-
tigated a few other modified gravity models. Some of them are 
f (R, T ) gravity [52], de Rham-Gabadadze-Tolley (dRGT) like mas-
sive gravity [53], scalar-vector-tensor gravity (STVG) theory, and 
Eddington-inspired Born-Infeld gravity [23]. However, these mod-
els were used to show only one mass-limit of the peculiar WDs 
(either sub-Chandrasekhar or super-Chandrasekhar). Hence, f (R)

gravity can be considered to be a better bet than the other modi-
fied gravity theories.

In this paper, we show that only one model parameter survives 
in the weak-field limit of f (R) gravity, and by fixing this param-
eter within the suitable bounds, one can obtain both the mass 
regimes of WDs just by varying ρc. This paper is organized as fol-
lows. In §2, we discuss the basic equations in f (R) gravity and its 
weak-field limit. Thereby, we obtain the modified Poisson equa-
tion in the Newtonian limit for f (R) gravity. Using this equation, 
we derive the modified stellar structure equations in §3, which 
we solve with an appropriate equation of state (EoS) to obtain the 
mass–radius relation for the WDs in §4. Finally, we put our con-
cluding remarks in §5.

2. Weak-field limit of f (R) gravity and modified Poisson 
equation

Assuming the sign convention (−, +, +, +), the action for f (R)

gravity is given by [54]

S f (R) =
∫ [

c3

16πG
f (R) + LM

]√−g d4x , (1)

where g = det
(

gμν

)
is the determinant of the spacetime metric 

gμν , c is the speed of light, G is Newton’s gravitational constant, 
and LM is the Lagrangian of the matter field. Varying S f (R) with 
respect to gμν along with appropriate boundary conditions, the 
modified field equation in f (R) gravity is given by [54]

F (R)Rμν − f (R)

2
gμν − (∇μ∇ν − gμν�)

F (R) = κTμν, (2)

where Rμν is the Ricci tensor, Tμν is the energy-momentum 
tensor, F (R) = d f (R)/dR , κ = 8πG/c4, � = −∂2

t /c2 + ∇2 is the 
d’Alembertian operator with ∂t being the temporal partial deriva-
tive and ∇2 the 3-dimensional Laplacian. Note that Greek indices 
(μ, ν , etc.) take values 0 to 3 where 0 is the temporal compo-
nent and the rest are the spatial ones, which are denoted by Latin 
indices (i, j, k, etc.). Now, the trace of Equation (2) is given by

R F (R) − 2 f (R) + 3�F (R) = κ gμν Tμν = κT . (3)

In the weak-gravity limit, we assume gμν = ημν + hμν and R =
R0 + R1, such that |hμν | � |ημν |, where ημν is the background 
Minkowski metric and R0 is the background scalar curvature, while 
hμν and R1 are their corresponding tensor and scalar perturba-
tions. Now perturbing Equations (2) and (3) with these relations, 
the linearized field and trace equations are given by [14,51,55]

�h̄μν = −16πG

c4
Tμν (4)

and

�h f − m2h f = 8πG

3F (R0)c4
T , (5)

where

h̄μν = hμν −
(

h − h f

)
ημν, (6)
2
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with h = ημνhμν , h f = F ′(R0)R1/F (R0), and m is the effective 
mass associated with the scalar degree of freedom, given by

m2 = 1

3

[
F (R0)

F ′(R0)
− R0

]
, (7)

where F ′(R) = dF /dR . Taking the trace of Equation (6), we obtain

h̄ = −h + 4h f =⇒ h = −h̄ + 4h f . (8)

Now, substituting h̄ = −h̄00 + h̄i j in the above equation and ap-

proximating 
∣∣∣h̄00

∣∣∣ 	
∣∣∣h̄i j

∣∣∣ for the weak-gravity regime, we obtain

h = h̄00 + 4h f . (9)

Moreover, substituting μ = ν = 0 in Equation (6) together with the 
above relation, we obtain

h̄00 = h00 + h

2
− h f = h00 + h̄00

2
+ h f = 2h00 + 2h f . (10)

Now, inverting Equation (6) and considering only the spatial com-
ponents along with the above relation, we obtain

hij = h̄i j −
(

h̄

2
− h f

)
ηi j ≈ −

(
h̄

2
− h f

)
ηi j

= h f − h̄

2
= h f + h̄00

2
= h00 + 2h f . (11)

Therefore, the weak-field metric in f (R) gravity is given by

ds2 = − (1 − h00) c2 dt2 + (
1 + h00 + 2h f

)
dx2 . (12)

In GR, since h f = 0 and h00 = −2φ/c2 with φ being the Newtonian 
potential, we obtain [56]

ds2 = −
(

1 + 2φ

c2

)
c2 dt2 +

(
1 − 2φ

c2

)
dx2 . (13)

This is the well-known weak-field metric in the Newtonian gravity. 
It is noticed that the due to the influence of f (R) gravity, only the 
spatial component is modified while temporal one remains unal-
tered. Now, recognizing h00 = −2φ/c2, the final weak-field metric 
in f (R) gravity is given by

ds2 = −
(

1 + 2φ

c2

)
c2 dt2 +

(
1 − 2φ

c2
+ 2h f

)
dx2 . (14)

Note that the form of h f depends on the functional form of f (R), 
which we are going to discuss below.

Now, substituting μ = ν = 0 in Equation (4) and using the rela-
tion of Equation (10), we obtain

�h00 + �h f = −8πG

c4 T00. (15)

We now assume perfect non-magnetized fluid in linearized gravity 
such that Tμν = (

ρ + P/c2
)

uμuν + Pημν with ρc2 	 P , where ρ
is the matter density and P is the pressure. Hence, Equations (5)
and (15) can be recast as

�h f − m2h f ≈ − 8πG

3F (R0)c2
ρ (16)

�h00 + �h f = −8πG

c2
ρ. (17)

Subtracting the first equation from the second one, we obtain

�h00 + m2h f = −8πGρ

c2

(
1 − 1

3F (R0)

)
. (18)
3

In this work, we consider the generalized Starobinsky model with 
f (R) = R +αR2 +βR3 + . . . , such that F (R) = 1 +2αR +3βR2 + . . .

and F ′(R) = 2α + 6βR + . . . with m2 = 1/6α and h f = 2αR1. Sub-
stituting this form of f (R) in the above equation and considering 
Minkowski background with R0 = 0, we obtain

3∇2h00 + R1 = −16πGρ

c2
. (19)

Now, for the linearized gravity, we have [56]

R1 = ∂μ∂νhμν − �h. (20)

From Equation (11), we have h11 = h22 = h33 = h00 + 2h f and 
h = 2h00 + 6h f . Substituting them in the above relation and con-
sidering hμν has no time dependency, we obtain

R1 = −∇2h00 − 8α∇2 R1. (21)

Substituting R1 in Equation (19) and simplifying, we obtain

∇2h00 − 4α∇2 R1 = −8πGρ

c2
. (22)

Again, replacing R1 from Equation (21), we obtain

∇2h00 + 4α∇4h00 + 32α2∇4 R1 = −8πGρ

c2
. (23)

It is noticed that Equation (21) is a recurrence relation. Every time 
we substitute R1, we obtain higher-order derivatives of R1. Hence, 
replacing R1 repeatedly, we obtain an infinite series of different 
derivative orders of R1, which is given by

∇2h00 + 4α∇4h00 − 32α2∇6h00 + · · · = −8πGρ

c2
. (24)

Replacing h00 = −2φ/c2 from the aforementioned weak-field met-
ric and simplifying, we obtain

∇2φ + 4α∇4φ − 32α2∇6φ + · · · = 4πGρ. (25)

This is field equation in the weak-field regime of f (R) gravity. In 
the Newtonian case, α = 0, and we recover the well known Poisson 
equation, given by ∇2φ = 4πGρ . Hence we call the above equation 
as the modified Poisson equation in f (R) gravity. It is important 
to note that only the parameter α appears in the modified Poisson 
equation, even though f (R) contains more model parameters. This 
is because α is associated with R2 and it is the only contributing 
factor for m in Equation (7).

3. Modified stellar structure equations

In this section, we discuss the stellar structure equations for 
the compact objects. In Newtonian gravity, because ∇2φ = 4πGρ

holds good, the pressure balance equation is given by [57]

dP

dr
= − GMρ

r2
, (26)

where M is the mass of the compact object within a radius r. 
Moreover, the mass-estimate equation is given by

dM

dr
= 4πr2ρ. (27)

Since the Poisson equation is modified, we expect a change in the 
pressure balance equation. In Equations (19) and (21), substituting 
h00 = −2φ/c2, we obtain

∇2φ = c2

6

(
16πGρ

c2
+ R1

)
(28)
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and

∇2φ = c2

2

(
8α∇2 R1 + R1

)
. (29)

Equating the R.H.S. of these two equations, we obtain

4α∇2 R1 + 1

3
R1 = 8πGρ

3c2
. (30)

Moreover, for a fluid parcel moving at a velocity v at a time t , the 
Euler equation is given by

∂ v

∂t
+ (v ·∇) v = −∇P − ρ∇φ. (31)

Now for a spherical symmetric star in hydrostatic equilibrium (i.e. 
v = 0), this equation reduces to

∇P

ρ
= −∇φ. (32)

Taking divergence on both sides and substituting ∇2φ from Equa-
tion (28), we obtain

1

ρ
∇2 P + ∇

(
1

ρ

)
·∇P = − c2

6

(
16πGρ

c2
+ R1

)
. (33)

Equations (27), (30), and (33) together serve as the hydrostatic 
balance equations for a compact stars in the weak-field regime 
of f (R) gravity. Note that the mass-estimate equation is depen-
dent on the form of temporal component of the metric. Comparing 
Equations (13) and (14), it is evident that there is no change in 
the functional form of g00 in the weak-field limit of f (R) gravity, 
and hence, dM/dr equation also remains unaltered. Since we are 
interested in WDs, we use the Chandrasekhar EoS, given by [25]

P = πm4
ec5

3h3

[
xF

(
2x2

F − 3
)√

x2
F + 1 + 3 sinh−1 xF

]
,

ρ = 8πμemH(mec)3

3h3
x3

F ,

(34)

where xF = pF/mec, pF is the Fermi momentum, me is the mass 
of electron, h is the Planck’s constant, μe is the mean molecular 
weight per electron and mH is the mass of hydrogen atom. We 
choose μe = 2 indicating the carbon-oxygen WD. Since we con-
sider spherically symmetric WDs, all the variables (M , ρ , P , etc.) 
depends only on the radial coordinate r. Hence in spherical coordi-
nates, using the Chandrasekhar EoS, Equations (27), (30), and (33)
reduce to

X
d2ρ

dr2
+ 2Y

r

dρ

dr
− Y

ρ

(
dρ

dr

)2

= −ρc2

6

(
16πGρ

c2
+ R1

)
, (35)

12α

(
d2 R1

dr2
+ 2

r

dR1

dr

)
+ R1 = 8πGρ

c2
, (36)

dM

dr
= 4πr2ρ, (37)

where

X = d2 P

dρ2
=

8K2

[
2 +

(
ρ
K1

)2/3
]

9K 2
1

(
ρ
K1

)1/3
[

1 +
(

ρ
K1

)2/3
]3/2

, (38)

Y = dP

dρ
=

8K2

(
ρ
K1

)2/3

3K1

√
1 +

(
ρ
K1

)2/3
, (39)
4

Fig. 1. Upper panel: mass–radius relation; Lower panel: variation of WD mass M
with respect to ρc for different values of α, which are mentioned as label in cm2

unit.

with

K1 = 8πμemp (mec)3

3h3
and K2 = πm4

ec5

3h3
. (40)

Equations (35)-(37) need to be solved simultaneously to obtain the 
WD structure in the weak-field limit of f (R) gravity.

4. Mass–radius relation of white dwarfs in the Newtonian regime 
of f (R) gravity

In this section, we obtain the mass–radius relation of the 
WDs in the weak-field regime of f (R) gravity. We solve Equa-
tions (35)-(37) using the fourth-order Runge-Kutta method with 
the appropriate boundary conditions. We require five boundary 
conditions since there are two second-order and one first-order 
differential equations. At the center of the WD, we have

ρ(r = 0) = ρc,
dρ

dr

∣∣∣∣
r=0

= 0, M(r = 0) = 0. (41)

The two remaining boundary conditions are quite arbitrary. We 
choose different values of R1 at the center for different values 
of ρc , whereas dR1/dr = 0 at r = 0. This is because R1 is nearly 
proportional to ρ in GR, and since dρ/dr = 0 at the center, we 
choose dR1/dr = 0 there. The values of R1 at the center are cho-
sen in such a way so that the amplitude of R1 decreases from 
the center to the surface of the WD. The radius of a WD, R is 
determined where ρ drops to 0. The mass–radius curve as well 
as the variation of mass with ρc is shown in Fig. 1 for differ-
ent values of α. The bounds on α are chosen from the Gravity 
Probe B experiment, which states that |α| � 5 × 1015 cm2 [58]. 
Note that α = 0 represents the Chandrasekhar mass–radius rela-
tion with the limiting mass of about 1.44M� . For other α, the 
curve overlaps with the Chandrasekhar one at low densities, which 
means the effect of modified gravity is not significant at such a 
low density. Also, the values of the model parameter are such
that they do not violate the conditions for the solar system test, 
given by Guo [59]. As the density increases, the curve turns back. 
It has already been shown that the WDs on the receding branch 
with ∂M /∂ρc < 0 are unstable under radial perturbation, and 
hence this branch is unstable [60]. Since unstable branches are 
nonphysical, the mass corresponding to this peak is the limiting 
mass of WDs, and it turns out to be sub-Chandrasekhar. Fur-
ther increase in ρc makes the curve to turn back again, and this 
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branch is now a stable one as ∂M /∂ρc > 0. The maximum ρc
is chosen in such a way that it is below the neutron drip den-
sity and the Chandrasekhar EoS is valid throughout. This stable 
branch goes beyond the Chandrasekhar mass-limit, and the super-
Chandrasekhar WDs are revealed. Thus the modified Poisson equa-
tion can explain both the sub- and super-Chandrasekhar limiting 
mass regimes just by varying ρc of the WDs with one model pa-
rameter.

5. Discussions and conclusions

The idea of using modified gravity for sub- and super-Chandra-
sekhar progenitor WDs to explain respectively the under- and 
over-luminous SNe Ia has been there for quite some time. Among 
the various modified gravity models, f (R) gravity seems to be one 
of the prominent bets for this purpose. Initially, the Starobinsky 
model f (R) = R + αR2 was explored to explain both WD mass 
regimes [20]. However, in this case, both α and ρc need to be var-
ied and hence one single mass–radius curve cannot explain both 
the peculiar WD mass regimes. It is well-known that negative α
gives rise to the imaginary mass [51], and hence higher-order cor-
rections to the Starobinsky model, viz. f (R) = R +αR2 +βR3 + . . .

were later proposed [21]. In this case, α and β were kept fixed 
within the solar system bound, and just by varying ρc , one can 
obtain the sub- and super-Chandrasekhar limiting mass WDs. Note 
that in this case, there are two model parameters. In physics, it 
is generally considered that the lesser the number of model pa-
rameters, the better the model is. In this work, we have chosen 
the weak-field limit of f (R) = R + αR2 + βR3 + . . . . This is be-
cause WDs are bigger in size (more than 1000 km in radius), and 
Newtonian treatment is a good approximation to study their struc-
tures. We have found that only the parameter α survives in the 
weak-field limit, and thereby we have obtained the modified Pois-
son equation, which was later used to obtain the modified stellar 
structure equations. We have chosen only positive α to discard 
any imaginary mass of scalar mode, given by Equation (7). Note 
that we do not claim that this model is superior to the previous 
works in [20,21] just because it has one parameter and a sin-
gle mass–radius curve explains both the WD mass regime. Rather, 
unlike the previously mentioned works, which used perturbative 
approaches, i.e., each physical variable was expanded in terms of 
their zeroth-order part and one perturbation over them, we have 
used an unperturbative approach in this work. Thus, in the ear-
lier works, even though those are relativistic calculations, variables 
like R was expanded as R = R0 + αR1 and later R0 was replaced 
by R0 = 8πG/c4

(
ρ0c2 − 3P0

)
in the modified TOV equations. Be-

cause the EoS relates ρ and P , by supplying density at the center, 
the value of R is also fixed. On the other hand, in the present work, 
instead of using such an expression for R , we solve a differential 
equation for R by giving some initial values of R . So here R at 
the center is like a free parameter. It should be kept in mind that 
the shape of the mass–radius plot depends significantly on the ini-
tial values of R in the high-density regime. Hence, in this case, we 
choose such values of R(r = 0) which gives the inverted ‘S’–shaped 
curves, to obtain both the sub- and super-Chandrasekhar limiting 
mass WDs in a single curve. We have shown that in this model, 
just by varying ρc and keeping α fixed from the Gravity Probe 
B experiment, one can obtain both the progenitor mass-regime of 
WDs. Of course, to obtain a more precise mass–radius curve, one 
needs to solve these equations in the relativistic regime. However, 
this is not the primary concern for this work, and hence, it is be-
yond the scope of this paper. In the future, detecting these peculiar 
WDs through gravitational waves can put better constraints on the 
various modified gravity theories [14].
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