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Abstract

We present an origin of the VEVs hierarchy in a non-minimal technicolour framework
which is capable of explaining the flavour spectrum of the standard model along with
neutrino masses and mixing, and simultaneously satisfying crucial experimental bounds.
The technicolour scale in this framework can be lower such that a standard model-like
Higgs boson emerges from within the model. We also derive lower bound on the mass of
the vector technicolour state using the latest experimental bound on the S-parameter.
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1 Introduction

The fermionic mass hierarchy and mixing in the Standard Model (SM), often referred as to the flavour
problem, is an intriguing puzzle[1]-[12]. This problem evidently arises because of the hierarchical
Yukawa couplings which appear in the Higgs-fermion Lagrangian of the SM. For more references on
this problem, see ref.[1].

One possible way to explain the masses and mixing of the SM is through hierarchical vacuum
expectation values (VEVs) which introduce new energy scales which can distinguish the SM fermions
among and within the generations[1]. This can be done via appropriate non-renormalizable operators
responsible for providing masses to fermions. For instance the simplest choice is dimension-5 operators
of the form,

y ψ̄LϕψR
Fi
Λ
, (1)

where y is dimensionless coupling, ψL is the SM left-handed fermionic doublet, ψR denotes the SM
right-handed singlet fermions, ϕ is the Higgs doublet, Fi represents quantum fields, and Λ character-
izes scales where the operator is renormalized.

The different energy scales which can distinguish the fermion among and within the generations
are created through the hierarchical VEVs of fields Fi which are actively present in the effective theory.
Here, there is only one hidden scale Λ which is integrated out.

Before we discuss further, let us investigate how many energy scales are required to explain the
fermionic mass pattern, for instance the masses of six quarks. In the SM, the masses of the first family
fermions are much smaller than that of the second family fermions, and masses of the second family
fermions are much smaller than that of the third family fermions. This is known as the mass hierarchy
among the families. This can be explained by introducing exactly three new interactions at three
different energy scales where one scale may correspond to only one family.

We now look into the mass hierarchy within the families. This is large within the second and third
families requiring two energy scales to differentiate the masses within these families. However, in
the first family of quarks, the mass of the d-quark has the same order of magnitude as that of the
u-quark. This is the origin of the strong isospin symmetry of the proton and neutron. Therefore, it
is not required to introduce any new energy scale within the first family. Thus we conclude that for
explaining masses of the three families of quarks through new energy scales, atleast five energy scales
are required.

However, the mass pattern within the first family is subtle, and presumably more challenging to
predict than that of within the second and third families. The subtlety lies in the fact that the mass
of the d-quark is slightly bigger than that of the u-quark. This is starkly different from second and
third families where the masses of up-type quarks are much larger than the down-type quarks. This is
also the origin of the strong isospin breaking. To find an explanation to this intriguing difference is a
problem itself within the flavour problem.

In the hierarchical VEVs model (HVM)[1], the dimension-5 operators are obtained by forbidding
the Yukawa Lagrangian with the help of three discreteZ2 symmetries and introducing six gauge-singlet
scalar fields. The masses and mixing of the SM fermions are explained through the hierarchy of the six
VEVs of the gauge-singlet scalar fields. There is no hierarchy in the effective Yukawa couplings now.
However, the hierarchy of Yukawa couplings is now converted into the hierarchy of six VEVs. Finding
an origin of this VEVs hierarchy is the main objective of this work.

We shall show that an origin of the HVM scenario can arise in a Technicolour (TC) framework
through multi-fermion chiral condensates. TC framework provides a natural origin of the sponta-
neous symmetry breaking of the SM, and may address several issues beyond the SM[13, 14]. Flavour
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structure of the SM can also be addressed in an extended TC (ETC) framework [15]. However, it
is well known that ETC models contain large flavour changing neutral currents (FCNC) involving
fermions[15].

This problem can be cured by modifying the TC dynamics where the anomalous mass dimension
of composite operator T̄ T of the TC field T becomes large[16, 17, 18]. There exits two kind of
such solutions. The first solution is with the slowly running coupling constant, known as walking
gauge theories[19]-[25]. In the second solution, we have a gauge theory with strong four-fermion
interaction[26]-[30]. For a review of TC theories, see refs. [31, 32, 33, 34, 35, 36, 37, 38, 39].

This work will be presented along the following line. In the section 2 we present a hierarchical
VEVs Model (HVM)[1] and discuss the neutrino masses and oscillations. Moreover, numerical fitting
of fermion masses and mixing angles, the scalar potential and an ultra-violet completion (UV) of the
HVM are also presented in the same section. A TC origin of the HVM in a non-minimal conventional
TC framework is discussed in section 3. We summarize in section 4.

2 Hierarchical VEVs Model

The essential idea of the HVM is discussed in ref.[1]1. In this work, we present a new manifestation of
this idea. In the HVM, we extend the gauge symmetry of the SM by adding the three Abelian discrete
symmetries Z2, Z ′2 an Z ′′2 . Moreover, we add six gauge singlet scalar fields χi (i = 1− 6), having zero
hypercharge, to the SM. The fermionic and the singlet scalar fields χi transform under the symmetries
Z2, Z ′2 and Z ′′2 as given in Table 1.

The transformations of the scalar fields χi under the SU(3)c ⊗ SU(2)L ⊗ U(1)Y symmetry of the
SM are given as,

χi : (1, 1, 0), (2)

where i = 1− 6.
The Yukawa Lagrangian is forbidden now, and the masses of the charged fermions are recovered

by dimension-5 operators written as,

Lmass =
1

ΛF

[
yuijψ̄

q,a
L ϕ̃ψu,bR χi + ydijψ̄

q,a
L ϕψd,bR χi+3 + y`ijψ̄

`,a
L ϕψ`,bR χi+3

]
+ H.c., (3)

where ΛF is the scale where these operators are renormalized. The ψq,`,iL represents the leptonic and
quark doublets of the SM, and a, b = 1, 2, 3 are family indices, q is for the quarks doublet and ` denotes
the leptonic doublet, and ψuR = uR, cR, tR, ψ

d
R = dR, sR, bR, ψ

`
R = eR, µR, τR.

The masses of charged fermions are recovered when fields χi acquire VEVs in such a way that
〈χ4〉 > 〈χ1〉, 〈χ2〉 >> 〈χ5〉, 〈χ3〉 >> 〈χ6〉, 〈χ3〉 >> 〈χ2〉 >> 〈χ1〉, and 〈χ6〉 >> 〈χ5〉 >> 〈χ4〉.

The mass matrices of up, down quarks and leptons approximately are,

MU =
v√
2

yu11ε1 yu12ε1 yu13ε1
yu21ε2 yu22ε2 yu23ε2
yu31ε3 yu32ε3 yu33ε3

 ,MD =
v√
2

yd11ε4 yd12ε4 yd13ε4
yd21ε5 yd22ε5 yd23ε5
yd31ε6 yd32ε6 yd33ε6

 ,M` =
v√
2

y`11ε4 y`12ε4 y`13ε4
y`21ε5 y`22ε5 y`23ε5
y`31ε6 y`32ε6 y`33ε6

 ,

where εi =
〈χi〉
ΛF

.

1An alternative HVM model is discussed in the appendix.
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Fields Z2 Z ′2 Z ′′2
uR, cR, tR, νeR , νµR , ντR - - -

χ1 - - +
χ2 - + -
χ3 + - -

dR, sR, bR, eR, µR, τR + - -
χ4 + - +
χ5 + + -
χ6 - - -
ψ1
L + + -
ψ2
L + - +
ψ3
L - + +
ϕ + + +
χ7 + + +

Table 1: The charges of left- and right-handed fermions and gauge singlet scalar fields under Z2, Z ′2
and Z ′′2 symmetries.

The masses of charged fermions can approximately be written as [40],

mt ≈ |yu33|ε3v/
√

2,

mc ≈ |yu22 −
yu23y

u
32

yu33

|ε2v/
√

2,

mu ≈ |yu11 −
yu12y

u
21

|yu22 −
yu23y

u
32

yu33

|
− yu13(yu31y

u
22 − yu21y

u
32)− yu31y

u
12y

u
23

|yu22 −
yu23y

u
32

yu33

||yu33|
| ε1v/

√
2,

mb ≈ |yd33|ε6v/
√

2,

ms ≈ |yd22 −
yd23y

d
32

yd33

|ε5v/
√

2,

md ≈ |yd11 −
yd12y

d
21

|yd22 −
yd23y

d
32

yd33

|
− yd13(yd31y

d
22 − yd21y

d
32)− yd31y

d
12y

d
23

|yd22 −
yd23y

d
32

yd33

||yd33|
| ε4v/

√
2,

mτ ≈ |y`33|ε6v/
√

2,

mµ ≈ |y`22 −
y`23y

`
32

y`33

|ε5v/
√

2,

me ≈ |y`11 −
y`12y

`
21

|y`22 −
y`23y

`
32

y`33

|
− y`13(y`31y

`
22 − y`21y

`
32)− y`31y

`
12y

`
23

|y`22 −
y`23y

`
32

y`33

||y`33|
| ε4v/

√
2. (4)

The quark mixing angles approximately can be written using the equation (10) of reference [40],

sin θ12 ' |Vus| '

∣∣∣∣∣yd12ε4

yd22ε5
− yu12ε1
yu22ε2

∣∣∣∣∣ , sin θ23 ' |Vcb| '

∣∣∣∣∣yd23ε5

yd33ε6
− yu23ε2
yu33ε3

∣∣∣∣∣ ,
4



sin θ13 ' |Vub| '

∣∣∣∣∣yd13ε4

yd33ε6
− yu12y

d
23ε1ε5

yu22y
d
33ε2ε6

− yu13ε1
yu33ε3

∣∣∣∣∣ . (5)

2.1 Neutrino masses and oscillation parameters

Explaining neutrino masses and oscillation is one of the most challenging problems, and needs exten-
sion of the HVM by an additional gauge singlet scalar field χ7 whose charges under Z2, Z ′2 and Z ′′2
discrete symmetries are shown in table 1.

The Lagrangian for Dirac masses for neutrinos can be written as,

LMD =
1

ΛF

(
yνijψ̄

`,i
L ϕ̃2ψ

ν,j
R χ1,2,3

)
+ H.c., (6)

where ψνR = νeR , νµR , ντR .
The Dirac mass matrix is now written as,

MD =
v√
2

 yν11ε1 yν12ε1 yν13ε1
yν21ε2 yν22ε2 yν23ε2
yν31ε3 yν32ε3 yν33ε3

 . (7)

The Majorana mass Lagrangian for right-handed neutrinos reads,

LMR
= χ7ν̄ciνj . (8)

The masses of neutrinos now can be determined using type-I seesaw mechanism[41] providing fol-
lowing mass matrix of the light neutrinos,

M = −MDM−1
R M

T
D, (9)

where MD << MR, and the Majorana mass terms for the left-handed neutrinos are assumed to be
much smaller.

The light neutrino masses approximately are [40],

m3 ≈ |yν33|ε3ε,

m2 ≈ |yν22 −
yν23y

ν
32

yν33

|ε2ε,

m1 ≈ |yν11 −
yν12y

ν
21

|yν22 −
yν23y

ν
32

yν33

|
− yν13(yν31y

ν
22 − yν21y

ν
32)− yν31y

ν
12y

ν
23

|yν22 −
yν23y

ν
32

yν33

||yν33|
| ε1ε, (10)

where ε = v√
2MR

, and MR = 〈χ7〉 is the Majorana mass scale.
The leptonic mixing angles are approximately found to be[40],

sin θν12 '

∣∣∣∣∣y`12ε4

y`22ε5
− yν12ε1
yν22ε2

∣∣∣∣∣ , sin θν23 '

∣∣∣∣∣y`23ε5

y`33ε6
− yν23ε2
yν33ε3

∣∣∣∣∣ ,
sin θν13 '

∣∣∣∣∣y`13ε4

y`33ε6
− yν12y

`
23ε1ε5

yν22y
`
33ε2ε6

− yν13ε1
yν33ε3

∣∣∣∣∣ . (11)

We note that the neutrino mixing angles turn out to be similar to those of the quark sector. It may be
understood from the unification perspective. For instance, it is already known that there could be a
scenario where unification of the neutrino and quark mixing is possible[42]. In such a scenario, the
large neutrino mixing angles are the result of of renormalization group evolution [43]-[47].
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2.2 Benchmark points for fermionic masses, quark-mixing and neutrino oscillation
parameters

In the case of the HVM, the need is to explain the whole fermionic mass and mixing spectrum including
neutrino oscillation parameters using just six hierarchical VEVs and the Majorana mass scale. We
particularly note that the weak phases of the CKM matrix place extremely strong constraints on models
trying to explain origin of the flavour in the SM. Since any theory beyond the SM has to explain
neutrino masses and mixing, this makes survivability of any particular model of flavour miserable.

The charged fermion masses are reproduced using the following values of the fermion masses at 1
TeV[48],

{mt,mc,mu} ' {150.7± 3.4, 0.532+0.074
−0.073, (1.10+0.43

−0.37)× 10−3} GeV,

{mb,ms,md} ' {2.43± 0.08, 4.7+1.4
−1.3 × 10−2, 2.50+1.08

−1.03 × 10−3} GeV,

{mτ ,mµ,me} ' {1.78± 0.2, 0.105+9.4×10−9

−9.3×10−9 , 4.96± 0.00000043× 10−4} GeV. (12)

The magnitudes and phases of the Cabibbo–Kobayashi–Maskawa (CKM) mixing elements are repro-
duced using following available data[49],

|Vud| = 0.97446± 0.0001, |Vus| = 0.22452± 0.0004, |Vcb| = 0.04214± 0.00075, (13)

|Vub| = 0.00365± 0.00012, sin 2β = 0.691± 0.017, α = (84.5+5.9
−5.2)◦, γ = (73.5+4.2

−5.1)◦

The neutrino oscillation parameters are given as [50],

∆m2
21 = (7.55+0.59

−0.5 )× 10−5eV2, |∆m2
31| = (2.50± 0.09)× 10−3eV2, (14)

sin2 θν12 = (3.20+0.59
−0.47)× 10−1, sin2 θν23 = (5.47+0.52

−1.02)× 10−1, sin2 θν13 = (2.160+0.25
−0.20)× 10−2,

where range of errors is 3σ.
The fermion masses and mixing are fitted by defining

χ2 =
(mq −mmodel

q )2

σ2
mq

+
(m` −mmodel

` )2

σ2
m`

+
(sin θij − sin θmodel

ij )2

σ2
sin θij

+
(sin 2β − sin 2βmodel)2

σ2
sin 2β

(15)

+
(α− αmodel)2

σ2
α

+
(γ − γmodel)2

σ2
γ

+
(∆m2

21 −∆m2 model
21 )

σ2
∆m2

21

+
(∆m2

31 −∆m2 model
31 )

σ2
∆m2

31

+
(sin θνij − sin θν model

ij )2

σsin θνij

where q = u, d, c, s, t, b, ` = e, µ, τ and i, j = 1, 2, 3.
The weak phases of the CKM matrix in the standard choice are given by,

βmodel = arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
, αmodel = arg

(
−
VtdV

∗
tb

VudV
∗
ub

)
, γmodel = arg

(
−
VudV

∗
ub

VcdV
∗
cb

)
. (16)

The dimensionless coefficients yu,d,`ij = |yu,d,`ij |eiφ
q,`
ij are scanned with |yu,d,`ij | ∈ [0.5, 4π] and φq,`ij ∈

[0, 2π], and corresponding coefficients for leptonic sector yνij = |yνij |e
iφνij are scanned with |yνij | ∈

[0.5, 4π] and φνij ∈ [0, 2π].
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The result of fitting is,

{|yu11|, |yu12|, |yu13|, |yu21|, |yu22|, |yu23|, |yu31|, |yu32|, |yu33|} = {0.55, 0.67, 0.54, 1.48, 1.09, 1.1, 1.42, 0.54, 0.97},
{φu11, φ

u
12, φ

u
13, φ

u
21, φ

u
22, φ

u
23, φ

u
31, φ

u
32, φ

u
33} = {3.39, 1.05, 0.72, 1.41, 3.71, 3.56, 3.47, 0.98, 5.05},

{|yd11|, |yd12|, |yd13|, |yd21|, |yd22|, |yd23|, |yd31|, |yd32|, |yd33|} = {1.62, 2.17, 2.22, 2.16, 0.5, 1.17, 1.47, 0.52, 1.34},
{φd11, φ

d
12, φ

d
13, φ

d
21, φ

d
22, φ

d
23, φ

d
31φ

d
32, φ

d
33} = {4.72, 5.91, 4.37, 0.52, 2.49, 5.70, 1.93, 1.63, 3.87},

{|y`11|, |y`12|, |y`13|, |y`21|, |y`22|, |y`23|, |y`31|, |y`32|, |y`33|} = {4.27, 12.57, 12.57, 12.47, 1.33, 10.63, 0.95, 0.5, 0.5},
{φ`11, φ

`
12, φ

`
13, φ

`
21, φ

`
22, φ

`
23, φ

`
31, φ

`
32, φ

`
33} = {5.08, 5.31, 0.77, 0.64, 2.51, 1.45, 5.28, 1.02, 0.76},

{|yν11|, |yν12|, |yν13|, |yν21|, |yν22|, |yν23|, |yν31|, |yν32|, |yν33|} = {11.99, 12.57, 2.68, 0.50, 0.5, 12.57, 0.5, 1.03, 0.56},
{φν11, φ

ν
12, φ

ν
13, φ

ν
21, φ

ν
22, φ

ν
23, φ

ν
31, φ

ν
32, φ

ν
33} = {0.46, 5.22, 2.65, 3, 1.87, 6.16, 5.05, 3.90, 3.64},

ε1 = 8.54× 10−6, ε2 = 3.75× 10−3, ε3 = 0.89, ε4 = 2.28× 10−5, ε5 = 4.29× 10−4, ε6 = 1.04× 10−2,

ε = 9.99× 10−11, δ = 1.196, χ2
min = 4.61, (17)

where δ is the Dirac CP phase of the CKM matrix.

2.3 Scalar potential of the HVM

In the absence of interactions among Higgs doublet and singlet scalar fields, there is a global SU(7)
symmetry in the scalar sector such that the fields χi of the HVM can be accommodated in its funda-
mental representation as shown below,

χ =



χ1

χ2

χ3

χ4

χ5

χ6

χ7


. (18)

Hence, the scalar potential is written as,

V = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 + µ2
1χ
†χ+ λ1(χ†χ)2 + λ2ϕ

†ϕχ†χ+ V1, (19)

where

V1 = ρ1(χ3
1 + χ†31 ) + ρ2(χ3

2 + χ†32 ) + ρ3(χ3
3 + χ†33 ) + ρ4(χ3

4 + χ†34 ) + ρ5(χ3
5 + χ†35 ) (20)

+ ρ6(χ3
6 + χ†36 ) + ρ7(χ3

7 + χ†37 )

where the term V1 breaks global symmetries softly2.
We parametrize the VEVs of the fields χi in the following way:

〈χi〉 =
1√
2

(vi + si + ai). (21)

2The term V1 may be originated from a gauged symmetry which is broken at a higher scale. Introducing soft-breaking
terms is also justified from the cosmological point since it will avoid the domain-wall problem.
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The potential is analysed in the limit where there is no mixing among the Higgs field and the fields
χi

3. This is equivalent of putting λ2 = 0. The parameters µ and ρi can be eliminated by the following
minimization conditions obtained by imposing v, vi to be the absolute minimum:

µ2 = −λv2, v1 = −
√

2
(
µ2

1 + λ1ω
2
)

3ρ1
, v2 = −

√
2
(
µ2

1 + λ1ω
2
)

3ρ2
, v3 = −

√
2
(
µ2

1 + λ1ω
2
)

3ρ3
, (22)

v4 = −
√

2
(
µ2

1 + λ1ω
2
)

3ρ4
, v5 = −

√
2
(
µ2

1 + λ1ω
2
)

3ρ5
, v6 = −

√
2
(
µ2

1 + λ1ω
2
)

3ρ6
, v7 = −

√
2
(
µ2

1 + λ1ω
2
)

3ρ7
,

where ω2 = v2
1 + v2

2 + v2
3 + v2

4 + v2
5 + v2

6 + v2
7.

Thus we observe a seesaw-like relation between the VEVs of the fields χi and the corresponding
soft breaking term, i.e.,

vi ∝
1

ρi
. (23)

The mass matrix of CP even components of the fields χi is constructed by computing the second

derivatives M2
ij =

∂2V

∂vi∂vj
, and is given as,

M2
s =



λ1d11 − µ2
1 2λ1v1v4 2λ1v1v5 2λ1v1v2 2λ1v1v6 2λ1v1v3 2λ1v1v7

2λ1v1v4 −λ1d22 − µ2
1 2λ1v4v5 2λ1v2v4 2λ1v4v6 2λ1v3v4 2λ1v4v7

2λ1v1v5 2λ1v4v5 −λ1d33 − µ2
1 2λ1v2v5 2λ1v5v6 2λ1v3v5 2λ1v5v7

2λ1v1v2 2λ1v2v4 2λ1v2v5 −λ1d44 − µ2
1 2λ1v2v6 2λ1v2v3 2λ1v2v7

2λ1v1v6 2λ1v4v6 2λ1v5v6 2λ1v2v6 −λ1d55 − µ2
1 2λ1v3v6 2λ1v6v7

2λ1v1v3 2λ1v3v4 2λ1v3v5 2λ1v2v3 2λ1v3v6 −λ1d66 − µ2
1 2λ1v3v7

2λ1v1v7 2λ1v4v7 2λ1v5v7 2λ1v2v7 2λ1v6v7 2λ1v3v7 −λ1d77 − µ2
1


.

(24)
where

d11 = (2v2
1 − ω2), (25)

d22 = (ω2 − 2v2
4),

d33 = (ω2 − 2v2
5),

d44 = (ω2 − 2v2
2),

d55 = (ω2 − 2v2
6),

d66 = (ω2 − 2v2
3),

d77 = (ω2 − 2v2
7).

The mass square eigenvalues of the mass matrix are given by,

m2
S1−6

= −µ2
1 − λ1(v2

3 + v2
7) +O(

v2
1

v2
3

), (26)

m2
S7

= −µ2
1 + λ1(v2

3 + v2
7) +O(

v2
1

v2
3

).

3This is done for purely phenomenological purpose keeping in mind that the discovered Higgs at the LHC is behaving
like the SM Higgs boson. However, an origin of this assumption will be provided when we discuss a TC origin of the HVM.
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The mass matrix of the CP odd components of the scalar fields is diagonal, and masses of pseudo
scalar states are,

m2
A1−7

=
3

2
(µ2

1 + λ1ω
2) (27)

In the phenomenological investigation, the parameter µ1 can be traded with the mass of either a scalar
or a pseudo-scalars.

We note that the conditions given in the eq. 22 are not sufficient for the absolute minimum. In
addition to this, the Jacobian is needed to be positive which requires that mass-squared eigenvalues
must be positive. This requirement leads to the condition λ1 > 0.

2.4 A UV completion of the HVM

For obtaining a UV completion of the HVM, we employ vector-like fermions which are an active field
of research and appears various extensions of the SM[51]-[54, 55]. Thus, we introduce following
vector-like fermionic fields transforming under the SM symmetry SU(3)c × SU(2)L × U(1)Y as,

FL,R : U iL,R : (3, 1,
4

3
), Di

L,R : (3, 1,−2

3
), N i

L,R : (1, 1, 0), EiL,R : (1, 1,−2), (28)

where i = 1, 2, 3.
The transformations of above fields under the Z2, Z ′2 and Z ′′2 symmetries are shown in table 2.

Fields Z2 Z ′2 Z ′′2
U1
L,R, N

1
L,R, D

1
L,R, E

1
L,R + + -

U2
L,R, N

2
L,R, D

2
L,R, E

2
L,R + - +

U3
L,R, N

3
L,R, D

3
L,R, E

3
L,R - + +

Table 2: The charges of vector-like fermions under Z2, Z ′2 and Z ′′2 symmetries.

The interactions of vector-like fermions with the SM fermions are given by,

L = yiuψ̄
i
Lqϕ̃U

i
R + yidψ̄

i
LqϕD

i
R + yiνψ̄

i
L`ϕ̃N

i
R + yi`ψ̄

i
L`ϕE

i
R + H.c.. (29)

The singlet scalar fields interact with vector-like fermions and the singlet fermions of the SM through
the following Lagrangian,

L = hui Ū
i
Lχiψ

u
R + hdi D̄

i
Lχiψ

d
R + h`iĒ

i
Lχiψ

`
R + hνi N̄

i
Lχiψ

ν
R + H.c, (30)

where u = uR, cR, tR, d = dR, sR, bR, ` = eR, µR, τR and ν = νeR , νµR , ντR .
The masses of new fermions are derived from the Lagrangian,

L = M i
U Ū

i
LU

i
R +M i

DD̄
i
LD

i
R +M i

N N̄
i
LN

i
R +M i

M N̄
ci
L,RN

i
L,R +M i

EĒ
i
LE

i
R + H.c.. (31)

3 Technicolour origin of the HVM

In this section, we shall discuss how the hierarchical VEVs can be obtained in a TC framework. The
well known problem of the standard TC models is the presence of large FCNC effects. This is related to

9



the mass generation mechanism of the TC models. For instance, the mass of an SM fermion is written
as,

mf ∝
Λ3

TC

Λ2
ETC

, (32)

where ΛETC shows the scale of the extended TC (ETC) gauge sector and ΛTC denotes the TC mass scale.
For the suppression of the FCNC effects, the ΛETC must be very high that will result in an unrealistic
top quark mass.

The hierarchical VEVs may appear in the framework of dynamical symmetry breaking where the
hypothesis of the most attractive channel (MAC) creates favourable energy scales in the form of chiral
condensates[56]. The MAC hypothesis is extended to the multi-fermion case and is referred to as the
extended MAC scenario (EMAC)[57, 58].

In the EMAC scenario, the most attractive channel for the two-body system for an SU(N) gauge
theory is the ψ̄LψR state, and the state (ψ̄LψR)n turns out to be the most attractive channel as n
approaches to a larger value. The energy associated with a multi-fermion condensation is given as[57,
58],

Ē(n) =
1

n
E(ψ̄

n/2
L ψ

n/2
R ) . V LL

E

N2 − 1

N
− V LL

M

N − 1

N
, (33)

where V LL
E and V LL

M are the electric and magnetic part of the Hamiltonian of two fermions system.
We observe that the multi fermion systems become more attractive for the larger values of n

resulting the hierarchical structure for the multi fermion condensations:

〈ψ̄LψR〉 << 〈ψ̄Lψ̄LψRψR〉 << 〈ψ̄Lψ̄Lψ̄LψRψRψR〉 << · · · . (34)

This hierarchy can be parametrized as[58],

〈(ψ̄LψR)n〉 ∼
(
Λ exp(k∆χ)

)3n
, (35)

where ∆χ denotes the chirality of an operator, k a constant and Λ shows the scale of the underlying
gauge theory.

This results in the breaking of an axial U(1) symmetry in a hierarchical pattern[58],

U(1)A → Zm → · · · → Z8 → Z6 → Z4 → Z2, (36)

where the first step of the breaking is caused by the instanton effects.
Before we begin to construct our TC framework, we recall an important ad hoc assumption which

we made while analysing the scalar potential of the HVM. In the section 2.3, we assumed that the
mixing between the Higgs field and the singlet scalar fields must be very small owing to the observed
fact that the discovered Higgs boson is behaving like the SM Higgs boson so far. This is equivalent to
saying that λ2 ≈ 0.

This fact may be a guiding principle for building models beyond the SM. Moreover, this may be the
first hint that the Higgs field is not a fundamental scalar field. The reason is that almost all the beyond
the SM theories contain extra scalar fields. These extra fields always mix with the SM Higgs field.
If these scalar fields are fundamental, then their interaction coupling has to be chosen very small to
make it compatible with the discovered Higgs data without providing a theoretical reason. However,
if these scalar fields are bound states of some new strong forces, then there is a possible mechanism,
as we shall show in the following discussion, to suppress the mixing between the Higgs field and the
additional scalar fields.
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We shall now present a TC origin of the HVM by using EMAC scenario with a new mechanism of
associating different VEVs to different fermions among and within the families. This mechanism is
inspired by the mechanism discussed in ref.[59] for identifying generations of fermions in a different
context.

As discussed above, the mixing between the SM Higgs field and singlet scalar fields must be very
small to satisfy the discovered Higgs data. This can be achieved if the Higgs field is a bound state
of a TC force and singlet scalar fields are bound states of a different TC force. Moreover, these two
different TC forces are accommodated in a common ETC theory. Then mixing between the Higgs field
and singlet scalar fields will be mediated by the ETC gauge sector. Hence, it is suppressed atleast by
the factor 1/Λ2

ETC resulting extremely small values for the quartic coupling λ2. This is the reason and
motivation for us to introduce two TC symmetries SU(NTC) and SU(NDTC), where DTC stands for
“dark TC" in our model.

Moreover, it is assumed that the vector-like fermions FL,R correspond to a different QCD-like gauge
group SU(NF ). Thus our model is a strongly interacting sector based on SU(NTC) × SU(NDTC) ×
SU(NF ) symmetry.

Our TC model contains only one doublet of fermions of Weinberg[13] and Susskind[14] models
transforming under SU(3)c × SU(2)L × U(1)Y × SU(NTC)× SU(NDTC)× SU(NF ) as,

Tq ≡

(
T
B

)
L

: (1, 2, 0, NTC , 1, 1), (37)

TR : (1, 1, 1, NTC , 1, 1), BR : (3, 1,−1, NTC , 1, 1),

where electric charges +1
2 for T and −1

2 for B.
For the DTC symmetry our model is,

Diq ≡ CiL,R : (1, 1, 1, 1, NDTC , 1), SiL,R : (1, 1,−1, 1, NDTC , 1), (38)

where i = 1− 6 and electric charges +1
2 for C and −1

2 for S.
The symmetry SU(NF) have the following fermions,

FL,R ≡ U iL,R ≡ (3, 1,
4

3
, 1, 1, NF ), Di

L,R ≡ (3, 1,−2

3
, 1, 1, NF ), (39)

N i
L,R ≡ (1, 1, 0, 1, 1, NF ), EiL,R ≡ (1, 1,−2, 1, 1, NF ),

where i = 1, 2, 3.
It is obvious that we have a global SU(12)L × SU(12)R × U(1) flavour symmetry corresponding

to the SU(N)DTC . Furthermore, there exits an extra U(1)XDTC axial symmetry for the SU(NT )DTC
gauge group. We further assume that the SM fermions, techniquarks and vector-like fermions can be
further embedded in an ETC group GETC where GETC is not known yet.

Moreover the U(1)XDTC axial symmetry is broken by instantons of dark TC force leading to non
vanishing VEV for a 2K-fermion operator having XDTC = 2K quantum number where K is the
number of flavours[59]. This operator does not have any other quantum number such as colour or
flavour resulting the breaking of the U(1)XDTC axial symmetry to Z2K conserved subgroup. This
breaking provides us conserved axial quantum numbers XDTC modulo 2K[59].

We can now form composite operators corresponding to the singlet scalar fields χi which can be
associated with different SM fermions among and within the generations. These operators must carry
non-vanishing global axial charge XDTC which is conserved modulo 2K. These charges of DTC and
SM fermions under U(1)XDTC symmetries are defined in table 3.
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Fields U(1)XDTC
C̄iL, N̄ i

L, S̄
i
L, Ē iL 1

CiR,N i
R, S

i
R, E iR 1

ψ̄1
L - 2
ψ̄2
L - 10
ψ̄3
L - 18

ψuR 0
ψdR 4

Table 3: The additive charges of left- and right-handed SM and DTC fermionic fields under U(1)XDTC
symmetry.

Thus the breaking of the U(1)DTC axial symmetry undergoes the following steps,

U(1)XDTC
→ Z24 → Z22 → Z20 → Z18 → Z16 → Z14 → Z12 → Z10 → Z8 → Z6 → Z4 → Z2, (40)

where the first breaking is caused by the instantons effects.
For instance, the following hierarchical condensates may be created which are subject to the im-

position of Z2, Z ′2 and Z ′′2 symmetries,

〈C̄LCR〉 << 〈(C̄LCR)3〉 << 〈(C̄LCR)5〉 << 〈(C̄LCR)7〉 << 〈(C̄LCR)9〉. (41)

We can identify the operator (C̄LCR)9 having XDTC = 18 with the field χ3, the operator (C̄LCR)7

having XDTC = 14 with the field χ6, the operator (C̄LCR)5 having XDTC = 10 with the field χ2, the
operator (C̄LCR)3 having XDTC = 6 with the field χ5 and the operator C̄LCR having XDTC = 2 with
the field χ1. The field χ4 is an operator of the form C̄RCL having XDTC = −2.

Thus, we have obtained five energy scales, discussed in section 1, which can distinguish the SM
fermions within and among generations resulting an explanation for the fermionic mass spectrum of
the SM.

Figure 1: On the left we show ETC gauge boson interaction with the techiquarks, vector-like fermions
and the SM fermions. The contribution to the mass of the u-quark is shown on the right.

The creation of dimension-5 operators of the HVM and mass generation of u-quark through them
is shown in fig.1. On energy scales much lower than the ETC scale, the following effective six-fermions
interaction will be produced,

β̄ij
T̄ γµd̄

iC̄f̄fTγµd̄jC
Λ4

ETCΛF
, (42)

where β are coefficients related to the underlying ETC theory. The chiral factors are hidden in dis.
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By performing Fierz rearrangement we obtain,

βij
T̄ diT C̄djCf̄f

Λ4
ETCΛF

. (43)

The mass of the SM fermion, for instance the mass of the u-quark, can be approximated as,

mf ∝ β
Λ3

TC

Λ2
ETC

1

ΛF

Λ3
DTC

Λ2
ETC

exp(2k), (44)

where ΛF is the mass scale of the vector-like fermion.
In a similar way, one can obtain masses of the other fermions. In figure 2, we show the interactions

which are responsible for providing mass to the s-quark.

Figure 2: Interactions of the s-quark, TC and DTC fermions with the ETC gauge sector are shown on
the left. The s-quark mass is generated from these interactions on the right. Here, nameless solid lines
represent DTC fermions.

In summary, the masses of the SM fermions assuming β = 1 can be written using equation 35, and
are,

mu = yu
Λ3

TC

Λ2
ETC

1

ΛF

Λ3
DTC

Λ2
ETC

exp(2k), mc = yc
Λ3

TC

Λ2
ETC

1

ΛF

Λ11
DTC

Λ10
ETC

exp(10k), (45)

mt = yt
Λ3

TC

Λ2
ETC

1

ΛF

Λ19
DTC

Λ18
ETC

exp(18k),md = yd
Λ3

TC

Λ2
ETC

1

ΛF

Λ3
DTC

Λ2
ETC

exp(2k),

ms = ys
Λ3

TC

Λ2
ETC

1

ΛF

Λ7
DTC

Λ6
ETC

exp(6k),mb = yb
Λ3

TC

Λ2
ETC

1

ΛF

Λ15
DTC

Λ14
ETC

exp(14k),

me = ye
Λ3

TC

Λ2
ETC

1

ΛF

Λ3
DTC

Λ2
ETC

exp(2k), mµ = yµ
Λ3

TC

Λ2
ETC

1

ΛF

Λ7
DTC

Λ6
ETC

exp(6k),mτ = yτ
Λ3

TC

Λ2
ETC

1

ΛF

Λ15
DTC

Λ14
ETC

exp(14k),

where we have assumed ∆χ = 0 for the TC and F sectors.

3.1 Scalar mass, TC and F scales

We can have some indication on the dynamics of the TC and F symmetries through the ’t Hooft large
N limit[60, 61]. Using the fact that SU(NF) is only a scaled-up QCD, the scale ΛF can be related to
the QCD scale via following scaling relation,

ΛF ∼
√

3

NF

FF
Fπ

ΛQCD. (46)
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Now assuming that SU(NTC) is a scaled-down SU(N)F, the scale ΛTC is given by,

ΛTC ∼
√

NF

NTC

FTC
FF

ΛF . (47)

Thus, we write the non-trivial scaling relation of our model,

Λ2
F ∼

√
3NTC

N2
F

F 2
F

FTCFπ
ΛTCΛQCD, (48)

which will be used to determine ΛF or FF. This equation can be written in the following form

ΛTC ∼

√
N2

F

3NTC

Λ2
F

F2
F

Fπ
ΛQCD

FTC. (49)

For ΛF ≈ FF, NTC = 3, NF = 11, we observe that the scale ΛTC is suppressed by the factor Fπ
ΛQCD

.
Such scaling relations are extensively used in literature since the beginning of the TC paradigm[62,

63]. They follow from the Nambu-Jona-Lasinio approximation in large N limit[64].
The electroweak VEV and TC decay constant are related by the following scaling rule,

FTC ∼ v
√

1

ND
≈ 246GeV, (50)

where v = 246 GeV and ND = 1.
The lightest scalar mass (which is the Higgs boson for our TC model) for a QCD-like theory should

be of the order of the dynamical mass scale of the theory[64]. For instance, in the case of QCD, it is
the σ meson whose mass is[65],

mσ ≈ 2ΛQCD. (51)

For our model, there are two such relations,

mHiggs ≈ 2ΛTC. (52)

where mHiggs = 125GeV[66, 67], and

mσF ≈ 2ΛF. (53)

This provides us the following scaling relation,

mHiggs ≈
ΛTC

ΛF
mσF . (54)

Thus we see that there is ΛTC
ΛF

suppression in the mass of the Higgs where ΛTC << ΛF.
Now the question is what ΛF is. This can be answered by assuming that the couplings of ΛTC and

ΛF are given by a larger unified theory such as a GUT with the unification condition,

αTC(MGUT) = αF(MGUT) = α3(MGUT). (55)

We can now use the renormalization group evolution to determine the scale ΛF to one-loop precision
through the following equation[68],

ΛF

ΛQCD
= exp

[ 2π(βF
0 − β

QCD
0 )

βF
0 β

QCD
0 α3(MGUT)

]
, (56)
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and
ΛTC

ΛF
= exp

[ 2π(βTC
0 − βF

0 )

βTC
0 βF

0 α3(MGUT)

]
, (57)

Thus, the scale ΛF is determined by,

Λ2
F

ΛTCΛQCD
= exp

[ 2π(βF
0 − β

QCD
0 )

βF
0 β

QCD
0 α3(MGUT)

]
exp
[ −2π(βTC

0 − βF
0 )

βTC
0 βF

0 α3(MGUT)

]
(58)

where,

βQCD
0 = 11− 2

3
nf , β

TC
0 =

11NT

3
− 4

3
ND, β

F
0 =

11NF

3
− 2

3
nF, (59)

where ND are number of doublets and nf,F are number of flavours.
Now using standard choices as inputs we can determine ΛF. For instance, nf = 6, NT = 3, ND = 1,

NF = 11, nF = 12 and α3(MGUT) = 1/30, we obtain

Λ2
F

ΛTCΛQCD
= 3.57417× 1014 (60)

Thus for ΛTC = mHiggs/2 and ΛQCD = 332 MeV[49], we find ΛF = 8.68048× 107 GeV.
For Fπ = 130MeV[49], v = 246 GeV, and FTC = v, we estimate FF = 2.06352 × 108 GeV from

equation 48.
At this point, we naively estimate the asymptotic behaviour of our model. For this purpose, we

assume a standard QCD-like fermionic self-energy which is[69],

1

4
tr
(

Σf(p)
)

=
Λ3

p2

(
p

Λ

)γm
, (61)

where the anomalous mass dimension is,

γm(µ) =
2C2(R)

2π
αs(µ) +O(αs(µ)2), (62)

and C2(R) is the quadratic Casimir of the underlying non-Abelian gauge symmetry, and is given by
C2(R) = N2−1

2N for an SU(N) group. From this we can estimate the asymptotic behaviour of the masses
of the SM fermions which are given in equation 45. For TC sector, we have only one doublet, i.e., only
two flavours. Therefore the anomalous mass dimension γm(µ) << 1 when Λ ≥ ΛTC providing,

1

4
tr
(

Σf(p)
)

TC
≈

Λ3
TC

p2
. (63)

For QCD we have now 12 flavours (six ordinary quarks and six vector-like quarks from SU(NF) sector).
However, the anomalous mass dimension is still γm(µ) << 1 for Λ ≥ ΛQCD. Thus providing negligible
contribution to the masses of ordinary fermions. The same argument is also applicable for DTC sector
which contains only 12 flavours. The scale SU(NF) and ETC, as we shall show, are approximately
same. Hence, the contribution to the fermionic self-energy from the SU(NF) sector does not affect
the masses of ordinary fermions at Λ = ΛF since γm(µ) << 1 for Λ ≥ ΛF. Thus we see that the
anomalous mass dimension is always << 1 in our model escaping a walking type behaviour and
showing a QCD-like dynamics.4

4A more sophisticated calculation requires solving Schwinger-Dyson equation. This is beyond the scope of this work, and
will be presented in a future work.
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3.2 Neutrino masses

Now we discuss the Majorana mass scales. In section 2.1, we ignored the Majorana mass terms for
the left-handed neutrinos assuming it to be much smaller in comparison to that for the right-handed
neutrinos. This can be justified in the present TC model. For instance, the origin of this term is shown
in figure 3.

Figure 3: On the left we show ETC gauge boson interaction with the TC fermions TL,R and the left-
handed neutrinos. The contribution to the Majorana mass of the left-handed neutrinos is shown on
the right.

The contribution to the Majorana mass of the left-handed neutrinos can be approximately written
as,

ML ∝
Λ6
TC

ΛFΛ4
ETC

. (64)

The diagram which creates the Majorana mass for the right-handed neutrinos is shown in figure 4.

Figure 4: On the left we show ETC gauge boson interaction with the vector-like fermions FL,R and
the right-handed neutrinos. The contribution to the Majorana mass of the right-handed neutrinos is
shown on the right.

The majorana mass is produced by the state (F̄LFR)2 which can be identified with the field χ7.
Thus, the Majorana mass is,

MR ∝
Λ6
F

ΛFΛ4
ETC

, (65)

where 〈χ7〉 = 〈(F̄LFR)2〉.
The masses of light neutrinos can be written as,

mν
1 = yν1

Λ3
TC

Λ2
ETC

1

ΛF

Λ3
DTC

Λ2
ETC

exp(2k)
1

MR
, mν

2 = yν2
Λ3

TC

Λ2
ETC

1

ΛF

Λ11
DTC

Λ10
ETC

exp(10k)
1

MR
, (66)

mν
3 = yν3

Λ3
TC

Λ2
ETC

1

ΛF

Λ19
DTC

Λ18
ETC

exp(18k)
1

MR
.
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3.3 ETC scale, Fermion masses, DTC scale and Majorana mass scales

Flavour changing neutral current (FCNC) processes can be used to estimate the ETC scale ΛETC. For
instance, ∆S = 2 FCNC processes place severe bounds on the ETC scale ΛETC through the KL −KS

mass difference. After imposing this constraint, the ETC scale ΛETC turns out to be[38],

ΛETC & 103TeV. (67)

We can use the fact that our model should reproduce the fermions masses given in equation 12 to
determine the scale ΛETC and ΛDTC with the help of equation 45. This is done by assuming ΛF =
8.68048× 107 GeV and |yu,d,c,s,t,b,e,µ,τ | ∈ [0.5, 4π]. The results of the fit are,

yu = 0.59, yc = 2.19, yt = 4.85, yd = 1.33, ys = 2.21, yb = 0.89, ye = 0.5, (68)

yµ = 4.93, yτ = 0.65, yν1 = 12.27, yν2 = 12.11, yν3 = 0.54, k = −13.9886,

ΛETC = 1.1× 107GeV, ΛDTC = 2.4× 1013GeV,

MR = 3.36626× 1011GeV, χ2
min = 0.053.

From above results, we obtain ML ≈ 4.68992 × 10−17eV. Thus we see that the Majorana mass scale
for the left-handed neutrinos is extremely small, and can be ignored as we assumed in section 2.1.

3.4 TC and DTC mixing

Now we shall show that the interaction between the Higgs doublet and the singlet scalar fields should
be suppressed in our model. For instance, the term ϕ†ϕχ†1χ1 can be created through the diagram
shown in fig.5.

Figure 5: On the left eight-fermions interactions mediated by ETC neutral and charged gauge bosons
are shown. We show the creation of the term ϕ†ϕχ†1χ1 on the right.

The quartic coupling λ
ϕ†ϕχ†1χ1

approximately is,

λ
ϕ†ϕχ†1χ1

≈
Λ6

TCΛ6
DTC

Λ12
ETC

exp(4k). (69)

Using the already determined values of the scales ΛTC, ΛETC, k and ΛDTC, we find λ
ϕ†ϕχ†1χ1

=

1.81614 × 10−18. In a similar manner, we can show that the mixing of the SM Higgs field with other
DTC multi fermion condensates are highly suppressed.

3.5 TC and F mixing

We investigate now the interactions between the TC and F sectors. This can be done through the
term ϕ†ϕχ†7χ7. We write this mixing approximately in the following form,

λ
ϕ†ϕχ†7χ7

≈
Λ6

TCΛ6
F

Λ12
ETC

. (70)
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Using values of the scales ΛTC, ΛETC, and ΛF, we find λ
ϕ†ϕχ†7χ7

= 8.12513× 10−27.

3.6 Experimental constraints

3.6.1 S parameter

The obliques parameters place bounds on TC theories[70, 71]. In particular, the S parameter in
TC models may be in conflict with experimental observation. The experimental values of S and T
parameters are [72],

S = 0.00± 0.07, T = 0.05± 0.06. (71)

For strongly coupled theories, these parameters at next-to-leading-order are given by[73],

S = 4πF 2
Π

[
1

M2
V

+
1

M2
A

]
+

1

12π

(1−
M4
V

M4
A

)(
log

M2
V

M2
Higgs

− 11

6

)
+

(
M2
V

M2
A

−
M4
V

M4
A

)
log

M2
A

M2
V

 , (72)

T =
3

16π cos2 θW

(1− κ2
W )

(
1 + log

M2
Higgs

M2
V

− κ2
W log

M2
V

M2
A

) ,
where the κW =

M2
V

M2
A

parametrizes the coupling of the lightest scalar (Higgs boson ) to two gauge

bosons (W+W− or ZZ). These results are generic in nature and, can be used in specific strongly
coupled theories such as presented in this work.

In the conventional TC models, the TC dynamics is a scaled up version of the QCD dynamics.
Therefore, the masses of the vector and axial vector bosons MV,A only depend on the TC and the QCD
dynamics (mass of the QCD ρ meson). Hence, they cannot be very heavy, and provide a large value
of the S parameter which is difficult to reconcile with experimental observation [34]. In the model
presented in this work, the TC sector is not a scaled up QCD. Instead, it is a scaled down version of
the SU(N)F. This means that the masses of the vector and axial vector bosons MV,A depend on the
SU(N)F dynamics (mass of the SU(N)F ρ meson), and can be much heavier than the conventional
TC models, thus, providing a small value of the S parameter which can be in agreement with the
experimental value.

Now our objective is to determine the vector meson mass in our TC model. This can be done by
observing the following scaling relation for the F vector meson[62, 63],

mρF ≈
√

3

NF

FF

Fπ
mρQCD . (73)

In a similar manner, we can write,

mρTC ≈
√

NF

NTC

FTC

FF
mρF . (74)

Now we can write,

MV = mρTC ≈

√
N2

F

3NTC

Fπ
mρQCD

m2
ρF

F2
F

FTC, (75)

where FΠ = FTC .
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Figure 6: The variation of the S parameter as a function of the mass of the vector meson mρF for a
bench mark value κW = 1 as adopted in reference [73].

In figure 6, we show the allowed range of the S parameter for mρQCD = 775MeV and a mass range
of the vector meson above mρF = 13.2ΛF − 20ΛF using a bench mark value κW = 1 as adopted in
reference [73]. For this mass range of mρF , we obtain a range of the S parameter to be 0.01326−0.07.

In a similar manner, we determine the variation in the mass of the TC vector meson mρTC as a
function of the mass of the vector meson mρF which is shown in figure 7. The mass range of the vector
meson mρTC is approximately 4.665 − 10.71TeV for the mρF = 12.3ΛF − 20ΛF . There are direct and

Figure 7: The variation of the mass of the vector meson mρTC as a function of the mass of the vector
meson mρF .

indirect searches available for this type of vector bosons, and they exclude it mass below ≈ 1TeV at
the Large Hadron Collider [73, 74, 75, 76].
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3.6.2 Pseudo-Nambu-Goldstone bosons masses

The masses of colourless pseudo-Nambu-Goldstone bosons (PNGB) with electroweak gauge charges
originate from the gauge interactions, and can be written as,

m2
ΠTC
∼

F 2
TCδm

2
π

F 2
π sin2 θw

, (76)

where δmπ = 4.59359 MeV. This can provide mΠTC
∼ 100GeV. Moreover, we can also write the

following scaling relation for the TC PNGB meson,

mΠTC
≈

√
N2

F

3NTC

Fπ
mπQCD

m2
ΠF

F2
F

FTC. (77)

which can also give mΠTC
∼ 100GeV by assuming mΠF ≈ 0.83ΛF .

3.6.3 Scalar boson trilinear coupling

The measurement of the discovered Higgs trilinear self coupling is an important test to determine
whether it is a fundamental or a composite boson[77]. The SM trilinear Higgs boson self-coupling can
be extracted from the Lagrangian [78],

LSM
H3 = λSM

H3H
3 (78)

where

λSM
H3 =

m2
H

2v
= 0.129 . (79)

The trilinear self-coupling of the observed Higgs boson can be parametrized through the following
Lagrangian[77],

LH3 = ξλSM
H3 vH

3 , (80)

where
ξ =

λH3

λSM
H3

, (81)

where ξ quantifies the modification of the trilinear Higgs boson self-coupling. The bound on ξ is given
by the CMS Collaboration at 95% CL [79]

−3.3 < ξ < 8.5. (82)

An estimate of the trilinear self-coupling of the Higgs boson can be obtained from[77],

λH3 =
1

16π2

(
3NF

F 4
TC

)∫ Λ2
ETC

0

Σ4(p2)p4dp2

(p2 + Σ2(p2))3
, (83)

where NF are number of TC fermions and,

Σ(p2) ≈
Λ3
TC

p2
. (84)

Thus, for our numerical inputs, we obtain,

λH3 = 2.127× 10−5, (85)

which translates into
ξ = 1.164883× 10−4. (86)
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4 Summary and discussion

The flavour problem of the SM is one of the most challenging puzzles which has potential to lead to the
physics beyond the SM. In this work, we address this problem through an unconventional approach
based on the VEVs hierarchy [1]. An origin of the VEVs hierarchy is presented in a conventional non-
minimal TC model where the SM Higgs boson is a bound state of the conventional TC gauge theory,
and the gauge singlet scalar fields χi originate from a dark TC dynamics. We note that the fermions
masses are generated mainly through the DTC sector.

The Majorana mass of the right-handed neutrinos has origin in a different strong sector denoted by
F , and due to this the model is capable of explaining neutrino masses and mixing angles. The mixing
between TC and F,DTC sectors is highly suppressed, providing an explanation for the observed
behaviour of the discovered Higgs boson. Moreover, the essential experimental constraints are also
satisfied by this non-minimal TC framework.

For the multi-fermions condensates which play the role of the gauge singlet scalar fields χi, it is
assumed that the three discrete symmetries Z2, Z ′2 and Z ′′2 have an independent origin, for instance,
in three vectorial U(1)V symmetries present in the model.

We have not discussed an explicit ETC model for the non-minimal TC model of this work due to
its non-trivial nature which requires an in-depth investigation. However, we observe that in the non-
minimal TC model of this work, construction of an ETC model may be simpler than the conventional
ETC models. In the conventional ETC models, the symmetry of the model is expected to be broken
in several steps so that an explanation for the hierarchical fermion masses among generations may be
achieved. In the non-minimal TC model presented in this work, an origin as well as an explanation
for the hierarchical fermion masses arise from a DTC sector. Therefore, there is no need to break the
ETC symmetry in several steps.
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A Outline of a possible ETC model

We comment here now about an important implication of the model. The vector-like fermions are
assumed to be associated with the group SU(NF) whose scale is ΛF. We have chosen this group for the
present work. However, it could be any other symmetry. It turns out that the ETC scale and the scale
ΛF are approximately same in our model. Therefore, the symmetry SU(NF) can be identified with
that of the ETC symmetry, and vector-like fermions FL,R are in fact ETC fermions. This observation
can help in guessing a possible outline of an ETC model.

Considering above observation, the symmetry of our model becomes a minimal symmetry, i.e.
SU(3)c × SU(2)L × U(1)Y × SU(NTC)× SU(NDTC) where TC sector is,

Tq ≡

(
T
B

)
L

: (1, 2, 0, NTC , 1), (87)

TR : (1, 1, 1, NTC , 1), BR : (3, 1,−1, NTC , 1),

where electric charges +1
2 for T and −1

2 for B.
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We note that the ETC gauge boson should interact with TC and DTC sector simultaneously so that
maases of the SM fermions can be recovered in the model. For this reason, the DTC fermions are also
charged under TC sector,

Diq ≡ CiL,R : (1, 1, 1, NTC , NDTC), SiL,R : (1, 1,−1, NTC , NDTC), (88)

where i = 1− 6 and electric charges +1
2 for C and −1

2 for S. The asymptotic freedom in the TC sector
can be ensured by taking a large value of NTC such that the anomalous mass dimension γm(µ) << 1
when Λ ≥ ΛTC.

The vector-like fermions FL,R are now belong to ETC sector which is represented by the group
SU(NF) in the model. These are,

FL,R ≡ U iL,R ≡ (3, 1,
4

3
, 1, 1, NF ), Di

L,R ≡ (3, 1,−2

3
, 1, 1, NF ), (89)

N i
L,R ≡ (1, 1, 0, 1, 1, NF ), EiL,R ≡ (1, 1,−2, 1, 1, NF ),

where i = 1, 2, 3.
Thus, the underlying symmetry of our model may be of the type,

SU(NDTC)×GETC, (90)

where GETC contains the SM and TC symmetries in such a way that the SM, TC fermions (which
include DTC fermions as well) live in a single irreducible representation of GETC. For instance,

ψETC ≡

(
f

T (D)

)
, (91)

where f represents the SM fermions. GETC symmetry breaks down to the TC sector at the energy
scale ΛETC. A detailed investigation of the GETC symmetry is beyond the scope of this work, and will
be studied in a future work.

B An alternative HVM

We discuss a scenario where we have only three fields Fi to create three different energy scales to ac-
count for the mass hierarchy among the fermionic families. The mass hierarchy within the fermionic
families can be recovered from the electroweak scale itself if we perform electroweak symmetry break-
ing through the two Higgs doublets where the first doublet only couples to the down type fermions
and the second doublet couples to the up type fermions. Thus we have a type II two Higgs doublet
model extended by four gauge singlet scalar fields.

We begin with four singlet scalar fields χi and χ′1 transforming under the SM symmetry SU(3)c ×
SU(2)L × U(1)Y as,

χi, χ
′
1 : (1, 1, 0), (92)

where i = 1, 2, 3 in general, and two SM Higgs doublets ϕ1 and ϕ2.
In addition to this, we add three discrete Z2 symmetries to the SM as described in the table 4. The

masses of fermions now originate from dimension-5 operators which are,

L =
1

Λ

(
yuijψ̄

q,i
L ϕ̃2ψ

u,j
R χi + ydijψ̄

q,i
L ϕ1ψ

d,j
R χi + y`ijψ̄

`,i
L ϕ1ψ

`,j
R χi + hdijψ̄

q,1
L ϕ2ψ

d,j
R χ′1 (93)
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+ h`ijψ̄
`,1
L ϕ2ψ

`,j
R χ′1

)
+ H.c.,

where ψq,`,iL are the SM quark and leptonic doublets with i = 1, 2, 3 family indices, ψuR = uR, cR, tR, ψ
d
R =

dR, sR, bR, and ψ`R = eR, µR, τR.

Fields Z2 Z ′2 Z ′′2
uR, cR, tR, νeR , νµR , ντR - + -
dR, sR, bR, eR, µR, τR + - +

χ1 + - +
χ′1 - + -
χ2 - + +
χ3 + + -
ψ1
L + - +
ψ2
L - + +
ψ3
L + + -
ϕ1 + - +
ϕ2 - + -

Table 4: The charges of left- and right-handed fermions, Higgs doublets and gauge singlet scalar fields
under Z2, Z ′2 and Z ′′2 symmetries.

The mass matrices of up, down type quarks and charged leptons can be written as,

MU =
v2√

2

 yu11ε1 yu12ε1 yu13ε1
yu21ε2 yu22ε2 yu23ε2
yu31ε3 yu32ε3 yu33ε3

 ,

MD =
1√
2

 (v1y
d
11 + v2h

d
11)ε1 (v1y

d
12 + v2h

d
12)ε1 (v1y

d
13 + v2h

d
13)ε1

v1y
d
21ε2 v1y

d
22ε2 v1y

d
23ε2

v1y
d
31ε3 v1y

d
32ε3 v1y

d
33ε3

 ,

M` =
1√
2

 (v1y
`
11 + v2h

`
11)lε1 (v1y

`
12 + v2h

`
12)ε1 (v1y

`
13 + v2h

`
13)ε1

v1y
`
21ε2 v1y

`
22ε2 v1y

`
23ε2

v1y
`
31ε3 v1y

`
32ε3 v1y

`
33ε3

 ,

where 〈ϕ1〉 = v1, 〈ϕ2〉 = v2, ε1,2,3 =
〈χ1,2,3〉

Λ
, and Λ is an unknown scale. Moreover, we have assumed

〈χ1〉 = 〈χ′1〉.
The masses of charged fermions can approximately be written as,

mt ≈ |yu33|ε3v2/
√

2, mc ≈ |yu22 −
yu23y

u
32

yu33

|ε2v2/
√

2,

mu ≈ |yu11 −
yu12y

u
21

mc
ε2v2/

√
2− yu13(yu31y

u
22 − yu21y

u
32)− yu31y

u
12y

u
23

mcmt
ε2ε3v

2
2/2| ε1v2/

√
2,

mb ≈ |yd33|ε3v1/
√

2, ms ≈ |yd22 −
yd23y

d
32

yd33

|ε2v2/
√

2,

md ≈ |(v1y
d
11 + v2h

d
11)ε1 −

(v1y
d
12 + v2h

d
12)yd21v1ε1ε2

ms

√
2

23



− (v1y
d
13 + v2h

d
13)(yd31y

d
22 − yd21y

d
32)v2

1ε1ε2ε3 − yd31(v1y
d
12 + v2h

d
12)yd23v

2
1ε1ε2ε3

2msmb
| /
√

2,

mτ ≈ |y`33|ε3v1/
√

2, mµ ≈ |y`22 −
y`23y

`
32

y`33

|ε2v2/
√

2,

me ≈ |(v1y
`
11 + v2h

`
11)ε1 −

(v1y
`
12 + v2h

`
12)y`21v1ε1ε2

mµ

√
2

− (v1y
`
13 + v2h

`
13)(y`31y

`
22 − y`21y

`
32)v2

1ε1ε2ε3 − y`31(v1y
`
12 + v2h

`
12)y`23v

2
1ε1ε2ε3

2mµmτ
| /
√

2, (94)

The mass hierarchy among the three fermionic families is achieved when fields χi acquire VEVs in
such a way that 〈χ3〉 >> 〈χ2〉 >> 〈χ1〉. The mass hierarchy within the second and third fermionic
families is created by the assuming 〈ϕ2〉 >> 〈ϕ1〉. The quark mixing angles approximately are,

sin θ12 ' |Vus| '
ε1
ε2

∣∣∣∣∣(v1y
d
12 + v2h

d
12)

yd22v1
− yu12

yu22

∣∣∣∣∣ , sin θ23 ' |Vcb| '
ε2
ε3

∣∣∣∣∣yd23

yd33

− yu23

yu33

∣∣∣∣∣ ,
sin θ13 ' |Vub| '

ε1
ε3

∣∣∣∣∣(v1y
d
13 + v2h

d
13)

v1yd33

− yu12y
d
23

yu22y
d
33

− yu13

yu33

∣∣∣∣∣ . (95)

B.1 Neutrino masses and oscillation parameters

The Lagrangian for Dirac masses for neutrinos can be written as,

LMD =
1

Λ
yνijψ̄

`,i
L ϕ̃2ψ

ν,j
R χi + H.c., (96)

where ψνR = νeR , νµR , ντR .
The Dirac mass matrix is now written as,

MN =
v√
2

 yν11ε1 yν12ε1 yν13ε1
yν21ε2 yν22ε2 yν23ε2
yν31ε3 yν32ε3 yν33ε3

 . (97)

The Majorana Lagrangian reads,

LMR
= Mij ν̄ciνj (98)

The masses of neutrinos now can be determined using type-I seesaw mechanism[41] providing fol-
lowing mass matrix of the light neutrinos,

M = −MDM−1
R M

T
D, (99)

whereMD <<MR is assumed. The light neutrino masses approximately are,

m3 ≈ |yν33|ε3 ε′, m2 ≈ |yν22 −
yν23y

ν
32

yν33

|ε2 ε′,

m1 ≈ |yν11 −
yν12y

ν
21

m2
ε2v2/

√
2− yν13(yν31y

ν
22 − yν21y

ν
32)− yν31y

ν
12y

ν
23

m2m3
ε2ε3v

2
2/2| ε1 ε′, (100)
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where ε′ = v2/
√

2M and M is a generic Majorana scale. The leptonic mixing angles are approximately
found to be,

sin θ12 ≈ ε1
ε2

∣∣∣∣∣(v1y
`
12 + v2h

`
12)

y`22v1
− yν12

yν22

∣∣∣∣∣ , sin θ23 ≈
ε2
ε3

∣∣∣∣∣y`23

y`33

− yν23

yν33

∣∣∣∣∣ ,
sin θ13 ≈ ε1

ε3

∣∣∣∣∣(v1y
`
13 + v2h

`
13)

v1y`33

− yν12y
`
23

yν22y
`
33

− yν13

yν33

∣∣∣∣∣ . (101)

We note that sin θ13 is smaller relative to sin θ23 and sin θ12. However, it could be of the order of the
Cabibbo angle due to the enhancement coming from the term v2/v1.

B.2 Benchmark points for fermionic masses, quark-mixing and neutrino oscillation
parameters

The following bench marks points can reproduce masses and mixing of fermions fairly,

{|yu11|, |yu12|, |yu13|, |yu21|, |yu22|, |yu23|, |yu31|, |yu32|, |yu33|} = {5.5, 12.56, 12.57, 8.92, 0.1, 1.97, 7.65, 0.35, 1.52},
{φu11, φ

u
12, φ

u
13, φ

u
21, φ

u
22, φ

u
23, φ

u
31, φ

u
32, φ

u
33} = {0.76, 5.1, 1, 5.62, 0.21, 5.13, 0.29, 6.23, 0.81},

{|yd11|, |yd12|, |yd13|, |yd21|, |yd22|, |yd23|, |yd31|, |yd32|, |yd33|} = {3.86, 8.76, 6.68, 12.17, 0.1, 12.57, 2.92, 4.35, 5.60},
{φd11, φ

d
12, φ

d
13, φ

d
21, φ

d
22, φ

d
23, φ

d
31φ

d
32, φ

d
33} = {4.39, 1.67, 2.89, 1.98, 0, 0.81, 1.87, 4.28, 5.79},

{|y`11|, |y`12|, |y`13|, |y`21|, |y`22|, |y`23|, |y`31|, |y`32|, |y`33|} = {5.62, 12.57, 9.44, 2.95, 0.1, 12.57, 0.1, 0.25, 0.14},
{φ`11, φ

`
12, φ

`
13, φ

`
21, φ

`
22, φ

`
23, φ

`
31, φ

`
32, φ

`
33} = {1.71, 2.86, 1.36, 1.89, 3.18, 1.8, 3.88, 1.98, 5.59},

{|h`11|, |h`12|, |h`13|} = {7.9, 12.57, 8.40}, {δ`11, δ
`
12, δ

`
13} = {0.03, 2.81, 1.26},

{|hd11, |hd12, |hd13|} = {9.63, 12.57, 2.59}, {δd11, δ
d
12, δ

d
13} = {5.27, 4.05, 3.71},

{|yν11|, |yν12|, |yν13|, |yν21|, |yν22|, |yν23|, |yν31|, |yν32|, |yν33|} = {1.22, 12.57, 3.07, 4.2, 0.1, 12.57, 7.90, 0.29, 0.49},
{φν11, φ

ν
12, φ

ν
13, φ

ν
21, φ

ν
22, φ

ν
23, φ

ν
31, φ

ν
32, φ

ν
33} = {4.57, 4.6, 1.86, 4.47, 1.78, 3.78, 4.62, 3.74, 1.29},

ε1 = 7.26179× 10−6, ε2 = 6.7452× 10−3, ε3 = 0.585162, δ = 1.196,

v1 = 1GeV, v2 = 245.998GeV, (102)

where δ is the Dirac CP phase of the CKM matrix.
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