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Abstract
Each irreducible representation of the affine group of a finite field has a unique maximal
inductive algebra, and it is self-adjoint.
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1 Introduction

Let G be a separable locally compact group and π an irreducible unitary representation of
G on a separable Hilbert spaceH. Let B(H) denote the algebra of bounded operators onH.
An inductive algebra is a weakly closed abelian sub-algebra A of B(H) that is normalized
by π(G), i.e., π(g)Aπ(g)−1 = A for each g ∈ G. If we wish to emphasize the dependence
on π , we will use the term π -inductive algebra. A maximal inductive algebra is a maximal
element of the set of inductive algebras, partially ordered by inclusion.

The identification of inductive algebras can shed light on the possible realizations ofH as
a space of sections of a homogeneous vector bundle (see e.g. [7–10]). For self-adjoint maxi-
mal inductive algebras there is a precise result known as Mackey’s Imprimitivity Theorem,
as explained in the introduction to [7]. Inductive algebras have also found applications in
operator theory (see e.g. [3, 4]).

In [6], it was shown that finite dimensional inductive algebras for a connected group are
trivial. However, there are interesting inductive algebras for finite groups (see e.g. [5]). In this
note, we classify the maximal inductive algebras for the representations of the affine group
(the “ax + b” group) of a finite field.

In Sect. 2, we recall the structure of the affine group of a finite field, and set up the notation.
In Sect. 3, we recall its representation theory, and formulate our main result. The main result
is proved in Sect. 4.

B Promod Sharma
promodsharma.rs.mat18@itbhu.ac.in

1 Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University),
Varanasi 221005, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13370-022-00986-x&domain=pdf
http://orcid.org/0000-0002-0516-6398


46 Page 2 of 4 P. Sharma, M. K. Vemuri

2 The affine group of a finite field

Let k be a finite field of order q = pn , where p is prime. Let k× denote the multiplicative
group of non-zero elements of k. Recall that the affine group of k is the group G of affine
automorphisms of k. Thus an element g of G is a map g : k → k of the form g(x) = ax + b
where a ∈ k× and b ∈ k, and the group law is composition. The group G may be identified
with the group of matrices {[

a b
0 1

] ∣∣∣∣ a ∈ k×, b ∈ k

}
.

Let ι : k → G, p : G → k× and s : k× → G be defined by

ι(b) =
[
1 b
0 1

]
, p

([
a b
0 1

])
= a, and s(a) =

[
a 0
0 1

]
.

Then ι, p and s are homomorphisms, ι(k) � G and

0 k
ι

G
p

s
k× 1

is an exact sequence with splitting s. Thus G is a semidirect product k×
� k. We note for

future reference that s(a′)ι(b)s(a′)−1 = ι(a′b).

3 The representations and their inductive algebras

The irreducible unitary representations of G may be constructed using the Mackey machine
(see [1,Sect. 3.9]). There are q − 1 characters (one-dimensional representations), and one
(q − 1)-dimensional representation (up to unitary equivalence).

Obviously, the characters have only the trivial inductive algebra C, which is self-adjoint.
The (q − 1)-dimensional representation is

π = IndGι(k)χ,

where χ : k → C
× is a non-trivial homomorphism (i.e. χ �≡ 1). Let H denote the Hilbert

space of all complex-valued functions on k× equipped with the inner product

〈F1, F2 =
∑
a′∈k×

F1(a
′)F2(a′).

The representation π may be realized on H by

(π(g)F)(a′) = χ(a′b)F(a′a), g = ι(b)s(a).

For each ϕ ∈ H, let mϕ : H → H be defined by mϕ(F) = ϕF . Let

B = {mϕ | ϕ ∈ H}.
Then B is a maximal-abelian subalgebra of B(H), and B is π-inductive. Therefore B is a
maximal π-inductive algebra. Moreover, it is self-adjoint. Our main result is the following
theorem.

Theorem 1 B is the only maximal π -inductive algebra.
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4 The proof

Let A be a maximal π -inductive algebra.

Lemma 2 There are no non-zero nilpotent elements in A.

Proof Let N denote the set of nilpotent elements in A (the nilradical of A). Let

K = {F ∈ H | T (F) = 0, ∀T ∈ N }.
By (a trivial case of) Engel’s theorem [2,Sect. 3.3], K �= 0. Observe that N is normalized
by π(G), so K is π(G)-invariant. However, since π is irreducible, it follows that K = H,
whence N = 0. 
�
Corollary 3 dim(A) ≤ q − 1.

Proof By Lemma 2, the Jordan–Chevalley decomposition [2,§4.2], and the fact that A is
abelian, it follows that there is a (not necessarily orthonormal) basis for H in which each
element of A is diagonal. Since dim(H) = q − 1, the result follows. 
�

For b′ ∈ k, define κ(b′) : A → A by κ(b′)T = π(ι(b′))Tπ(ι(b′))−1. Then κ is a
representation of the finite abelian group k on the vector space A, which decomposes as

A =
⊕
b∈k

Ab

where

Ab = {T ∈ A | κ(b′)T = χ(bb′)T , ∀b′ ∈ k}.
Here we are using the fact that every character of k is of the form χb where χb(b′) = χ(bb′)
for all b′ ∈ k.

Observe that

(1) if T ∈ Ab and T ′ ∈ Ab′ , then T T ′ ∈ Ab+b′ , and
(2) for each a ∈ k×, the map T 
→ π(s(a))−1Tπ(s(a)) is a linear isomorphismAb → Aab.

Lemma 4 A1 = 0.

Proof Suppose not. Then there exists a non-zero element T ∈ A1. By the first observation
above, T p ∈ A0. Since T is not nilpotent (see Lemma 2), it follows that dim(A0) ≥ 1. For
b �= 0, we have dim(Ab) = dim(A1) ≥ 1, by the second observation. Therefore

dim(A) =
∑
b∈k

dim(Ab) ≥ |k| = q,

contradicting Corollary 3. 
�
Lemma 5 A0 ⊆ B.

Proof Observe that H is spanned by the set {χb′ |k× | b′ ∈ k}, hence B is spanned by the set
{m(χb′ |k× ) | b′ ∈ k}. If T ∈ A0, then T commutes with m(χb′ |k× ) for each b′ ∈ k, whence T
commutes with B. Since B is maximal-abelian, it follows that T ∈ B. 
�

By Lemma 4, and the second observation above, it follows that Ab = 0 for all b ∈ k×,
whence A = A0 ⊆ B. Since A is maximal, it follows that A = B.
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