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Chapter-V 
 

An approximate approach for a Stefan problem governed with 

space–time fractional derivatives 

 
 

5.1 Introduction 

 In recent years, fractional derivatives have been used in various mathematical 

models by many researchers due to its applicability in different fields of science 

and engineering (Chaves (1998), Benson et al. (2000), Aoki et al. (2008), Jiang 

et al.(2012)). It is well known that fractional derivative is a good tool for taking 

into account memory mechanism, particularly in some diffusive processes 

(Tomovskia et al. (2012)). Stefan problems (moving boundary problems) with 

fractional derivatives ((Li et al. (2007, 2008), Liu and Xu (2009), Vogel et al. 

(2012), Das et al. (2011)) are typical problems from point of view of 

mathematics because of its non-linear nature and presence of moving interface. 

Some exact solutions of Stefan problems can be seen in the papers of Liu and 

Xu (2009), Voller (2010) and Zhou et al. (2014).  Many Stefan problems are 

available in the literature whose exact solution is not known. Therefore, several 

approximate analytical methods (Li et al. (2009), Rajeev and Kushwaha (2013), 

Das and Rajeev (2010), Grzymkowski and Słota (2006), Rajeev et al.(2013)) 

have been used to solve the Stefan problems with fractional derivatives. The 

approximate analytical method taken in this literature is optimal homotopy 

asymptotic method.    

Optimal homotopy asymptotic method was developed by Marinca and Herisanu 

(2008) and it has been applied to solve a wide class of non-linear differential 

equations (Marinca and Herisanu (2010a, 2010b), Iqbal et al.(2010), Iqbal and 

Javed (2011), Hashmi et al.(2012)).  Ghoreishi et al. (2012) presented the 

comparison between homotopy analysis method and optimal homotopy 
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asymptotic method for nonlinear age-structured population models.                  

In 2013,  Dinarvand and  Hosseini (2013) also used this technique to investigate 

the temperature distribution equation in a convective straight fin with 

temperature-dependent thermal conductivity and the convective–radiative 

cooling of a lumped system with variable specific heat.    

In this chapter, a mathematical model for a Stefan problem (Zhou et al. (2014)) 

with space-time fractional derivative is presented. In this model, optimal 

homotopy asymptotic method is used to find the expression of temperature 

distribution in given domain and location of moving interface with the help of 

Taylor’s series. The obtained results are compared with the existing exact 

solution for standard case and are in good agreement. An approachable analysis 

for fractional case is also discussed.  

 

5.2 Mathematical Formulation 

In this section, a mathematical model of one-dimensional Stefan problem with 

latent heat a power function of position (Zhou et al. (2014)) is considered. For 

this problem, a fractional model is presented. This model involves space-time 

fractional derivatives as given by Voller (2010). The governing equations are as 

follow:    

  ,0),(0, 



 ttsxTD
x

TD xt

                                                 (5.2.1) 

  ,0,0 2/)1(  n

x bttxTDk                                                                (5.2.2) 

  ,0,0),(  tttsT                                                                          (5.2.3) 

  )())(()),(( tsDtsttsTDk t

n

x

  ,                                                        (5.2.4)  

where ),( txT  is the temperature distribution, )(ts is moving interface, k is thermal 

conductivity,  is the thermal diffusion coefficient, b is a constant ( 0b for 
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melting, 0b for freezing), nts ))((  is the variable latent heat per unit volume 

and n  is an non negative integer.   

 

5.3 Solution of the problem 

 First we write Eqs. (5.2.1- 5.2.4) in operator form as follows:                                                           

    ,0),(),(  txTNtxTL                                              (5.3.5)                      
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(5.3.6) 
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
















t
N  is nonlinear operator and B is 

boundary operator. 

According to optimal homotopy asymptotic method (Grzymkowski and Słota 

(2006), Iqbal et al. (2010)), constructing an optimal as: 

RtsptxT  ]1,0[)](,0[:),,( ,  

which satisfies 

       ),,()),,((),,()1( ptxTNptxTLpHptxTLp   ,                    (5.3.7) 

,0
),,(

),,,( 











x

ptxT
ptxTB                                                                   (5.3.8) 

where ]1,0[p  is an embedding parameter, );,( ptxT is an unknown function, 

)( pH is a nonzero auxiliary function for 0p  and 0)0( H . 

Obviously, if 0p ,  

 ),()0;,( 0 txTtxT  ,                                                                             (5.3.9) 



 

~ 64 ~ 

 

and when 1p then 

),()1;,( txTtxT  .                                                                          (5.3.10) 

 Therefore, as p increase from 0 to1, the unknown function ),,( ptxT  varies 

from ),(0 txT to the solution ),( txT . 

Now, we choose the auxiliary function )( pH  in the following form: 

L 3
3

2
2

1)( cpcpcppH ,                                                          (5.3.11) 

where L3,2,1 ccc  are constants to be determined later.  

Considering the solution of (5.3.7) in the following series form:  

  ,,2,1,0,,,),;,(
0

lipctxTcptxT n

n

ini L




                                        (5.3.12)  

and  

)()(
0

tspts
n

n

n



 ,                                                                              (5.3.13) 

where 00 c  and ),()0,,( 00 txTtxT  . 

As given by Ghoreishi et al. (2012), expanding )),;,(( jcptxTN  in the following    

series form: 

   LL ,2,1,,,,)()),;,((
1

21000  


jpTTTTNTNcptxTN
m

m
mmj .                (5.3.14) 

Now, substituting Eqs. (5.3.12), (5.3.14) into Eq. (5.3.7) and equating the 

coefficients of like powers of p , the following problems are obtained: 

 0)),((: 0

0 txTLp ,                                                                (5.3.15) 

   ,),(),(: 0011

1
txTNctxTLp                                                   (5.3.16)                                                                            
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and the general equation for  ),( txTk  are given as:     
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where L,3,2k  . 

Substituting (5.3.12), (5.3.13) in the Eq. (5.2.2) and Eq. (5.2.3), one   can obtain 
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
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n
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where  .,2,1,0 li L  

For the comparisons of various powers of p , expending ),( txTi  in Taylor’s 

series form (Li et al. (2009), Rajeev and Kushwaha (2013)) about a point 

),( 0 ts as:    
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where L3,2,1,0l  and   li ,3,2,1,0 L . 

From Eqs. (5.3.20) and (5.3.21), we have 
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The interface condition (5.2.4) becomes 
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
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 .    (5.3.23)                                                                            

Considering Eq. (5.3.15) and comparing the coefficients of power of 0p      

from Eqs. (5.3.19), (5.3.22) and (5.3.23), then the following system                

can be obtained: 
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Taking Eq. (5.3.16) and comparing the coefficients of power of 1p  from Eqs. 

(5.3.19), (5.3.22) and (5.3.23), we have 
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        (5.3.25) 

 

  M   

and so on.  

It is calculated that the solutions of zeroth-order problem (given in        

(5.3.24)) are 

  2/)1(

00
)1(

),( 
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 ntxs
k

b
txT 


                                                    (5.3.26) 



 

~ 67 ~ 

 

and   

         tas 00  ,                                                                                            (5.3.27) 

where  

        1

2/)1(





n

n
   and      

nb
a
















1

1

0
)1(

)1(




 . 

Substituting 0T and 0s into first-order problem (5.3.25) and using the above 

process, we can obtain the following expressions of ),,( 11 ctxT :   
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The expression of )(1 ts  can be calculated as  

           tats 11 )(                                                                                          (5.3.29) 
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where  
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and   

          2/)1()1(  nn  . 

The approximate solution of temperature distribution is determined as:  

L ),,,(),,(),(),( 212110 cctxTctxTtxTtxT .                                     (5.3.30) 

and an approximate solution of )(ts  is given as: 

        L tstststs 210 .                                                               (5.3.31)          

In order to get the constants involved in the Eq. (5.3.30)  of ),( txT , Least 

Square Method is used (Ghoreishi et al.(2012)). For this purpose, we define the 

residual as:      

   ),,,,(
~

),,,,(
~

),,;,( 212121 lll ccctxTNccctxTLccctxR LLL  .                       (5.3.32) 

where ),,,,(
~

21 lccctxT L is an approximate solution of ),( txT which can be found 

from Eq. (5.3.30).  

Clearly, if 0);,( ictxR  then );,( ictxT will be exact solution. Generally, optimal 

homotopy asymptotic method gives an approximate solution. Therefore, 

0);,( ictxR  in such a case, but we can minimize the functional  

dxdtctxRcJ
t ts

ii  
0

)(

0

2 );,()( ,                                                                (5.3.33) 



 

~ 69 ~ 

 

where R is the residual. The constants ),2,1( lici L can be optimally obtained 

from the following conditions: 

0
21
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










lc

J

c

J

c

J
L .                                                                    (5.3.34) 

 

5.4 Numerical results and discussion  

 In this section, numerical results for interface position  ts  are obtained and    

the results are presented through tables and figures. Tables (5.1-5.2) represent 

comparisons between exact and approximate value of positions of phase front 

 ts at particular times t  for 0.1  (standard motion). For standard problem, 

it is clear from the tables that our approximate results are sufficient accurate 

with the exact solution given by Zhou et al. (2014). 

 

Figure 5.1 and Figure 5.2 represent the dependence of trajectory of the 

movement of phase front  ts   on the thermal diffusion coefficient  for n = 0 at  

,25.0 75.0  and ,5.0 0.1 , respectively. Figure 5.3 and Figure 5.4 also 

depict the dependence of path of phase front  ts  on the thermal diffusion 

coefficient  for n = 1 at  ,25.0 75.0  and ,5.0 0.1 , respectively. The 

figures (5.1-5.4) portray that movement of interface increases with the    

increase in the value of thermal diffusion coefficient for fractional cases (non-

classical or non-Fickian) which is similar to the case of standard motion                  

(Zhou et al. ( 2014)). 

Figures (5.5-5.6) show variation of path of  ts  for different value of b for non-

classical or non-Fickian case. From these figures it is clear that the movement 

of phase front increases with the increase in the value of constant b i.e.,          

the melting (or freezing) process becomes fast as the value of constant              

b increases.  
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b T Exact value of S(t) 

 

Approximate value 

of  S(t) by OHAM 

Absolute Error 

0.1 

0 

5 

10 

15 

20 

25 

0.0 

0.4428497413051738 

0.6262841102471934 

0.7668507025490686 

0.8856994826103476 

0.990242125376565 

0.0 

0.4449844728214594 

0.6293030765095499 

0.77077357155060199 

0.8899689456429188 

0.9950155301606909 

0.0 

0.0021347315162856 

0.003018966262356377 

0.0036974634467252074 

0.0042694630325712 

0.0047733404784125801 

0.25 0 

1 

2 

3 

4 

5 

0.0 

0.4728215497051472 

0.6686706481752838 

08189509470027683 

 0.9456430994102945 

1.0030059722629254 

0.0 

0.48477006891316846 

0.6854702882616138 

0.8395262200397257 

0.9694013782633693 

1.028205432392426 

0.0 

0.0118791394265374 

0.016799640086330142 

0.02057527303695739 

0.0237582788530748 

0.02519946012949521 

 

0.5 0 

0.25 

0.5 

0.75 

1.0 

1.3 

0.0 

0.4193648240191325 

0.5930714217100636 

0.7263611821083185 

0.838729648038265 

0.9562989329952792 

0.0 

0.4439987507075641 

0.627909054927348 

0.769028394722609 

0.8879975014151282 

1.012472928662966 

0.0 

0.024633926688431618 

0.03483763321728454 

0.0426672126142905 

0.049267853376863235 

0.05617399566768704 

 

 

 

 

 

 

 

Table 5.1.  Comparison between exact and approximate solution of  )(ts  at n = 0 
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b t    Exact value of S(t) 

 

Approximate value 

of  S(t) by OHAM 

Absolute error 

0.1 

0 

1 

2 

3 

4 

5 

0.0 

0.427525268155265 

0.60461203248237 

0.7404954859644275 

0.85505053631053 

0.9559755616939987 

0.0 

0.43321518187742797 

0.6126587856369857 

0.7503507056218971 

0.8664303637548559 

0.968698595562864 

0.0 

0.005689913722162987 

0.008046753154615675 

0.009855219657469638 

0.011379827444325974 

0.01272303386886529 

0.25 0 

0.5 

1.0 

1.5 

2.0 

2.5 

0.0 

0.45275560721474817 

0.6402931201635628 

0.7841957151076419 

0.9055112144294963 

1.0123923149263712 

 

0.0 

0.47199937538537820

6 

0.6675079180569478 

0.8175268992535237 

0.9439987507075641 

1.0554226886284956 

 

0.0 

0.019243768139033897 

0.02721479789338499 

0.03333118414588188 

0.03848753627806779 

0.04303037370212442 

0.5 0.0 

0.25 

0.5 

0.75 

1.0 

1.25 

 0.0 

0.4222512866672956 

0.5971534963343791 

0.7313606820690868 

0.8445025733345912 

0.9441825805748236 

0.0 

0.45363176182240944 

0.6415321898924531 

0.7857132594033969 

0.9072635236448189 

1.0143514561879015 

0.0 

0.03138047515515383 

0.04437869355807393 

0.05435257733439995 

0.06276095031022766 

0.07016887561307779 

 

    

 

 

      Table 5.2.  Comparison between exact and approximate solution of  )(ts  at n = 1 
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     Fig.5.1. Plot of )(ts  vs. t  at ,25.0 75.0 and n = 0 
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Fig. 5.2. Plot of )(ts  vs. t  at ,5.0 0.1 and n = 0 
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5.5. Conclusion   

In this work, a mathematical model that contains space- time fractional 

derivatives and time dependent surface heat flux is considered.  An 

approximate solution of the problem is obtained by optimal homotopy 

asymptotic method. It is observed that movement of interface increases with the 

increase in the value of thermal diffusion coefficient v as well as constant b for 

non-classical or non-Fickian case. Moreover, it can be seen that proposed 

technique is sufficiently accurate and efficient for solving Stefan problems. It is 

also observed that it is convenient to control and adjust the convergence of the   

series solution through the control parameters ic  in optimal homotopy          

asymptotic method.  

 

 

 

 

 

 


