Chapter-V

An approximate approach for a Stefan problem governed with

space—time fractional derivatives

5.1 Introduction

In recent years, fractional derivatives have been used in various mathematical
models by many researchers due to its applicability in different fields of science
and engineering (Chaves (1998), Benson et al. (2000), Aoki et al. (2008), Jiang
et al.(2012)). It is well known that fractional derivative is a good tool for taking
into account memory mechanism, particularly in some diffusive processes
(Tomovskia et al. (2012)). Stefan problems (moving boundary problems) with
fractional derivatives ((Li et al. (2007, 2008), Liu and Xu (2009), Vogel et al.
(2012), Das et al. (2011)) are typical problems from point of view of
mathematics because of its non-linear nature and presence of moving interface.
Some exact solutions of Stefan problems can be seen in the papers of Liu and
Xu (2009), Voller (2010) and Zhou et al. (2014). Many Stefan problems are
available in the literature whose exact solution is not known. Therefore, several
approximate analytical methods (Li et al. (2009), Rajeev and Kushwaha (2013),
Das and Rajeev (2010), Grzymkowski and Stota (2006), Rajeev et al.(2013))
have been used to solve the Stefan problems with fractional derivatives. The
approximate analytical method taken in this literature is optimal homotopy

asymptotic method.

Optimal homotopy asymptotic method was developed by Marinca and Herisanu
(2008) and 1t has been applied to solve a wide class of non-linear differential
equations (Marinca and Herisanu (2010a, 2010b), Igbal et al.(2010), Igbal and
Javed (2011), Hashmi et al.(2012)). Ghoreishi et al. (2012) presented the

comparison between homotopy analysis method and optimal homotopy
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asymptotic method for nonlinear age-structured population models.
In 2013, Dinarvand and Hosseini (2013) also used this technique to investigate
the temperature distribution equation in a convective straight fin with
temperature-dependent thermal conductivity and the convective-radiative

cooling of a lumped system with variable specific heat.

In this chapter, a mathematical model for a Stefan problem (Zhou et al. (2014))
with space-time fractional derivative is presented. In this model, optimal
homotopy asymptotic method is used to find the expression of temperature
distribution in given domain and location of moving interface with the help of
Taylor’s series. The obtained results are compared with the existing exact
solution for standard case and are in good agreement. An approachable analysis

for fractional case is also discussed.

5.2 Mathematical Formulation

In this section, a mathematical model of one-dimensional Stefan problem with
latent heat a power function of position (Zhou et al. (2014)) is considered. For
this problem, a fractional model is presented. This model involves space-time

fractional derivatives as given by Voller (2010). The governing equations are as

follow:
D,ﬂT=v§(DjT), 0<x<s(t), t >0, (5.2.1)
kDT(x=0,¢>0)=—bt"""2, (5.2.2)
T(s(t),t)=0, ¢>0, (5.2.3)
kDY (T(s(0).0)) ==y (s()) D/ s(0), (5.2.4)

where T(x,?) is the temperature distribution, s(¢) is moving interface, & is thermal

conductivity, vis the thermal diffusion coefficient, b is a constant (5> 0 for
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melting, b <0for freezing), y(s(¢))" is the variable latent heat per unit volume

and » 1s an non negative integer.

5.3 Solution of the problem

First we write Egs. (5.2.1- 5.2.4) in operator form as follows:

v L(T(x,1))- N(T'(x,1))=0, (5.3.5)
B[T,a—TJ =0, (5.3.6)
0x
b ) or | . : :
where L[: . ““j is a linear operator, N =57 is nonlinear operator and B is
X

boundary operator.

According to optimal homotopy asymptotic method (Grzymkowski and Stota
(2006), Igbal et al. (2010)), constructing an optimal as:

T(x,t,p):[0,s(t)]x[0,1] >R,
which satisfies

(1= Pl LT (x.t, p))|= H(p)lv L(T (x,t, p)) - N(T (x,1, p))], (5.3.7)

B[T(x,t, p),%J — o0, (5.3.8)

where pe[0,1] is an embedding parameter, 7'(x,z; p)is an unknown function,
H(p)is a nonzero auxiliary function for p 0 and H(0)=0.

Obviously, if p=0,

T(x,t;0)=Ty(x.0), (5.3.9)
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and when p =1then
T(x,t; ) =T(x,1). (5.3.10)

Therefore, as p increase from 0 tol, the unknown function T(x,z, p) varies

from T,(x,¢)to the solution7'(x,?).
Now, we choose the auxiliary function H(p) in the following form:
H(p)=pc, +pic,+piey+--, (5.3.11)

where ¢, c, ¢+ are constants to be determined later.

Considering the solution of (5.3.7) in the following series form:

T(x,t;p,c;)= i];(x,t,ci)p”, i=012,--1, (5.3.12)
n=0
and
s()= 3 p"s, (1), (5.3.13)
n=0

where ¢, =0 and T;(x,z, 0)=T,(x,?).

As given by Ghoreishi et al. (2012), expanding N (T(x,t;p,c;)) in the following

series form:

N(T(x,t;p,cj))=N0(T0)+ sz(To,ﬂ,Tz,"'Tm)pm,j=1, 2,000 (5314)

m>1

Now, substituting Eqgs. (5.3.12), (5.3.14) into Eq. (5.3.7) and equating the

coefficients of like powers of p , the following problems are obtained:
P’ L(Ty(x,1)=0, (5.3.15)

P v LT (x,0)==cNy(T,(x,0)), (5.3.16)
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p*t VLT (x, ) - v L(T (x,0)) = o L(T (x,1)) — ¢, No(Ty (x.1))
—a Ny (To (0,0), Ty (x,1) (5.3.17)

and the general equation for 7, (x,7) are given as:

v (T, (x,0)) = v L(T,_,(x,0)) = ¢, Ny(Ty(x,0))

- 5.3.18
o TR R T C ) B ) M

where k=23, .

Substituting (5.3.12), (5.3.13) in the Eq. (5.2.2) and Eq. (5.2.3), one can obtain

kDf(iOT,,(xzo, t,c,-)jp” =—bt"" (5.3.19)
and

> Tn(ip”sn ,t,cl)p” -0, (5.3.20)

n=0 n=0

where i=0,1,2,---1.

For the comparisons of various powers of p, expending 7 (x,z) in Taylor’s

series form (Li et al. (2009), Rajeev and Kushwaha (2013)) about a point

(s,,?) as:

T (o) = i 1 0", (s,,t,c;)
n=0 1! axn

(x=5,)", (5.3.21)

where /=0,1,2,3--- and i=0,1,2,3---,/.

From Egs. (5.3.20) and (5.3.21), we have

Ms

ip_(zp N j a_m]; (S()ataci):()- (5.322)
m! ox

=0 m=0
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The interface condition (5.2.4) becomes

=0 m=0

> ff;—[ip s <f)] a‘i T (st = - y[i_op’"(sm (r))] Dﬁ(i_op'"(sm (r))]~ (5.3.23)

Considering Eq. (5.3.15) and comparing the coefficients of power of p°
from Egs. (5.3.19), (5.3.22) and (5.3.23), then the following system

can be obtained:

ai(Dg T, (x,t))z 0,
a bt~ 1)/2
k DZ (Ty(x = 0,1)) = bt (5.3.24)
To(s9,t) =0,
k%= — 7(so(®))' DF (s0(1)).

Taking Eq. (5.3.16) and comparing the coefficients of power of p' from Egs.
(5.3.19), (5.3.22) and (5.3.23), we have

0
Va(D;’I Ti(x,t, cl)): ¢; DP (Ty(x,1)),

D (T,(0.0)) =0,
oTy(s0.0) _ (5.3.25)
Ox ’

0%T, (s 1, O ET (s, .t , .
1(;:0, Cl)+51 ax(l)fzo ) - %((So) Dzﬂ (51(6))+ n(s,) 151 Dzﬁ (So))~

Ti(SO ,l‘,cl)-i-sl

and so on.

It is calculated that the solutions of zeroth-order problem (given in

(5.3.24)) are

b o a n—
T;)(x,f):m(So - X )f( b/2 (5326)
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and
s, =a,t’, (5.3.27)

where

1
g Br@-D/2 o [Mj ,
n+1 yI'(1+0)

Substituting 7,and s,into first-order problem (5.3.25) and using the above

process, we can obtain the following expressions of 7, (x,z,¢,):

n-1 n—1

b a va ) @0t 8 +2a a), 2 #

Tibta)= cvl_k[m3 SR r(znfza) (sg" 2 = w122 2
(5.3.28)
n-1
+ ab SISOI t 2 ,
kT(1+a)
n—1
Tl+"— +ab)

where m, = — 12 ,

F(l + T + ae — ﬁ)

ra+"=1
m, = 2
2 n—1 ’
rai+——-4)
2

and m, = ™ %o .

T+ 2+a)
The expression of s, (#) can be calculated as

s =at’ (5.3.29)
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where

_Clba(()1+a—n) my — m;
(1+a)

r(1+¢) ri+6) \’
V}/r(1+a)(l"(l+¢—ﬂ)+n1“(1+6’—,8)J

a =

and
d=+a-no0+n-1)/2.
The approximate solution of temperature distribution is determined as:

T(x,t)=T,(x,0)+ T,(x,t,¢,) + T, (x,t,¢,,¢,) ++ (5.3.30)

and an approximate solution of s(¢) is given as:

s(t)=s,(¢)+s,(t)+s, )+ (5.3.31)

In order to get the constants involved in the Eq. (5.3.30) of T(x,t), Least
Square Method is used (Ghoreishi et al.(2012)). For this purpose, we define the

residual as:

R(x,t;¢,,¢y500C)) = VL(f(x,t,cl,cz,---c,))— N(f(x,t,cl,cz,---c,)). (5.3.32)

where T(x,t,¢,,c,,--¢,)is an approximate solution of T(x,7) which can be found

from Eq. (5.3.30).

Clearly, if R(x,t;¢;)=0 then T(x,t;c;) will be exact solution. Generally, optimal

homotopy asymptotic method gives an approximate solution. Therefore,

R(x,t;¢;) # 0 1n such a case, but we can minimize the functional

t s(t)

J(e))=[ | R*(x,t;c,)dxdt, (5.3.33)
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where R is the residual. The constants ¢, (i =1,2--, /) can be optimally obtained
from the following conditions:

oJ _oJ _  _9J_

_ _0 (5.3.34)
561 802 501

5.4 Numerical results and discussion

In this section, numerical results for interface position s(¢) are obtained and

the results are presented through tables and figures. Tables (5.1-5.2) represent
comparisons between exact and approximate value of positions of phase front
s(t)at particular times ¢ for & = #=1.0 (standard motion). For standard problem,
it is clear from the tables that our approximate results are sufficient accurate

with the exact solution given by Zhou et al. (2014).

Figure 5.1 and Figure 5.2 represent the dependence of trajectory of the

movement of phase front s(z) on the thermal diffusion coefficient v for n = 0 at
a =025 8=0.75 anda =0.5, f=1.0, respectively. Figure 5.3 and Figure 5.4 also
depict the dependence of path of phase front s(z) on the thermal diffusion
coefficient vfor n =1 at «=0.25, =0.75 ande =0.5, f=1.0, respectively. The

figures (5.1-5.4) portray that movement of interface increases with the
increase in the value of thermal diffusion coefficient for fractional cases (non-
classical or non-Fickian) which is similar to the case of standard motion

(Zhou et al. ( 2014)).

Figures (5.5-5.6) show variation of path of s(¢) for different value of » for non-
classical or non-Fickian case. From these figures it is clear that the movement
of phase front increases with the increase in the value of constant b i.e.,
the melting (or freezing) process becomes fast as the value of constant

b increases.
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b T | Exact value of S(?) Approximate value | Absolute Error
of S(¥) by OHAM
0.1
0 0.0 0.0 0.0
5 0.4428497413051738 0.4449844728214594 | 0.0021347315162856
10 | 0.6262841102471934 0.6293030765095499 | 0.003018966262356377
15 | 0.7668507025490686 0.77077357155060199 | 0.0036974634467252074
20 | 0.8856994826103476 0.8899689456429188 | 0.0042694630325712
25 | 0.990242125376565 0.9950155301606909 | 0.0047733404784125801
0.25 0 0.0 0.0 0.0
1 0.4728215497051472 0.48477006891316846 | 0.0118791394265374
2 0.6686706481752838 0.6854702882616138 | 0.016799640086330142
3 08189509470027683 0.8395262200397257 | 0.02057527303695739
4 0.9456430994102945 0.9694013782633693 | 0.0237582788530748
5 1.0030059722629254 1.028205432392426 0.02519946012949521
0.5 0 0.0 0.0 0.0
0.25 | 0.4193648240191325 0.4439987507075641 | 0.024633926688431618
0.5 | 0.5930714217100636 0.627909054927348 0.03483763321728454
0.75 | 0.7263611821083185 0.769028394722609 0.0426672126142905
1.0 | 0.838729648038265 0.8879975014151282 | 0.049267853376863235
1.3 | 0.9562989329952792 1.012472928662966 0.05617399566768704

Table 5.1. Comparison between exact and approximate solution of s(¢) atn =0
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b t Exact value of S(f) | Approximate value | Absolute error
of S(¥) by OHAM
0.1
0 0.0 0.0 0.0
1 0.427525268155265 0.43321518187742797 | 0.005689913722162987
2 0.60461203248237 0.6126587856369857 0.008046753154615675
3 0.7404954859644275 0.7503507056218971 0.009855219657469638
4 0.85505053631053 0.8664303637548559 0.011379827444325974
5 0.9559755616939987 0.968698595562864 0.01272303386886529
0.25 0 0.0 0.0 0.0
0.5 0.45275560721474817 | 0.47199937538537820 | 0.019243768139033897
6
1.0 0.6402931201635628 0.02721479789338499
0.6675079180569478
1.5 0.7841957151076419 0.03333118414588188
0.8175268992535237
2.0 0.9055112144294963 0.03848753627806779
0.9439987507075641
2.5 1.0123923149263712 0.04303037370212442
1.0554226886284956
0.5 0.0 0.0 0.0 0.0
0.25 | 0.4222512866672956 0.45363176182240944 | 0.03138047515515383
0.5 0.5971534963343791 0.6415321898924531 0.04437869355807393
0.75 | 0.7313606820690868 0.7857132594033969 0.05435257733439995
1.0 0.8445025733345912 0.9072635236448189 0.06276095031022766
1.25 | 0.9441825805748236 1.0143514561879015 0.07016887561307779

Table 5.2. Comparison between exact and approximate solution of s(¢) atn=1
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s (1)

Fig.5.1. Plot of s(¢) vs. t at « =0.25, f=0.75and n=0

v=1.0
v=0.1
v =10.05

Fig. 5.2. Plot of s(¢) vs. t at  =0.5, f=1.0and n=0
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Fig. 5.3. Plot of s(¢) vs. t at  =0.25 f=0.75n=1

10 f v=10
v=0.1
0.8
v =0.05

Fig. 5.4. Plot of s(¢) vs. t at  =0.5,=1.0andn=1
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Fig.5. 5. Plot of s(¢) vs. t at « =025, =0.75and n=0
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Fig. 5.6. Plot of s(¢) vs.  at  =0.5,=1.0and n=0
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5.5. Conclusion

In this work, a mathematical model that contains space- time fractional
derivatives and time dependent surface heat flux is considered. An
approximate solution of the problem is obtained by optimal homotopy
asymptotic method. It is observed that movement of interface increases with the
increase in the value of thermal diffusion coefficient v as well as constant b for
non-classical or non-Fickian case. Moreover, it can be seen that proposed
technique is sufficiently accurate and efficient for solving Stefan problems. It is
also observed that it is convenient to control and adjust the convergence of the

series solution through the control parameters ¢, in optimal homotopy

asymptotic method.
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