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 Chapter-IV 

 

An approximate approach for a Stefan problem with periodic 

boundary condition 

 

4.1 Introduction  

Stefan problems (phase change problems) occur in many important areas of 

science, engineering and industry. These problems have wide applications in 

separation process, food technology, image development in electro 

photography, medical sciences, heat and mixture migration in solid grounds, 

etc. The history and some classical solutions to the Stefan problems are well 

covered by Crank (1987) and Hill (1987). These problems are interesting both 

because of diversity of their application and because of its nonlinearity nature 

which is associated with the moving interface (Carslaw and Jaeger (1959)). Due 

to presence of moving interface their exact solution are limited. Therefore, 

many approximate (Annamalai et al. (1986), Rizwan-Uddin (1998, 1999), 

Caldwell and Chan (2000), Rajeev (2014)) and numerical solutions 

(Asaithambi (1992, 1997) and Rajeev (2009)) have been used to solve such 

problems. However, Stefan problems with time-dependent boundary condition 

require some special techniques (Yao and Prusa (1989), Rizwan-Uddin (1998, 

1999)). Savovic and Caldwell (2003) used finite difference method to solve 

one-dimensional Stefan problem with periodic boundary conditions. Ahmed 

(2006) discussed a new algorithm for a moving boundary problem subject to 

periodic boundary conditions. In 2009, Rajeev et al. (2009) used variational 

iteration method to solve a phase change problem with time dependent 

boundary condition and the result is obtained in term of Mittag-Leffler 

function. 
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The approximate analytical approach taken in this chapter is Adomian 

decomposition method. Adomian decomposition method was developed by 

Adomian (1988, 1994, 1998) and has been applied to solve various partial 

differential equations (Wazwaz (2000, 2007)). Grzymkowski and Słota (2004) 

presented the solution of one-phase inverse Stefan problem by Adomian 

decomposition method. Recently, Das and Rajeev (2010) also used and 

Adomian decomposition method to solve time-fractional diffusion equation 

with a moving boundary condition which is related to the diffusional release of 

a solute from a polymer matrix in which the initial loading is higher/lower than 

the solubility. 

In this chapter, an approximate solution of one dimensional Stefan problem 

with periodic boundary conditions is obtained by using Adomian 

decomposition method. The explicit expressions of the temperature distribution 

and position of interface are obtained in series form and the numerical results 

for different particular cases are depicted through graphs. The obtained results 

are compared with the existing exact solution for a particular case. The 

dependence of moving interface on time for various Stefan number is also 

discussed.   

 

4.2 Mathematical Model  

In this section, a mathematical model (Rizwan-Uddin (1999)) of a melting solid 

is considered. The solid is at its phase change temperature initially. The 

governing equations of problem for the liquid region of a melting solid are as 

follow:  
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,)),(( mTttsT                                                                           (4.2.3) 
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The additional conditions on the moving interface are 
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where T  is the temperature distribution in liquid region, mT  is the phase    

change temperature, )(0 tT is the time dependent  boundary conditions at the 

0x ,   is the liquid diffusivity,  is the density of solid, h is the latent heat,    

k  is the thermal conductivity, t  is the time and )(ts  is the position of      

moving interface. 

Introducing the following non-dimensional variables (Crank (1987),             

Hill (1987)): 
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where l  is the characteristic length, refT  is reference temperature,  Ste  is 

Stefan number, and x , t , )(ts  and T are dimensionless variables.     

The Eqs. (4.2.1) to (4.2.6) become 
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where ttg  sin1)(  ,   is the oscillation amplitude and  is the oscillation 

frequency. 

4.3 Solution of the problem by Adomian Decomposition Method 

We first write the Eq. (4.2.7) in an operator form  
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Assuming that the inverse operator 1
xxL  exists and 
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Applying the inverse operator 1
xxL  on both side of the equation (4.3.13) which 

gives 
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Choosing the following initial approximations of  ),( txT  and )(ts  as given by 

Das and Rajeev (2010): 
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and 2/1
00 tas  , 

where    2/1

0 sin12 tca  . 

According to the Adomian decomposition method (Adomian (1988, 1994, 

1998)), decomposing the unknown function ),( txT  as follows: 

 

L 210),( TTTtxT ,                                                                    (4.3.15) 

where the components LL,,, 210 TTT  are defined as :  
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Eq. (4.3.16) gives temperature distribution in liquid region.      

Now, using Eq. (4.3.16) and writing the interface condition (4.2.11) in operator 

form as: 
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Accordingly (Adomian, 1998), decomposing )(ts  as: 
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Eqs. (4.3.17) and (4.3.18) give 
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where nA  are so-called Adomian polynomials for non-linear terms and    

defined as: 
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M  

and so on.  

The approximate analytical solution of )(ts  is given by 

LL 210)( sssts .                                                                    (4.3.23) 

 

4.4 Numerical discussion  

In this section, all the numerical results for temperature distribution ),( txT  and 

interface position s(t) are calculated by using MATHEMATICA software. 

When 0 , the exact solution of the problem is not known (Savovic and 

Caldwell (2003)). For accuracy, the obtained approximate solutions by 

Adomian decomposition method are compared with the existing exact solution 

at 0 . It can be seen that the exact solutions (Hill (1987)) of the problem 

defined by Eqs. (4.2.7-4.2.12) are  
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where  is a root of  following transcendental equation: 
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Table 4.1 present absolute errors for the temperature distribution in liquid 

region at Ste = 0.5 and Ste = 1.0. It is clear from table that the proposed 

approximate solution is closed to the exact.   

Figure 4.1 and Figure 4.2 show the dependence of temperature distribution 

),( txT  on x  at the fixed value of Ste =1.0, oscillation frequency 2/   and     

t = 5 for two oscillation amplitudes 5.0  and 0.1 , respectively.  It is 
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observed from figures (4.1- 4.2) that increase in the oscillation amplitude leads 

to a more prominent change in the temperature distribution in the 

domain 10  x . Moreover, the temperature distribution is maximum at 0x  

and then continuously decreases up to the zero at the 1x . This result confirms 

the result of Savovic and Caldwell (2003) and Rajeev et al. (2009).  

Figure 4.3 and Figure 4.4 describe the growth of the moving interface for 

different values of Stefan number (Ste = 0.1, 0.5, 1.0) at the fixed value of 

oscillation frequencies 4/   for two oscillation amplitudes 2.0  

and 9.0 , respectively. It is seen from both the figures that the interface 

covers more distance as the values of Stefan number increases at a particular 

time. It means movement of interface and melting process becomes fast with 

the increment in Stefan number. This fact shows that the result is well 

consistent with the statement of Rizwan-Uddin (1999) and Ahmed (2006).   

 

4.5 Conclusion  

The Adomian decomposition method is successfully applied to find explicit 

expressions of temperature distribution in liquid region and interface position of 

a Stefan problem with periodic boundary condition. From present study, it is 

observed that melting process and velocity of interface become faster as the 

value of Stefan number increases. It is seen that Adomian decomposition 

method is a straight forward, efficient and sufficiently accurate method for 

finding the solution of Stefan problems of science and engineering. The authors 

believe that the procedure as described in the present study will be beneficial to 

researcher working in this field.     
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Ste x Exact Value 

ET  

Approximate 

Value  AT  

Absolute error 

AE TT   

 

 

 

0.5 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.948413 

0.896877 

0.845444 

0.794165 

0.74309 

0.692271 

0.641755 

0.591592 

0.541829 

0.492511 

0.955286 

0.910617 

0.866037 

0.82159 

0.777321 

0.733273 

0.689488 

0.646009 

0.602875 

0.560128 

0.00687309 

0.0137399 

0.0205929 

0.0274254 

0.0342314 

0.0410021 

0.0477333 

0.0544167 

0.0610464 

0.0676172 

 

 

 

 

1.0 

 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

 

0.959276 

0.918592 

0.877989 

0.837509 

0.797189 

0.757071 

0.717193 

0.677593 

0.638309 

0.599376 

 

0.968382 

0.936797 

0.905274 

0.873845 

0.842542 

0.811396 

0.780435 

0.74969 

0.71919 

0.688739 

 

0.00910649 

0.018205 

0.0272848 

0.0363364 

0.0453535 

0.0543246 

0.0632419 

0.0720974 

0.0808815 

0.0893635 

Table 4.1. Absolute error for temperature at 0  and t = 5.0 
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Fig.4.1. Plot of ),( txT vs. x  for   = 0.5  and 2/    

x  

t  

Fig.4.2. Plot of ),( txT vs. x for   = 1.0 and 2/   

x  
t  

T(x, t) 

T(x, t) 
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Fig.4.3. Plot of )(ts vs. t for   = 0.2 and 4/   

t  

S (t)  

Ste =1.0 

Ste =0.5  

 

Ste =0.1 

Ste =1.0 

 

Ste =0.5  

 

Ste =0.1 

Fig.4.4. Plot of )(ts vs. t for   = 0.9 and 4/   

S(t)  

t  


