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 Chapter-III 

 

An approximate solution to a moving boundary problem     

with space-time fractional derivatives in fluvio-deltaic 

sedimentation   process 

 

3.1 Introduction    

An interesting moving boundary problem in the field of earth surface science 

involves the movement of the shoreline in a sedimentary ocean basin (a 

shoreline problem). The classical diffusion transport models (Swenson et al. 

(2000), Voller et al. (2004) and Capart et al. (2007)) provide a reliable means of 

modeling the sediment transport in fluvial depositional systems. The 

assumptions of the classical diffusion equations are thin-tailed periods of 

inactivity and thin-tailed transport distances for sediment particles. From the 

literature (Schumer et al. (2009), Ganti et al. (2009), Nathan Bradley et al. 

(2010), Foufoula-Georgiou et al. (2010)), the deviation from normal (Fickian) 

diffusion in sediment tracer dispersion is observed that violates the assumption 

of statistical convergence to a Gaussian. Therefore, the fractional diffusion 

equations are widely used for the investigation of the mechanism of anomalous 

diffusion in transport processes through complex and/or disordered systems 

including fractal media (Li et al. (2008), Liu et al. (2009)). It is well known that 

fractional derivative is a good tool for taking into account memory mechanism, 

particularly in some diffusive processes (Tomovskia et al. (2012)). Both space 

and time fractional operators correspond to the diffusion limit of continuous 

time random walk models with long-tailed waiting time and/or jump length 

distributions (Gorenflo et al. (1998), Tomovskia et al. (2012)). Li et al. (2007)) 

used Caputo derivative ]1,0(  and Riesz-Feller derivative ]2,0(  operators 

for the first order time derivative and second order space derivative, 

respectively and presented an analytic solution to fractional form of a moving 
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boundary problem in drug release devices in term of Fox H function. Voller 

(2010) presented fractional (non-integer) form of a Stefan problem using 

Caputo derivatives for both space and time, and discussed exact solution of the 

problem. Recently, some researchers (Vogel et al.(2012), Zhao et al.(2012a, 

2012b), Jiang et al. (2012)) also discussed various mathematical models 

governed with different fractional derivatives for both the space and time.    

The most commonly used definitions in mathematical models are the Riemann–

Liouville and Caputo. Riemann-Liouville fractional derivative requires initial 

conditions to be expressed in terms of fractional integrals and their derivatives 

which have no obvious physical interpretation. So, Riemann-Liouville 

fractional derivative is not always the most convenient definition for real 

applications (Podlubny (1999)). However, Caputo fractional derivative requires 

the initial conditions (including the mixed boundary conditions) in the same 

form as that of ordinary differential equations with integer-order derivatives 

(Podlubny (1999)). These integer-order derivatives represent well-understood 

features of a physical situation and therefore, their values can be measured 

accurately. Another advantage is that the Caputo derivative of a constant is 

zero, whereas the Riemann-Liouville fractional derivative of a constant is not 

zero. Therefore, it is interesting and applicable to use Caputo fractional 

derivative in diffusion model of sediment transport on earth surface. It can be 

seen by Schumer et al. (2003) and Meerschaert et al.(2004) that a pure 

power-law, heavy-tailed probability density function for the periods of 

inactivity without any truncation leads to a time-fractional diffusion 

equation which describes the evolution of surface elevation in time. In 

depositional system, the deviation of fluvial profiles from 

classical/standard diffusion is reported by Voller and Paola (2010). They 

also presented a diffusive model governed with fractional derivatives to 

describe the steady-state fluvial profiles. After that Ganti et al. (2011) 

assumed that the periods of inactivity are heavy-tailed and presented a 
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time-fractional diffusion model for the surface dynamics of depositional 

system. A discussion of the physical basis for anomalous diffusion in 

bed load transport is reported in the paper of Martin et al. (2012). Rajeev 

and Kushwaha (2013) also discussed a mathematical model with time-

fractional derivative for a moving boundary problem which occurs in 

sedimentation process. These models motivate to discuss space-time 

fractional diffusion model in sedimentation process to study the physical 

effect in complex domain.  

 

The diffusion equation with a moving boundary (moving boundary problem) is 

a special nonlinear problem which is difficult to get the exact solution (Crank 

(1987), Carslaw et al. (1987)). Hence, many approximate and numerical 

methods have been used to solve the moving boundary problems (Lin et al. 

(2005), Abdekhodaie (1996), Das and Rajeev (2010), Li et al. (2009),      

Rajeev (2014), Voller et al. (2006), Rajeev (2009)). The approximate analytical 

approach taken in this literature is Adomian decomposition method. Adomian 

decomposition method was developed by Adomian (1988,1994, 1998) and has 

been applied to solve a wide class of non-linear differential and partial 

differential equations (Wazwaz  (2000, 2007)). Grzymkowski and Sałota 

(2006) presented the solution of one-phase inverse Stefan problem by Adomian 

decomposition method. Das and Rajeev (2010) also used and Adomian 

decomposition method to solve time-fractional diffusion equation with a 

moving boundary condition which is related to the diffusional release of a 

solute from a polymer matrix in which the initial loading is higher/lower than 

the solubility.  

In this study, we consider the non-classical or non-Fickian, anomalous  

sediment transport in braided networks. Our attention in this chapter is to 

discuss a moving boundary problem governed by fractional space-time 

derivative in Caputo sense which arises during the movement of the shoreline  
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in a sedimentary ocean basin. This model is a generalization of previous model 

(Rajeev and kushwaha (2013)). The physical purpose for adopting and 

investigating diffusion equations with fractional space-time derivative is to 

describe phenomena of anomalous (non- Fickian) sediment transport through 

complex and/or disordered systems including fractal media which occurs in 

sedimentation process. Adomian decomposition method is successfully applied 

to find an approximate solution of the proposed problem. The obtained results 

are compared with the existing exact solutions. Three particular cases, the 

standard diffusion, the time-fractional and the space fractional diffusions are 

also discussed. 

 

3.2 The fluvio- deltaic sedimentation model  

Fluvio-deltaic sedimentation problem involves the shoreline propagation in a 

sedimentary ocean basin due to a sediment line flux, tectonic subsidence of the 

earth’s crust, and sea level change. The mathematical model of fluvio-deltaic 

sedimentation process is discussed in (Swenson et al. (2000),                        

Voller et al. (2004), Capart et al. (2007)). In this chapter, we consider a fixed 

line flux, a constant ocean level    (z = 0), no tectonic subsidence of the earth’s 

crust, and a constant sloping basement b < a. A schematic cross section of such 

a basin indicating the variables is revealed in Fig. 3.1 (Voller et al. (2004)). 

Under this limit case, the dynamics of the sedimentation process become a 

moving boundary problem with variable latent heat (as given by Voller et al. 

(2004)) which is as follows: 

)(0,
2

2

tsx
xt








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


,                                           (3.2.1)  

with initial and boundary conditions  
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Fig. 3.1. A schematic cross section of a basin with no tectonic subsidence 

and sea level change. 



 

~ 37 ~ 

 

 

and             0),( ts ,                             (3.2.3) 

where ),( tx is height of sediment above datum,   is a diffusion coefficient, 

)(tq  is the time-dependent sediment line flux and )(ts is the moving contact 

point (moving interface).  

The additional conditions on the moving interface are  

                      
dt

ds
s

x tsx




 




 )(

,                              (3.2.4) 

and                s(0) = 0,                      (3.2.5) 

where s
ba

sab
sua 


 )( . 

3.3 The fractional model  

In order to describe phenomena of anomalous (non- Fickian) sediment transport 

through complex and/or disordered systems including fractal media, we 

consider above moving boundary problem with fractional space-time 

derivatives. Using Caputo fractional derivatives (as given by Voller (2010)), a 

space-time fractional form of the equations (3.2.1-3.2.5) can be described as 

follows: 

       )),((),( txD
x

txD xt  




 ,     ),1,0,)(0(  tsx                     (3.3.6)  

with the following posed conditions:  

        qtDx ),0(  ,                                   (3.3.7) 

        0),( ts .                                            (3.3.8) 
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The additional conditions on the moving interface are 

     )()),(( tsDsttsD tx
   ,                                                                 (3.3.9) 

and   0)0( s .                                                                                            (3.3.10)                  

where s
ba

sba
sua 


 )(  and q  is prescribed sediment line flux that is 

considered as a constant. 

 

3.4 Solution of the problem by Adomian decomposition method 

We first write the equation (3.3.6) in operator form 

           



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 

t
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),( 1 ,                                                            (3.4.11) 

where 
2

2

x
Lxx 


 . 

Assuming that the inverse operator 1
xxL exists and 

         dxdxL
x x

xx  

0 0

1 (.)(.) . 

Applying the inverse operator 1
xxL  on the both side of equation (3.4.11) 
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Choosing the following initial approximations of ),( tx  and )(ts as given by Das 

and Rajeev (2010): 

              )( 00
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where     
2/1

0
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According to the Adomian decomposition method (Adomian (1988)), 

decomposing the unknown function ),( tx  as follows: 

       L 210),(  tx .                                                                        (3.4.13)  

From the equations (3.4.12) and (3.4.13), the components ......,, 210  are 

recursively determined by:  
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and so on.  
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which gives height of the sediment above the datum.  
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Now, using (3.4.14) and writing the interface condition (3.3.9) in operator form 
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Accordingly (Adomian (1994, 1998), decomposing )(ts  as:                                                          
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Using (3.4.15) and (3.4.16), we have 

 









 








 0

1

0 n

nt

n

n ALs  ,                                                                   (3.4.17)                                  

 

where nA  are so-called Adomian  polynomials for non-linear terms and   

defined as: 
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and so on.  



 

~ 42 ~ 

 

 

Therefore, approximate analytical solution of )(ts  is given by: 

          L 210)( sssts ,                                                                          (3.4.21) 

which give height of the sediment above the datum  and the shoreline position 

at a particular time. 

 

 

3.5. Numerical comparison and discussion  

In this section, numerical results for height of sediment ),( tx  and shoreline 

positions s(t) are calculated using MATHEMATICA software and depicted 

through figures. The solution of the problem is discussed in detail by 

considering three particular cases: 

 

Case1.  When 1 , 1 , the equations (3.3.6-3.3.10) reduce to the equations 

(3.2.1-3.2.5) which is standard moving boundary problem. In order to show the 

accuracy of the proposed approximate solution, we compare it with the existing 

exact solution for integer order which is given by Voller et al.(2004). Fig. 3.2 

and Fig. 3.3 represent the dependence of height of sediment ),( tx  on space x  

for standard moving boundary problem ( 1 , 1 ) at the fixed value of 

diffusion coefficient (v = 2.0), sediment line flux ( 5.0q ) and time t = 3.0 for 

10  and 15 , respectively. Fig. 3.4 and Fig. 3.5 depict the dependence of the 

shoreline position on time at the fixed value of diffusion coefficient (v = 2.0) 

and sediment line flux ( 5.0q ) for 10 and 15 , respectively. It can be seen 

from figures (3.2-3.5) that the proposed approximate solution is close to the 

exact solution. Moreover, it is clear from figures (3.4-3.5) that the movement of 

shoreline position decreases as the value of  increases. In this case, the 

sedimentation process becomes slow and the sediments will be deposited 

towards the land side which causes the increase of the thickness of earlier 



 

~ 43 ~ 

 

 

sediments. As a consequence of this there will be least shifting of the contact 

point towards the land side and sedimentation process will be slower. 
 

Case 2.  When 10,1   , the equations (3.3.6-3.3.10) degenerate into a  

moving boundary problem governed with time-fractional derivative as 

discussed in the second chapter.  Fig. 3.6 and Fig. 3.7 explain the dependence 

of shoreline position on time for different Brownian motion ,
3

2
,

2

1
,

3

1
 and also 

for the standard motion 0.1  at the fixed value of v = 2.0, 15  and 1 .  

It is observed from figures (3.6-3.7) that the rate of increase of  )(ts  decreases 

with the increase of   which confirms the exponential decay of regular 

Brownian motion. This result is in good agreement with the result of Das and 

Rajeev (2010). 

 

Case 3. When ,1,10    the proposed problem becomes a moving 

boundary problem with space-fractional derivatives. Fig. 3.8 and Fig. 3.9 show 

the plot of shoreline position )(ts  on time for different values of 1,
2

1
,

4

1
,

6

1
  

at the fixed value of v = 2.0, 15  and 1 . 

 

It can be seen from the Figures (3.6-3.9) that if the sediment line flux q  

increases )5.1,5.0( q , the movement of the contact point (shoreline position) 

increases towards sea side with formation of inclined strata along the off-shore 

sediment wedge. This conclusion show the fact that the models are well 

consistent with truth. Figures (3.6-3.9) also show that trajectory of the 

movement of contact point deviates more from standard motion for the case of 

time fractional than space fractional case during sedimentation process.  
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           Fig.3.2. Plot of ),( tx vs. x for q =0.5, v=2.0 and 

10  

         Fig.3.3. Plot of ),( tx vs. x  for q =0.5, v=2.0 and 

15
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         Fig.3.4. Plot of )(ts  vs. t for q =0.5, v=2.0 and 10  

 

Fig.3.5. Plot of )(ts  vs. t for q =0.5, v=2.0 and 15  
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Fig.3.7. Plot of )(ts  vs. t for q = 1.5 v =2 and 15  
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Fig.3.8. Plot of )(ts  vs. t for q = 0.5 , v=2 and  15  
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3.6. Conclusion 

In this work, we discussed a mathematical model governed by space-time 

fractional derivative in Caputo sense for a moving boundary problem which 

occurs in fluvio-deltaic sedimentation process on earth surface. The solution of 

the proposed problem is obtained by Adomian decomposition method. It is 

found that sedimentation process becomes slow as the value of   increases and 

sedimentation process becomes fast as the sediment line flux increases for 

standard as well as fractional Brownian motion. It is observed that time 

fractional is more pronounced than space fractional during sedimentation 

process. Moreover, it is seen that Adomian decomposition method is a powerful 

and accurate method for finding the solution of moving boundary problem. It is 

straight forward and avoids the hectic work of calculations. The author believes 

that the procedure as described in the present study will considerably benefit to 

engineers and scientists working in this field.  

 


