Chapter-VI

Comparison between Adomian decomposition method and
optimal homotopy asymptotic method for a two moving

boundaries problem

6.1 Introduction

The mathematical model of a solute release from a polymer matrix is an
interesting moving boundary problem (Stefan problem) that involves diffusion
equation. The classical diffusion process is governed by Fick’s law. If solute
movement occurs in heterogeneity media (anomalous) then the process cannot
be described by classical diffusion equation (Fickian) and also violates
Gaussian theorem (Metzler and Klafter (2004), Xu and Tan (20006)).
Therefore, the fractional diffusion equations have been widely used by the
researchers in the field of one moving-boundary problems for the mathematical
models of controlled drug release from polymeric matrix in the last two
decades. One moving boundary problem involves only a diffusing boundary
when matrix is not dissolved. Liu and Xu (2004) were the first who presented a
mathematical model to the problem of one moving boundary governed with
time-fractional derivative in drug release process. One moving boundary
problems with fractional (space or time or space-time) diffusion equations are
studied by Li et al. (2007, 2009), Yin and Li (2011), Das et al. (2011), Rajeev
and Kushwaha (2013), etc. However, fractional calculus has scarcely been
applied to two moving boundaries problems that involve a dissolving boundary
and a diffusing boundary due to the dissolved matrix. In 2009, Yin and Xu
(2009) presented an asymptotic analytical solution in term of Wright function
for a problem of two moving boundaries governed with time fractional

derivative operator in Caputo sense.
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Moving boundary problems are nonlinear in nature and involve moving
boundary/boundaries. So, exact solutions of these problems are restricted for
some particular cases (Crank (1987)). Some exact solutions to the Stefan
problems with fractional anomalous diffusion are discussed by Liu and Xu
(2004), Junyi and Xu (2009) and Voller (2010). Some approximate methods
have also been used by many researchers (Li et al. (2009), Abdekhodaie and
Cheng (1997), Lin and Peng (2005)) to solve such problems. In this literature,
Adomian decomposition method and optimal homotopy asymptotic method are
used to find the approximate solutions. Adomian decomposition method was
developed by Adomian (1988,1994, 1998) and it has been used to solve various
types of differential equations (Wazwaz (2000, 2007)). Adomian decomposition
method to one moving boundary problems is also discussed by Grzymkowski
and Slota (2005), Das and Rajeev (2010), Hetmaniok et al. (2011) and Rajeev
and Kushwaha (2013). The Adomian decomposition method provides an
approximate solution for all types of differential and integral equations in the
form of a rapidly convergent series whose terms are recursively determined by
Adomian polynomials (Adomian (1998),Wazwaz (2000)). This method is
capable of reducing the size of calculation without compromising the accuracy
of the numerical solution. In particular, Adomian decomposition method
provides explicit solution of moving boundary problem in visible symbolic
terms without linearization or discretization (Grzymkowski and Slota (2005),

Das and Rajeev (2010)).

Optimal homotopy asymptotic method was developed by Marinca and Herisanu
(2008) and it has been applied to solve a wide class of non-linear differential
equations (Herisanu and Marinca (2010a, 2010b), Igbal et al. ( 2010), Igbal and
Javed (2011), Hashmi et al. (2012)). Ghoreishi et al. (2012) presented the
comparison between homotopy analysis method and optimal homotopy
asymptotic method for nonlinear age-structured population Models. In 2013,

Dinarvand and Hosseini (2013) also used this technique to investigate the
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temperature distribution equation in a convective straight fin with temperature-
dependent thermal conductivity and the convective-radiative cooling of a

lumped system with variable specific heat.

In present study, Adomian decomposition method and optimal homotopy
asymptotic method are used to find approximate solutions for a two moving
boundaries problem (Yin and Xu (2009)) governed by fractional time derivative
in Caputo sense. This problem arises during the controlled drugs release from a
polymeric matrix. The aim for investigating two moving boundaries problem
with fractional time derivative is to explain phenomena of anomalous (non-
Fickian) solute movement through complex and/or disordered systems which
occurs in the diffusion process. The obtained results by Adomian
decomposition method and optimal homotopy asymptotic method are compared
with the existing analytical solution and asymptotic analytical solution (Yin and
Xu (2009)). It is found that solution by Adomian decomposition method and
optimal homotopy asymptotic method are slightly more accurate than the

asymptotic analytical solution obtained by Yin and Xu (2009).

6.2 Mathematical model

In this section, we consider the mathematical model of a two moving
boundaries problem given by Yin and Xu (2009). The one-dimensional
polymeric matrix dissolves slowly under perfect sink condition, diffusivity of

the drug in the matrix is constant and the initial concentration C, of the drug is
much greater than the solubility C, of the drug are the some assumptions which
are used in the formulation of the model. The governing equations and the

posed conditions of the problem are as follows:

2

Df‘C(f,z'):,uaa—ng(f,r), (r(r)<é<s(n),0<a<l), (6.2.1)
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C(,7)=0, (&=r(r)), (6.2.2)

C(&,7)=C, & =s(7), (6.2.3)

(C,-C,)Ds(r) = ,uM , (r>0), (6.2.4)
08 lewo

r(r)=s(r)=0, (r=0), (6.2.5)

where C(¢&,7)1s the concentration of drug in the matrix, x is the diffusivity of
the drug in the matrix, s(z)is the position of the diffusing boundary and r(r)is

the position of dissolving boundary at time - .

Introducing the following dimensionless variables:

U(x,t)zw, tz(%jar, gzg,
c, I Co (6.2.6)
_r@ _s@ _<
R(@) = I S() T x A

The equations (6.2.1-6.2.5) become

DU (x,1) = azté)(;, D (R <x<S(@). 0<a<l), (6.2.7)

U(x,1)=0, (x = R(t)), (6.2.8)

Ux,0) =1, (x=5(1)), (6.2.9)

(&' =1)DS(t) = (Z—Uj , (t>0), (6.2.10)
y=X(1)

R(t)=8()=0, (t=0). (6.2.11)

As given by Yin and Xu (2009), considering the new dimensionless

independent space-time variables

y=x-R(), X()=S()-R@), (6.2.12)
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and taking
R(t)=nt, (6.2.13)

where 7 represents the dimensionless moving velocity of the dissolving

boundary.

Introducing the new dimensionless variables in the Egs. (6.2.7-6.2.11), the

equations become one moving boundary problem (Yin and Xu (2009)) as

follows:
D,“U(y,n—n%(D,“U(y,t)):azg—i{’” L (0<y<x(), (6.2.14)
U(y,1)=0, (y=0), (6.2.15)
U(y,t) =1, (y = X(©)), (6.2.16)
(- 1){ D*X(t)+n F(Z;J = (?;yjlm ,  (t>0), (6.2.17)
X(1)=0, (1=0). (6.2.18)

6.3 Solution of the problem by Adomian decomposition method

We first write the Eq. (6.2.14) in operator form (Das and Rajeev (2010)) as

given below:

3 o .
LyyU(yat):Dt U()M)‘UED; lU(yat)a (6319)
where
82
pag = ayZ .
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Assuming that the inverse operator L, exists and
a vy
L,()= (I) (I) (dydy .
Applying the inverse operator L, on the both side of Eq. (6.3.19), we obtain
U(y,0)-U(0,0)— yU,(0,) =L, (D;ZU(y,t) - naiD,“lU(y,t) J ) (6.3.20)
y

Choosing the following initial approximations of U(y,t) and X(¢) as given by

(Das and Rajeev (2010)):

where 4 ( £ JF(I—a/z) 1z
" l-g)ra+ar2)) -

According to the Adomian decomposition method (Wazwaz (2007),
Grzymkowski and Slota (2005), Das and Rajeev (2010)), decomposing the

unknown function U(y,¢) as follows:

U(y,t)=Uy+U +Uy+---. (6.3.21)

where the components U,,U,,U,, --- can be defined as:

_ _Jy
Uy —yUy(O,f)—?O,

_ 0 _
U, =LyL(Dzan(yJ)—77$Dza on(%t)J

CT(-a/2) 797y T(-a/2) 1797 7

CT(1-3a/2) a, 3! 'TQ2-3al2) a, 2!

b
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_ 0 _
U,=L,, [Df‘Ul 0 =n--Df v, (y,t)]

y
_TA-a/2) 22y T(-a/2) 7972 ) 2 f0-a/2) 23

TT(-5a/2) a, 5! T(2-5a/2) 41

ag 4 ' TG-5a/2) a, 3!

and so on.

Therefore,

y? T(l-a/2) 77972 2

—L_{_ F(l—a/2) t_3a/2__
X, TU=3a/2) a 31 'TQ-3a/2) a 2! (6.3.22)
F(l—a/Z) tfﬁa/2£ r‘(l_a/z) tlfﬁa/Zﬁ D

r(-5a/2) a, 5! rQ-5a/2) a, 4!

rG-5a/2) a, 3!

which give concentration of drug in the matrix.

Now, using (6.3.22) and writing the interface condition (6.2.17) in the

following operator form:

X)) =p- D;“(F(X)), (6.3.23)

where ¢ =X, =a,:*'* and

l-a
F(X):(IEEJ(%(U(X“W)}”r(tz_a)
2 _3a/2 1-3a/2
:( P j[ I, T0-a/2) (X)) ¢ _yL-ar2) X0
l-¢ )l X)) T'A-3a/2) 2! ag r2-3a/2) a,
Fl-a/2) (X@)' 7% | T-a/2) (X(0)) 77
r(1-5a/2) 4 a, rQ2-5a/2) 3 ay
» T-a/2) (X)) 275972 e ¢
rG-5a/2) 2  a, "re-a) -
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According to Adomian (1998) and Rajeev and Kushwaha (2013), decomposing
X(¢t) as:

X=X, . (6.3.24)

n=0

Egs. (6.3.23) and (6.3.24) gives

i){n =X, - Dt_“(iAnj, (6.3.25)

n=0 n=0

where 4, are so-called Adomian polynomials (Wazwaz (2007), Rajeev and

Kushwaha (2013)) for non-linear terms and defined as:
AO = F(XO) ’

! 1 n
=X F (X0)+5X12F (Xo) »

and so on.

The components of X, (), n>1, can be determined as:

X, =D;%(4,), (6.3.26)
where
A0=( & j[z”’z L LU-aid) gy 0n_ T-a/2) o TA-a/2) &
l1-e )\ a, T(1-3a/2)2! [(2-3a/2) [(1-5a/2) 4
_ Frd-a/2) itl—a_’_ » I-al/2) a_otzfsa/zm _ 1
T(2—5a2/2) 3! TrG-5a/2) 2 "Te<a)
X, =D;*(4,), (6.3.27)
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where

— 2 . -3a/2 _ 1-3a/2
4= X, d ( £ ] 1, Td-a/2) (X, () t _,L-a/d) ¢ X,
dX \1-¢ )| X,(t) T(1-3a/2) 2! a, r2-3a/2) a,

L T-a/2) (X@)' 2 Td-a/2) (X)) ("

r(-5a2/2) 4  a, r2-sa/2) 3!  a,
_ 2 2-5a/2 I-a
42 LU-a/2) (X,(0) ¢ O ’
rG-5a/2) 20 a r2-a)

and so on.

Therefore, approximate analytical solution of X(¢) is given by

X=X+ X, + X, +-+X

m*

(6.3.28)

for any integerm . This solution is the extension of previous work (Das and

Rajeev (2010)).

6.4 Solution by optimal homotopy asymptotic method

First we write Egs. (6.2.14 - 6.2.16) in operator form as follows:

LWU(y.0)-NU(,1)=0, (6.4.29)
B(U,a—UJ ~o0, (6.4.30)
ox
Rt o* 0 0% . :
where L| =— |is a linear operator, N| =——~#7——— |is nonlinear operator.
oy o* oy at”

According to optimal homotopy decomposition method (Marinca and Herisanu

(2008) and Hashmi et al. (2012)), we construct an optimal

U(y,t,p):[0,X(#)]x[0,1] >R
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which satisfies

(1= p)LU -1, p))|= H(p)ILWU (y.1, p) = NU (v.1, p))], (6.4.31)
U(0,1)=0, (6.4.32)
U(Xx(@).t)=1, (6.4.33)

where pe[0,1] is an embedding parameter, U(y,t;p)is an unknown

function, H(p) is a nonzero auxiliary function for p # 0 and H(0)=0.
Obviously, if p=0,

Uy, 0)=Uy(y,1), (6.4.34)
and when p =1then

Uy,t; )=U(y,1). (6.4.35)

Therefore, as p increase from 0 tol, the unknown function U(y,t, p) varies from

U,(y,t)to the solutionU(y,?).
Now, the following auxiliary function H(p) is considered:
H(p)=mp+m,p* +myp> +---, (6.4.36)

where m, ,m,,m,,--- are constants to be determined later.

Considering the solution of (6.2.14) in the following series form:

U(y,t, p,m)= iUn(y,t,mi)p”, i=0,1,2,--1, (6.4.37)

n=0
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and taking

(6.4.38)

X(0)= 3 p" X, (),
n=0

where  Uy(».,1, 0)=Uy(,1).

Substituting (6.4.37) into (6.4.31) and equating the coefficients of like powers

of p, the following problems are obtained:

P’ LUy, =0, (6.4.39)
p': LU () ==-mNo(Uy(3.0)), (6.4.40)
Pt LU,(n.0)~LU,(.0)=mL{U,(v.1)) = mN, (U, (n.0).U,(».0)), (6.4.41)
and so on.
The general equation for U, (y,?) is given as:
LU (3,0) = LU, (3,0)) = m, Ny(Uy (1))
(6.4.42)

+ ]:Z_;mi[L(Uki(y7t))_Nki(UO(y’t)’Ul(yﬁt)’“'Ukl(yﬁt))] )

where k=23,--- and N, (U,(y,2).U,(y.t),---U,(y,t)) is the coefficient of p* that

can be obtained from the following series:

N, (U(y,t; p,m,)) = Ny(Uy)+ DN (U, UL U, U, )p*, =12, (6.4.43)

s>1

Substituting (6.4.37) and (6.4.38) in the boundary conditions (6.2.15) and

(6.2.16), respectively which give
(6.4.44)

S, (y=0.0m,)p" =0,

n=0
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and

[oe}

) U,,( Sp'X, ,t,min” =1, (6.4.45)
n=0

n=0
where i=0,1,2,---1.

In order to compare the coefficients of various powers ofpin
interface condition, expending U,;(y,t,m;) in Taylor’s series form (as given in

Li et al. (2009)) about a point (X,,¢) as:

Oo laUl(Xo,tm)

n=0 n! ox"

U (x,t,m;) =3 (x—X)", (6.4.46)

where /=0,1,2,3--- and i=0,1,2,3---,/.

From (6.4.37), (6.4.38) and (6.4.46), the interface condition (6.2.17) becomes

ip”’(D,“Xm(t)){ £ j[i ip—[ip)((t)] am U(Xo,tm)]
I=e = o m! (6.4.47)
tl—a
- 771"(2—05)'

Comparing the coefficients of various powers of p from (6.4.47), we have

0 a 1 2 ﬂtl_a
DXy —— + =0, 6.4.48
P to Xo(l—gj r2-a) ( )
" e [ o 0?
pl :Dt Xl Z(EJ(EUI-FX]ay—zUOJ, (64.49)
priDAX —(LJ i,y ix, Oy +X2iU (6.4.50)
Ly An a2 lﬁyzl 28y0 lﬁyo’
and so on.
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Considering (6.4.39) and taking the coefficient of p° from (6.4.44) and

(6.4.45), we have following system:

LU(»,1))=0, (6.4.51)
Uy(0,6)=0, (6.4.52)
Uyp(Xy,t)=1. (6.4.53)

Egs. (6.4.51-6.4.53) gives

Uy =~ (6.4.54)

0

According to Li et al. (2009) and Rajeev and Kushwaha (2013), we construct a
homotopy for (6.4.48) as:

-
( —p)(Xon’XO —(éj}LpLXoDﬁX(} {11} rZzt_ e j =0. (6.4.55)

Considering the solution of (6.4.48) in the following series form:

X, = é;ﬁi(t)p". (6.4.56)

Substituting (6.4.56) into (6.4.55), we get

0 . 0 . l-a 0 .
Z¢i(t)p’[Df’(Z¢i(t)p’B—( z j+p£ 7! J >¢;()p' =0. (6.4.57)
i=0 i=0 l1-¢ I'2-a) )i

Comparing the coefficients of various powers of p from (6.4.57), we have

P’ hDlg, _(LJ =0, (6.4.58)

l-¢
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R (6.4.59)

P DI RO == b g, (6.4.60)

and so on.

Therefore,

Xy =4O+ 4 (D) + () +-,
(6.4.61)

a2 NMII2+al2)
0 IrQ-a)T1+3a/2)

2

where ¢,(t) = a,t*"”

id 4 _( ¢ j“z rd-a/2))"
" \-¢) (F+a/2))

In order to calculate other components ofU (y,t,m;), 1.e. U,,U,,U,---, taking

Uy (y,1) z¢l (for small value of  and ¢ ). (6.4.62)
0

From Eq. (6.4.40) and taking the coefficient of p' from Eq. (6.4.44) and using

U,(y,0)=0, we get

m I'l-a/2) y3t—3a/2+ mn I'l-a/2) y2tl—3a/2. (6.4.63)
3la, ' -3a/2) 2la, T'(2-3a/2)

Ul (y,t,ml) =
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Using boundary conditions U,(0,z)=0 and U,(y,0)=0in the Eq. (6.4.41), we

have
Uz(y,t,ml,mz)z— m, I'l-a/2) y3t73a/2+m277 Ir'd-a/2) 241-3al2
3la, I'1-3c/2) 2la, T'(2-3a/2)
+(1+m)| - m T'(l-a/2) 3p-das2 M I'd-a/2) 2/1-3a/2
3la, T(1-3a/2) 2la, T(2-3a/2)
(6.4.64)
—my| - m T(l-al2) Y2y mn I'(l-a/2) yipi-sar2
Sla, T(1-5a/2) Aa, T(2-5a/2)
7l - m T'(1-a/2) y4t1—5a/2+m177 IFd-a/2) y3t2—5a/2 ,
Aa, T(2-5a/2) 3la, T(2-3a/2)
and so on.
Therefore, approximate analytical solution of U(y,z,m,) is given by
Uy, t,m)=Uy+U +U, +-+-. (6.4.65)
Egs. (6.4.49) and (6.4.50) give
£ —a| ©
Xl :(—th [_Ul(Xo,t,ml)J, (6.4.66)
l-¢ oy
and
e \yl @ 0?
Xy =|— D7 | —U,(Xg,t,my,my) + X; — U (X, 1,my) |, (6.4.67)
l-¢ oy 6)/2
respectively.
From (6.4.66), we have
Y~ ( & J a,(T(A—a/2)) jarn_ nT(l—a/2)LQ2+a/2) w
M d—e \ 2T+ a/2)P(1-3a/2) [(1+3a/2)I(1-3a/2)(TQ2-a))
+77F(1—a/2)F(2—a)t_ n"’T(1-a/2TGB-a/2)T2+a/l2) jrar? (6.4.68)
r2-3a/2) a,T2-a)[(1+3a/2)FG+a/2)[(2-3a/2)

7’T1-a/2T@+a/2)(T2+a/2)) a2
TG+3a/2)0(1-3a/2)(T(1+3a/2)) (T2 -a)) ’
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and similarly X, X;,X,,--- can be computed.

Approximate analytical solution of X(¢)is given by
X)) =Xo+X; +Xy+-. (6.4.69)

In order to get the constants involved in the expression of U(x,7), Least Square

Method (as given in Ghoreishi et al. (2012)) is used. For this purpose, we define

the residual for U(x,t) as:

R(x,t;m ,my,--m,) = L(ﬁ(x,t,ml,mz,---m,))— uN(ﬁ(x,t,ml,mz,---ml)). (6.4.70)

where U(x,t,m,,m,,---m,)is an approximate value of U(x,r) which can be found

from Eq. (6.4.65).

If R(x,t;m)=0 then U(x,t;m)will be exact solution. Generally, optimal
homotopy asymptotic gives an approximate solution. Therefore, R(x,z;m,)#0 in

such a case, but we can minimize the functional

t s(0)

J(m)=[ [R*(x,t;m,)dxdt , (6.4.71)
0 0
where R is the residual. The constants m, (i =1,2---, ) can be optimally obtained

from the following conditions:

oJ o) _oJ_
om, Om, om,

0. (6.4.72)

6.5 Numerical discussion and comparison

In this section, all numerical results for diffusing boundary S(¢)are calculated

by ADM and OHAM. In Adomian decomposition method, all the numerical

calculations have been done by taking only three terms of the series of
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the U(x,7) and X (¢r) which are used in the calculation of S(¢). In case of optimal
homotopy asymptotic method, only two terms of U(x,r) and X(¢) are

considered for numerical calculations. According to Liu and Xu (2004) and Yin

and Xu (2009), the exact solutions to (6.2.14 — 6.2.18) at n=0 are

1—W{—xt_2;—02‘,1]
U(x,t)= - , (6.5.73)
=W (-pi— 1)
and
S(t)=pt?, (6.5.74)
where W(-x;—p,l—p)= i (=) is Wright function and p is a

n—on!l[-np+ (- p)]

constant that will be determined by following transcendental equation:

ra+%) @l—D@—WFPkZJJ
2 p =1. (6.5.75)
ra-0)  Weped

o
91_7
2)

Table 6.1 shows the comparisons among exact solution, proposed approximate
solutions (OHAM and ADM) and asymptotic solution for diffusing boundary
S(t) at the fixed value of £=0.05, a=1.0 and n=0. From the table, it is

confirmed that our approximate results are in good agreement with the exact

results for « =1.0 (standard motion).

Figure 6.1 and Figure 6.2 show the comparisons among exact solution,
proposed approximate solutions (ADM and OHAM) and asymptotic solution of
diffusing boundary S(f) for the fixed values of £=0.05 at «=0.75 and

a =0.5, respectively. Figures (6.2-6.4) depict the comparisons among exact
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solution, proposed approximate solutions and asymptotic solution for diffusing

boundary S(¢) for different value of & (£=0.05,0.1,0.15) at «=0.5 and 5 =0.

From figures (6.1-6.4), it is clear that our approximate results are more near to

the exact solution than asymptotic solution of Yin and Xu (2009) for =0.

Moreover, it can be seen that results of the problem obtained by optimal
homotopy asymptotic method are more accurate than Adomian decomposition

method.

Fig. 6.5 and fig. 6.6 depict the dependence of dimensionless diffusing boundary

s(r) on dimensionless time ¢ for various value of the parametercat =0 and
n =05, respectively. It can be seen from these figures that the movement of

diffusing ~ boundary increases ~ with the increase of  the

parameter¢ (¢ =0.01, 0.05, 0.1). Hence, the diffusion process becomes fast as the

values of ¢ increases.

Figures (6.7-6.8) show the dependence of dimensionless diffusing boundary
S(t) on dimensionless time ¢ for different values of « («=1/3,1/2,2/3,1.0).
From figures (6.7-6.8), it can be seen that the movement of diffusing boundary
decreases with the increase of « . Hence, the diffusion process becomes slow as
the values of «aincreases. Fig. 6.9 and fig. 6.10 represent the dependence of
dimensionless diffusing boundary S() on dimensionless time ¢ for different
value of n at £¢=0.3 for «=0.5 anda =1.0, respectively. From figures (6.9-
6.10), it is clear that the diffusion process increases slowly as the value of

n (n=0,0.25,0.5) increases.
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Time | Exact solution | Asymptotic ADM solution | OHAM solution
solution
1 0.32161 0.3136396724404 0.3161265997764 | 0.3244428397
(0.007970328) (0.0054834) (0.002832842)
2 0.45482522379 | 0.443553478463 0.4470705248307 | 0.4588314641
(0.011271745) (0.007754698) (0.004006077)
3 0.55704486022 | 0.543239847936 0.5475473324368 | 0.5619514825
(0.01380502) (0.009497528) (0.00490614)
4 0.64322 0.6272793448808 0.6322531995529 | 0.6488856794
(0.015940655) (0.010966801) (0.005666)
5 0.71914182224 | 0.7013196280176 0.706880566596 | 0.725476244
(0.017822194) (0.012261256) (0.006334178)
6 0.78778039617 | 0.7682571605727 0.774348863573 | 0.7947194079
(0.01952323) (0.013431527) (0.006334178)
7 0.85090007915 | 0.82981257 0.83639236582 0.8583950685
(0.02108743) (0.014507634) (0.007495)
8 0.90965044759 | 0.887106956927 0.89414104966 0.9176629282
(0.02254305) (0.01550895) (0.008013)
9 0.9648300 0.9409190173213 0.948379799329 | 0.9733285191
(0.023910983) (0.016450201) (0.008499)
10 1.017020118 0.991815729501 0.999680084258 | 1.0259783440
(0.025204398) (0.017340034) (0.008958232)

Table 6.1. Comparison among Asymptotic solution, ADM solution and OHAM solution
of S(¢) at a=1.0,&£=0.05and 5 =0.
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Fig.6.2. Plot of S(¢) vs. r ata=0.5,6=0.05and =0
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Fig.6.3. Plot of S(¢) vs. t ata=0.5,e=0.1andy =0
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Fig.6.4. Plot of S(¢) vs. t ata=0.5,6=0.15and #=0
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Fig.6.5. Plot of S(z) vs. r fora=0.5and =0
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Fig.6.6. Plot of S(z) vs. r fora=0.5and #=0.5
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Fig.6.8. Plot of S(z) vs. r ate=0.25and #=0.5

~ 98 ~



S (7)

S()

06 |
05 |
04 |
03[
02/

01

n=0.5
n=0.25
n=0

Fig.6.9. Dependence of S(¢) on rat a=0.50 and ¢ =0.3
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Fig. 6.10. Dependence of S(7) on tata=1.0 and ¢ =0.3



6.6 Conclusion

In this study, we discussed approximate solutions of the two moving boundaries
problem by Adomian decomposition method and optimal homotopy asymptotic
method. It is found that velocity of diffusing boundary becomes fast as the
values of parameter ¢ increases and movement of diffusing boundary becomes

slow with increase in the values of the « as well as ». It is seen that Adomian

decomposition method and optimal homotopy asymptotic method both are
straight forward and sufficient accurate method for finding the solution of
moving boundary problems. Every method has its advantages and
disadvantages. In present study, it is found that the approximate solution by
optimal homotopy asymptotic method is more close to exact result than
Adomian decomposition method. But, in optimal homotopy asymptotic method,
an additional work is required each time to calculate constants after changing
the value of the parameters in the numerical computation. It is also possible
that optimal homotopy asymptotic method may not be applicable at large value

of 7 and/or time for this problem.
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