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Chapter-VI 
 

Comparison between Adomian decomposition method and 

optimal homotopy asymptotic method for a two moving   

boundaries problem 

 

6.1 Introduction   

The mathematical model of a solute release from a polymer matrix is an 

interesting moving boundary problem (Stefan problem) that involves diffusion 

equation. The classical diffusion process is governed by Fick’s law. If solute 

movement occurs in heterogeneity media (anomalous) then the process cannot 

be described by classical diffusion equation (Fickian) and also violates 

Gaussian theorem (Metzler and Klafter (2004), Xu and Tan (2006)). 

Therefore, the fractional diffusion equations have been widely used by the 

researchers in the field of one moving-boundary problems for the mathematical 

models of controlled drug release from polymeric matrix in the last two 

decades. One moving boundary problem involves only a diffusing boundary 

when matrix is not dissolved.  Liu and Xu (2004) were the first who presented a 

mathematical model to the problem of one moving boundary governed with 

time-fractional derivative in drug release process. One moving boundary 

problems with fractional (space or time or space-time) diffusion equations are 

studied by Li et al. (2007, 2009), Yin and Li (2011), Das et al. (2011), Rajeev 

and Kushwaha (2013), etc. However, fractional calculus has scarcely been 

applied to two moving boundaries problems that involve a dissolving boundary 

and a diffusing boundary due to the dissolved matrix. In 2009, Yin and Xu 

(2009) presented an asymptotic analytical solution in term of Wright function 

for a problem of two moving boundaries governed with time fractional 

derivative operator in Caputo sense.  
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Moving boundary problems are nonlinear in nature and involve moving 

boundary/boundaries. So, exact solutions of these problems are restricted for 

some particular cases (Crank (1987)).  Some exact solutions to the Stefan 

problems with fractional anomalous diffusion are discussed by Liu and Xu 

(2004), Junyi and Xu (2009) and Voller (2010). Some approximate methods 

have also been used by many researchers (Li et al. (2009), Abdekhodaie and 

Cheng (1997), Lin and Peng (2005)) to solve such problems. In this literature, 

Adomian decomposition method and optimal homotopy asymptotic method are 

used to find the approximate solutions. Adomian decomposition method was 

developed by Adomian (1988,1994, 1998) and it has been used to solve various 

types of differential equations (Wazwaz (2000, 2007)). Adomian decomposition 

method to one moving boundary problems is also discussed by Grzymkowski 

and Slota (2005), Das and Rajeev (2010), Hetmaniok et al. (2011) and Rajeev 

and Kushwaha (2013). The Adomian decomposition method provides an 

approximate solution for all types of differential and integral equations in the 

form of a rapidly convergent series whose terms are recursively determined by 

Adomian polynomials (Adomian (1998),Wazwaz (2000)). This method is 

capable of reducing the size of calculation without compromising the accuracy 

of the numerical solution. In particular, Adomian decomposition method 

provides explicit solution of moving boundary problem in visible symbolic 

terms without linearization or discretization (Grzymkowski and Slota (2005), 

Das and Rajeev (2010)). 

Optimal homotopy asymptotic method was developed by Marinca and Herisanu 

(2008) and it has been applied to solve a wide class of non-linear differential 

equations (Herisanu and Marinca (2010a, 2010b), Iqbal et al. ( 2010), Iqbal and 

Javed (2011), Hashmi et al. (2012)). Ghoreishi et al. (2012) presented the 

comparison between homotopy analysis method and optimal homotopy 

asymptotic method for nonlinear age-structured population Models. In 2013, 

Dinarvand and Hosseini (2013) also used this technique to investigate the 
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temperature distribution equation in a convective straight fin with temperature-

dependent thermal conductivity and the convective–radiative cooling of a 

lumped system with variable specific heat.  

 In present study, Adomian decomposition method and optimal homotopy 

asymptotic method are used to find approximate solutions for a two moving 

boundaries problem (Yin and Xu (2009)) governed by fractional time derivative 

in Caputo sense. This problem arises during the controlled drugs release from a 

polymeric matrix. The aim for investigating two moving boundaries problem 

with fractional time derivative is to explain phenomena of anomalous (non- 

Fickian) solute movement through complex and/or disordered systems which 

occurs in the diffusion process. The obtained results by Adomian 

decomposition method and optimal homotopy asymptotic method are compared 

with the existing analytical solution and asymptotic analytical solution (Yin and 

Xu (2009)). It is found that solution by Adomian decomposition method and 

optimal homotopy asymptotic method are slightly more accurate than the 

asymptotic analytical solution obtained by Yin and Xu (2009). 

 

6.2 Mathematical model 

In this section, we consider the mathematical model of a two moving 

boundaries problem given by Yin and Xu (2009). The one-dimensional 

polymeric matrix dissolves slowly under perfect sink condition, diffusivity of 

the drug in the matrix is constant and the initial concentration 0C  of the drug is 

much greater than the solubility sC  of the drug are the some assumptions which 

are used in the formulation of the model. The governing equations and the 

posed conditions of the problem are as follows:   
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)),((,0),(  rC                                    (6.2.2) 
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,)0(,0)()(   sr                                      (6.2.5)                      

where ),( C is the concentration of drug in the matrix,   is the diffusivity  of 

the drug in the matrix, )(s is the position of the diffusing boundary and )(r is 

the position of  dissolving boundary at time  .  

Introducing the following dimensionless variables:                       
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The equations (6.2.1-6.2.5) become  
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.0)(0,)()(  ttStR                                                    (6.2.11) 

As given by Yin and Xu (2009), considering the new dimensionless 

independent space-time variables  

),()()()( tR-tStX,tR-xy                                                  (6.2.12) 
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and taking  

,)( ttR                                                                                            (6.2.13) 

where η represents the dimensionless moving velocity of the dissolving 

boundary. 

Introducing the new dimensionless variables in the Eqs. (6.2.7-6.2.11), the 

equations become one moving boundary problem (Yin and Xu (2009)) as 

follows:  
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6.3 Solution of the problem by Adomian decomposition method  

We first write the Eq. (6.2.14) in operator form (Das and Rajeev (2010)) as 

given below: 
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where     
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Assuming that the inverse operator 1
yyL exists and 

       dydyL
y y

yy  

0 0

1 (.)(.) . 

Applying the inverse operator 1
yyL on the both side of Eq. (6.3.19), we obtain 













  ),(),(),0(),0(),( 11 tyUD
y

tyUDLtyUtUtyU ttyyy
  .                   (6.3.20) 

Choosing the following initial approximations of ),( tyU  and )(tX  as given by 

(Das and Rajeev (2010)): 
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According to the Adomian decomposition method (Wazwaz (2007), 

Grzymkowski and Slota (2005), Das and Rajeev (2010)), decomposing the 

unknown function ),( tyU  as follows:  
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and so on.   

Therefore,  
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which give concentration of drug in the matrix.  

Now, using (6.3.22) and writing the interface condition (6.2.17) in the 

following operator form:                                                       
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According to Adomian (1998) and Rajeev and Kushwaha (2013), decomposing 

)(tX  as:  
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Eqs. (6.3.23) and (6.3.24) gives 
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where nA are so-called Adomian polynomials (Wazwaz (2007), Rajeev and 

Kushwaha (2013)) for non-linear terms and defined as: 
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The components of ,1,)( ntX n  can be determined as:  
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and so on.  

Therefore, approximate analytical solution of )(tX  is given by   

        mXXXXtX  L210)( .                                                             (6.3.28) 

for any integer m . This solution is the extension of previous work (Das and 

Rajeev (2010)). 

 

6.4 Solution by optimal homotopy asymptotic method  

 First we write Eqs. (6.2.14 - 6.2.16) in operator form as follows:                                                           
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According to optimal homotopy decomposition method (Marinca and Herisanu 

(2008) and Hashmi et al. (2012)), we construct an optimal                       
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which satisfies 
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where ]1,0[p  is an embedding parameter, );,( ptyU is an unknown 

function, )( pH is a nonzero auxiliary function for 0p  and 0)0( H . 
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and taking 
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Substituting (6.4.37) into (6.4.31) and equating the coefficients of like powers 

of p , the following problems are obtained: 
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where L,3,2k  and       tyUtyUtyUN ss ,,,,, 10 L  is the coefficient of sp  that 

can be obtained from the following series: 

  LL ,2,1,,,,,)()),;,((
1
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jpUUUUNUNmptyUN
s

s

ssjs .               (6.4.43)   

Substituting (6.4.37) and (6.4.38) in the boundary conditions (6.2.15) and 

(6.2.16), respectively which give 
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~ 87 ~ 

 

and 
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where  li L,2,1,0 . 

 In order to compare the coefficients of various powers of p in                 

interface condition, expending ),,( ii mtyU  in Taylor’s series form (as given in   

Li et al. (2009)) about a point ),( 0 tX as:    
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where L3,2,1,0l  and   li ,3,2,1,0 L . 

From (6.4.37), (6.4.38) and (6.4.46), the interface condition (6.2.17) becomes 
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          (6.4.47)                                      

Comparing the coefficients of various powers of p  from (6.4.47), we have    
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 M                                                                                                                      

and so on. 

 



 

~ 88 ~ 

 

Considering (6.4.39) and taking the coefficient of 0p  from (6.4.44) and 

(6.4.45), we have following system: 

              0),(0 tyUL ,                                                                                  (6.4.51) 

            0),0(0 tU ,                                                                                      (6.4.52) 

            1),( 00 tXU .                                                                                    (6.4.53) 

Eqs.  (6.4.51-6.4.53) gives 

            
0

0 ),(
X

y
tyU  ,                                                                                  (6.4.54) 

According to Li et al. (2009) and  Rajeev and Kushwaha (2013), we construct a 

homotopy for  (6.4.48) as:  
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Considering the solution of (6.4.48) in the following series form: 
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Substituting (6.4.56) into (6.4.55), we get 
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Comparing the coefficients of various powers of p from (6.4.57), we have   
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and so on. 

Therefore,  
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In order to calculate other components of ),,( imtyU , i.e. L321 ,, UUU , taking  
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From Eq. (6.4.40) and taking the coefficient of 1p  from Eq. (6.4.44) and using 

  00,1 yU , we get    
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Using boundary conditions   0,02 tU  and   00,2 yU in the Eq. (6.4.41), we 

have 
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   (6.4.64) 

   M  

and so on.  

Therefore, approximate analytical solution of ),,( imtyU  is given by  

 L 210),,( UUUmtyU i .                                                                       (6.4.65) 
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respectively.  

From (6.4.66), we have 
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and similarly L,, 43,2 XXX  can be computed. 

Approximate analytical solution of )(tX is given by 

L 210)( XXXtX .                                                                    (6.4.69)                                                                                         

In order to get the constants involved in the expression of ),( txU , Least Square  

Method (as given in Ghoreishi et al. (2012)) is used. For this purpose, we define 

the residual for ),( txU   as:   
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),,;,( 212121 lll mmmtxUNmmmtxULmmmtxR LLL  .             (6.4.70) 

where ),,,,(
~

21 lmmmtxU L is an approximate value of ),( txU  which can be found 

from Eq. (6.4.65). 

 If 0);,( imtxR  then );,( imtxU will be exact solution. Generally, optimal 

homotopy asymptotic gives an approximate solution. Therefore, 0);,( imtxR  in 

such a case, but we can minimize the functional   
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where R is the residual. The constants ),2,1( limi L can be optimally obtained 

from the following conditions: 
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6.5 Numerical discussion and comparison  

 In this section, all numerical results for diffusing boundary )(tS are calculated 

by ADM and OHAM. In Adomian decomposition method, all the numerical 

calculations have been done by taking only three terms of the series of            
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the ),( txU  and )(tX  which are used in the calculation of )(tS . In case of optimal 

homotopy asymptotic method, only two terms of ),( txU  and )(tX  are 

considered for numerical calculations. According to Liu and Xu (2004) and Yin 

and Xu (2009), the exact solutions to (6.2.14 – 6.2.18) at  0  are  
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Table 6.1 shows the comparisons among exact solution, proposed approximate 

solutions (OHAM and ADM) and asymptotic solution for diffusing boundary 

)(tS  at the fixed value of 05.0 , 0.1  and 0 . From the table, it is 

confirmed that our approximate results are in good agreement with the exact 

results for 0.1 (standard motion).  

 

Figure 6.1 and Figure 6.2 show the comparisons among exact solution, 

proposed approximate solutions (ADM and OHAM) and asymptotic solution of 

diffusing boundary S(t) for the fixed values of 05.0  at 75.0  and      

5.0 , respectively.  Figures (6.2-6.4) depict the comparisons among exact 
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solution, proposed approximate solutions and asymptotic solution for diffusing 

boundary S(t) for different value of  )15.0,1.0,05.0(   at 5.0  and 0 . 

From figures (6.1-6.4), it is clear that our approximate results are more near to 

the exact solution than asymptotic solution of Yin and Xu (2009) for 0 . 

Moreover, it can be seen that results of the problem obtained by optimal 

homotopy asymptotic method are more accurate than Adomian decomposition 

method. 

 

Fig. 6.5 and fig. 6.6 depict the dependence of dimensionless diffusing boundary 

)(tS  on dimensionless time t  for various value of the parameter at 0  and 

5.0 , respectively. It can be seen from these figures that the movement of 

diffusing boundary increases with the increase of the 

parameter )1.0,05.0,01.0(  . Hence, the diffusion process becomes fast as the 

values of   increases. 

 

Figures (6.7-6.8) show the dependence of dimensionless diffusing boundary 

)(tS  on dimensionless time t  for different values of  )0.1,3/2,2/1,3/1(  . 

From figures (6.7-6.8), it can be seen that the movement of diffusing boundary 

decreases with the increase of  . Hence, the diffusion process becomes slow as 

the values of  increases. Fig. 6.9 and fig. 6.10 represent the dependence of 

dimensionless diffusing boundary )(tS  on dimensionless time t  for different 

value of   at 3.0  for 5.0  and 0.1 , respectively. From figures (6.9-

6.10), it is clear that the diffusion process increases slowly as the value of 

 )5.0,25.0,0(  increases.  
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Time Exact solution Asymptotic 

solution  

ADM solution OHAM solution 

1 0.32161 

 

0.3136396724404 

(0.007970328) 

0.3161265997764 

(0.0054834) 

0.3244428397 

(0.002832842) 

2 0.45482522379 

 

0.443553478463 

(0.011271745) 

0.4470705248307 

(0.007754698) 

0.4588314641 

(0.004006077) 

 

3 0.55704486022 0.543239847936 

(0.01380502) 

 

0.5475473324368 

(0.009497528) 

0.5619514825 

(0.00490614) 

4 0.64322 

 

0.6272793448808 

(0.015940655) 

 

0.6322531995529 

(0.010966801) 

0.6488856794 

(0.005666) 

5 0.71914182224 0.7013196280176 

(0.017822194) 

 

0.706880566596 

(0.012261256) 

0.725476244 

(0.006334178) 

6 0.78778039617 

 

0.7682571605727 

(0.01952323) 

0.774348863573 

(0.013431527) 

 

0.7947194079 

(0.006334178) 

7 0.85090007915 0.82981257 

(0.02108743) 

 

0.83639236582 

(0.014507634) 

0.8583950685 

(0.007495) 

8 0.90965044759 0.887106956927 

(0.02254305) 

0.89414104966 

(0.01550895) 

 

0.9176629282 

(0.008013) 

9 0.9648300 0.9409190173213 

(0.023910983) 

0.948379799329 

(0.016450201) 

0.9733285191 

(0.008499) 

 

10 1.017020118 0.991815729501 

(0.025204398) 

 

0.999680084258 

(0.017340034) 

1.0259783440 

(0.008958232) 

    

 

 

 

 

Table 6.1. Comparison among Asymptotic solution, ADM solution and  OHAM solution   

                  of )(tS   at  α = 1.0, ε = 0.05 and η = 0. 
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Fig.6.1. Plot of )(tS  vs. t  at α = 0.75, ε = 0.05 and η = 0  
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       Fig.6.5. Plot of )(tS  vs. t  for α = 0.5 and η = 0 
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  Fig.6.7. Plot of )(tS  vs. t at ε = 0.25 and η = 0 
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       Fig.6.9. Dependence of  )(tS  on t at α = 0.50 and ε = 0.3  
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    Fig. 6.10. Dependence of  )(tS  on t at α = 1.0 and ε = 0.3  
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6.6 Conclusion 

In this study, we discussed approximate solutions of the two moving boundaries 

problem by Adomian decomposition method and optimal homotopy asymptotic 

method. It is found that velocity of diffusing boundary becomes fast as the 

values of parameter   increases and movement of diffusing boundary becomes 

slow with increase in the values of the   as well as  . It is seen that Adomian 

decomposition method and optimal homotopy asymptotic method both are 

straight forward and sufficient accurate method for finding the solution of 

moving boundary problems. Every method has its advantages and 

disadvantages. In present study, it is found that the approximate solution by 

optimal homotopy asymptotic method is more close to exact result than 

Adomian decomposition method. But, in optimal homotopy asymptotic method, 

an additional work is required each time to calculate constants after changing 

the value of the parameters in the numerical computation.  It is also possible 

that optimal homotopy asymptotic method may not be applicable at large value 

of    and/or time for this problem. 

 


