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Abstract
Let G be a finite group. A number of graphs with the vertex set G have been studied,
including the power graph, enhanced power graph, and commuting graph. These
graphs form a hierarchy under the inclusion of edge sets, and it is useful to study
them together. In addition, several authors have considered modifying the definition
of these graphs by choosing a natural equivalence relation on the group such as
equality, conjugacy, or equal orders, and joining two elements if there are elements in
their equivalence class that are adjacent in the original graph. In this way, we enlarge
the hierarchy into a second dimension. Using the three graph types and three
equivalence relations mentioned gives nine graphs, of which in general only two
coincide; we find conditions on the group for some other pairs to be equal. These
often define interesting classes of groups, such as EPPO groups, 2-Engel groups, and
Dedekind groups. We study some properties of graphs in this new hierarchy. In
particular, we characterize the groups for which the graphs are complete, and in most
cases, we characterize the dominant vertices (those joined to all others). Also, we
give some results about universality, perfectness, and clique number.
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1 Introduction

In this section, we describe some graphs associated with groups and discuss a
convention for these graphs as well as notation and terminology. In the following
sections, we prove a number of properties of the collection of graphs and show how
treating them together can be helpful: we examine conditions for some pair of these
graphs to be equal; in most cases, we characterize the dominant vertices; we show
that some of the graphs are perfect, and examine universality properties of the others;
and we calculate the clique number in some cases.

The paper concludes with some open problems and suggestions for further work.
In subsequent work [1, 17], we will look at detailed properties (including Wiener

index and spectrum) of these graphs, and examine the supergraphs for an extension
of the graph hierarchy to the solvability graph.

1.1 B superA Graphs on Groups

Let A be a type of graph defined on a group G. In this paper, we will consider three
such types:

(a) the power graph, in which g is adjacent to h if either g or h is a power of the
other;

(b) the enhanced power graph, in which g is adjacent to h if g and h are both
powers of an element k (equivalently, if the group hg; hi generated by g and h
is cyclic);

(c) the commuting graph, in which g is adjacent to h if gh ¼ hg (equivalently, if
hg; hi is abelian).

Several other types of graphs can be defined, including the deep commuting graph,
nilpotency graph, solvability graph, and Engel graph; these are described in the
survey paper [5].

Also, let B be an equivalence relation defined on G. In this paper, we will consider
three equivalence relations;

(a) equality, g� h if g ¼ h;
(b) conjugacy, g� h if h ¼ x�1gx for some x 2 G;
(c) same order, g� h if oðgÞ ¼ oðhÞ, where o(g) denotes the order of g.

Other relations could be considered, such as automorphism conjugacy, where g� h if
some automorphism of G maps g to h.

Definition 1 The B super A graph on G is defined as follows: Let [g] denote the B-
equivalence class of the element g. Now join g and h if and only if there exist g0 2 ½g�
and h0 2 ½h� such that g0 and h0 are joined in the A-graph on G.

In principle the graph and equivalence relation are arbitrary, but there are reasons
for choosing them to be preserved by the automorphism group of G, as we will see.
This is the case for the examples mentioned above.
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Remark 1 If we take A to be the power graph and B the relation “same order”, we
do obtain the definition of the superpower graph of G from [18]. For suppose that
oðgÞ j oðhÞ. Then some power of h, namely hoðhÞ=oðgÞ, has order o(g); so in the
definition we can take g0 ¼ hoðhÞ=oðgÞ and h0 ¼ h. Our naming convention gives this
graph the name “order superpower graph” of G, which will distinguish this from the
conjugacy superpower graph. Also, Herzog et al. [9] have considered the conjugacy
supercommuting graph. Our aim here is to give a unified treatment of these graphs.

Our convention would also give the power graph the name “equality superpower
graph”, but we will simply say “power graph”, with similar convention for the other
basic graph types.

We see that any result about the power graph is in principle one of a set of nine
results about related graphs.

Note that we have inclusions of the edge sets as follows: the edge set of the power
graph is contained in the edge set of the conjugacy superpower graph, which is
contained in the edge set of the order superpower graph; similarly for other types of
graphs.

Note also that graph parameters such as clique number, chromatic number, and
matching number are monotonic increasing with edge set; independence number and
clique cover number are monotonic decreasing; and increasing the edge set cannot
destroy properties such as being Hamiltonian.

Proposition 1

(a) Let the equivalence relation B be “same order”. If g and h are joined in the
power graph, then for one of them, say g, every element equivalent to g is
joined to some element equivalent to h.

(b) Let B be the conjugacy relation and consider any graph of type A on the group
G. If the graph A is invariant under inner automorphisms of G, and g is joined
to h in A, then every element of the conjugacy class of g is joined to some
element of the conjugacy class of h in the conjugacy super A graph on G, and
vice versa.

(c) More generally, let H be a subgroup of the automorphism group of G which
acts on A for some graph type A. Let B be the equivalence relation induced by
the orbit partition of this action. Then g is joined to h in A implies that (in B
super A graph) every element equivalent to g is joined to some element
equivalent to h under the equivalence relation B.

Proof The first statement was observed in the earlier remark. We prove the third
statement, from which the second follows. Note that if fg; hg is an edge, then
f/ðgÞ;/ðhÞg is an edge for all / 2 H since B is the equivalence relation induced by
the orbit partition. In particular, for the second statement, note that the conjugacy
classes are orbits of the inner automorphism group of G; so, if fg; hg is an edge, then
fx�1gx; x�1hxg is an edge for all x 2 G. In this case, the hypothesis holds for all the
three graph types we are considering. h
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Remark 2 Let us observe another general property. For each of the power graph,
enhanced power graph and commuting graph, if H is a subgroup of G, then AðHÞ is
an induced subgraph of AðGÞ. This holds also for the order superA graphs, but not in
general for the conjugacy superA graphs since the conjugacy relation can change
when we pass from G to H.

1.2 A Convention About Equivalence Classes

Our adjacency rule is ambiguous about whether we join vertices in the same
equivalence class. We now explain how we resolve this and explain the rationale.

In many of the graphs defined on a group, including all those treated here, the
definition would naturally give us a loop at each vertex; any group element is a
power of itself, so this holds for the power graph and enhanced power graph; any
element commutes with itself, so this holds for the commuting graph; and so on. Of
course, we prefer graphs not to have loops, so we silently remove these, even though
they make little difference to many graph-theoretic properties (they make no change
to connectivity and diameter, and simply add the identity matrix to the adjacency
matrix). Adopting the convention that there is a (silent/virtual) loop at each vertex,
we find that any equivalence class of the equivalence relation B will induce a
complete subgraph in the B superA graph.

In fact, even without this convention, things would not be very different. Consider
the order superA graph. An element g has the same order as its inverse, which is
joined to it in the power graph, enhanced power graph, or commuting graph; so as
long as the order of g is greater than 2, each order equivalence class will induce a
complete graph. This will fail only for involutions. For the conjugacy relation, things
are a bit more complicated and could be worth investigating. However, as stated, we
will adopt the convention here that every equivalence class of B induces a complete
subgraph in the B superA graph.

1.3 Notation

We have defined a fairly large number of graphs: what notation should we use to
make it easy for the reader to recognize which graph is being discussed without being
altogether too cumbersome?

In [5], the second author proposed a systematic notation for various graphs on
groups: given a group G, that paper uses PowðGÞ, EPowðGÞ, and ComðGÞ for the
power graph, enhanced power graph, and commuting graph of G. One possibility is
to modify these in an obvious way, so that CSPowðGÞ is the conjugacy superpower
graph and OSPowðGÞ is the order superpower graph, with similar terminology for the
other graphs.

This notation is a bit cumbersome but is hopefully self-explanatory.

2 Reducing Nine Graphs to Eight

We have defined nine graphs, but two of them turn out to be the same.
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Theorem 1 For any finite group G, the order superenhanced power graph of G is
equal to the order supercommuting graph of G.

Proof We use the basic fact that, if a finite abelian group G has exponent m, then it
contains an element of order m. By definition, the graph OSEPowðGÞ is a spanning
subgraph of OSComðGÞ. We have to prove the reverse implication. So suppose that
fx; yg is an edge of OSComðGÞ. By definition, there exist elements x0 and y0 such that
oðxÞ ¼ oðx0Þ, oðyÞ ¼ oðy0Þ, and x0y0 ¼ y0x0. Then A ¼ hx0; y0i is abelian. Let m be its
exponent, and z 2 A an element of order m. Then oðx0Þ j oðzÞ and oðy0Þ j oðzÞ, so
there exist elements x00 and y00 in A with oðx00Þ ¼ oðx0Þ, oðy00Þ ¼ oðy0Þ, and x00 and y00

are both powers of z. Then fx00; y00g is an edge of the enhanced power graph of G, and
oðx00Þ ¼ oðxÞ, oðy00Þ ¼ oðyÞ; so fx; yg is an edge of the order superenhanced power
graph. h

Any two of the remaining eight graphs are unequal for some group G. By
Theorem 3.1, the only pairs that need to be considered are the A graph and the
conjugacy superA graph for each of our three graph types A; all of these are settled
by the example G ¼ S3 (the dihedral/symmetric group of order 6).

One could ask: Is there a group G for which all eight graphs are different? If so,
what is the smallest order of such a group?

A more challenging question would be, for each pair of graph types, to determine
the groups for which the two types of graphs coincide. This has been solved for the
original three graphs, and is a non-trivial exercise. The power graph and enhanced
power graph are equal if and only if G contains no subgroup Cp � Cq for distinct
primes p and q; this condition characterizes the so-called EPPO groups (elements of
prime power order groups), also known as CP groups, which were determined by
Brandl [3] using earlier work of Higman [10] and Suzuki [20]. We refer to [6] for
further connections between this class and graphs defined on groups.

The enhanced power graph and the commuting graph are equal if and only if G
contains no subgroup Cp � Cp for a prime p; this condition is equivalent to saying
that all the Sylow subgroups are cyclic or (for the prime 2) generalized quaternion
groups and it is not too difficult to list such groups. Indeed, all groups with cyclic or
generalized quaternion Sylow 2-subgroups have been determined; see [2].

We give two more results along these lines. For the first, recall the definition of
iterated commutators in a group: ½x; y� ¼ x�1y�1xy and

x1; x2; . . .; xnþ1½ � ¼ x1; x2; . . .; xn½ �; xnþ1½ �
for n� 2. A group G is nilpotent of class at most n if ½x1; . . .; xnþ1� ¼ 1 for all
x1; . . .; xnþ1 2 G; and a group satisfies the nth Engel identity, or is n-Engel, if
½y; x; . . .; x� ¼ 1 (with n occurrences of x) for all x; y 2 G. Clearly a group which is
nilpotent of class at most n is n-Engel; the converse is false, but it was shown by
Hopkins [11] and Levi [15] independently that a 2-Engel group is nilpotent of class at
most 3.

The following lemma is proved by Korhonen given in a post on Stack-
Exchange [14].
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Lemma 1 The following statements are equivalent for a group G.

(a) Every centralizer in G is a normal subgroup.
(b) Any two conjugate elements in G commute, ie. xgx ¼ xxg for all x; g 2 G.
(c) G is a 2-Engel group, ie. ½½x; g�; g� ¼ 1 for all x; g 2 G.

Proof (a) ) (b): Consider x in CGðxÞ; since a normal subgroup is a union of
conjugacy classes of its elements, we have xg 2 CGðxÞ for all g 2 G.

(b) ) (c): Since xg ¼ x½x; g�, if xg commutes with x, [x, g] also commutes with x.
(c) ) (a): If ½½x; g�; g� ¼ 1 for all g 2 G, then according to [13, Lemma 2.2] we

have ½x; ½g; h�� ¼ ½½x; g�; h�2. Therefore ½CGðxÞ;G� �CGðxÞ, which means that CGðxÞ
is a normal subgroup. h

Theorem 2 Let G be a finite group. Then the following conditions are equivalent:

(a) the commuting graph of G is equal to the conjugacy supercommuting graph;
(b) the centralizer of every element of G is a normal subgroup of G;
(c) G is a 2-Engel group.

Proof First, we show the equivalence of (a) and (b). Suppose the commuting graph
and conjugacy supercommuting graph are equal. If x and y commute, they are joined
in the commuting graph, and so every conjugate of y is joined to x in the conjugacy
supercommuting graph, and hence also in the commuting graph; thus x commutes
with every conjugate of y. Hence the centralizer of x is a union of conjugacy classes,
so it is a normal subgroup of G. The argument reverses. The equivalence of (b) and
(c) follows from the above lemma. h

For the second result, recall that a Dedekind group is a group in which every
subgroup is normal. Dedekind [7] showed that such a group is either abelian or of the
form Q8 � E � F, where Q8 is the quaternion group of order 8, E an elementary
abelian 2-group, and F an abelian group of odd order.

Theorem 3 For a finite group G, the following conditions are equivalent:

(a) the power graph of G is equal to the conjugacy superpower graph;
(b) the enhanced power graph of G is equal to the conjugacy superenhanced

power graph;
(c) G is a Dedekind group.

Proof We use the fact that conjugate elements have the same order. Let xG denote
the conjugacy class of x in G.

In either the power graph or the enhanced power graph, elements of the same
order which are adjacent generate the same cyclic subgroup. So, if either (a) or (b)
holds, then all elements of xG generate hxi. So every cyclic subgroup of G, and hence
every subgroup, is normal; that is, G is a Dedekind group.

For the converse, if x and y are joined in either the power graph or the enhanced
power graph, then there is a cyclic group C containing x and y. If G is a Dedekind
group, then C is normal; so xG [ yG � C. In the case of the enhanced power graph, C
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is a clique, so all vertices in xG are joined to all vertices in yG, and (b) holds. In the
case of the power graph, (a) holds because either o(x) divides o(y) or vice versa. h

Remark 3 There are some other elementary observations. The group G has the
property “two elements are conjugate if and only if they are equal” exactly when G is
abelian. So we have that the conjugacy superA graph is equal to the A graph if G is
abelian, for any graph type A. In a similar way, the conjugacy superA graph is equal
to the order superA graph if G is a group in which any two elements of the same
order are conjugate. (There are only three finite groups with this property, the
symmetric groups of degrees 1, 2 and 3: see Fitzpatrick [8, Theorem 3.6].)

3 Completeness and Dominant Vertices

In this section, we begin a study of how the properties of the graphs relate to
properties of the groups they are built on.

3.1 When is the B superA Graph Complete?

The theorem below summarises the answer to this question “When is the graph
complete?” for our three types of graph and three types of partition, and is intended
as an example of treating the hierarchy uniformly. In the table, ð	Þ means that the
group G has an element whose order is the exponent m of G; equivalently, the
spectrum of G (the set p	ðGÞ of orders of elements of G, sometimes denoted by
peðGÞ) is the set of all divisors of m. Such groups are not so rare. Any nilpotent group
has this property; and, for any finite group G, there is a positive integer r such that Gr

has property ð	Þ. For example, ðA5Þ3 contains elements of order 30, which is the
exponent of the group.

Theorem 4 The following table describes groups whose power graph, enhanced
power graph, commuting graph, or their conjugacy or order supergraph is complete.

Power graph Enhanced Commuting
Power graph graph

Equality Cyclic Cyclic Abelian

p-group

Conjugacy Cyclic Cyclic Abelian

p-group

Order p-group ð	Þ ð	Þ

Proof The results for the power graph, enhanced power graph, and commuting
graph are well-known [5].

To prove that the conjugacy supercommuting graph is complete if and only if G is
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abelian, we use a result which goes back to Jordan [12]: if G is a finite group and H a
proper subgroup of G, then there is a conjugacy class in G which is disjoint from H.
(For the reader’s convenience we sketch a proof. Let H have index n in G, and
consider the action of G by right multiplication on the set of right cosets of H. This
action is transitive, so by the Orbit-counting Lemma (sometimes called Burnside’s
Lemma), the average number of fixed points of the elements of G is 1. But the
identity fixes n points, and n[ 1; so some element g fixes no point. This means that
g lies in no conjugate of H; equivalently, no conjugate of g lies in H. For a modern
take on Jordan’s theorem, we strongly recommend a paper of Serre [19]).

Now, if G is abelian, then the conjugacy supercommuting graph coincides with the
commuting graph, and is complete. So suppose that G is a finite group whose
conjugacy supercommuting graph is complete, and take any element g 2 G. If
CGðgÞ 6¼ G then, by Jordan’s theorem, there is an element h such that the conjugacy
class of h is disjoint from CGðgÞ; thus no conjugate of h commutes with g, and so g
and h are non-adjacent, a contradiction. Thus CGðgÞ ¼ G, or g 2 ZðGÞ. Since this
holds for all g 2 G, we see that G is abelian.

If G is not a p-group, then it contains elements of distinct prime orders. These
elements are non-adjacent in the power graph and both of its supergraphs. So if any
of these graphs are complete, then G must be a p-group. Conversely, if G is a p-
group, its order superpower graph is complete, as shown in [18].

If G is a cyclic p-group, then its power graph, and hence its conjugacy superpower
graph, is complete. Suppose conversely that G is a group whose conjugacy
superpower graph is complete. Then G cannot have elements of distinct prime order,
so G is a p-group. Let g be an element of order p in Z(G). Then G is conjugate only to
itself, so cannot be joined to any element of order p outside hgi; so there can be no
such elements. Thus G has a unique subgroup of order p, and by a result of Burnside
[4, Sections 104–105] it is cyclic or generalized quaternion. But generalized
quaternion groups contain non-conjugate subgroups of order 4, so cannot arise here.

If G is cyclic, then its enhanced power graph, and hence its conjugacy
superenhanced power graph, is complete. Suppose conversely that G is a group
whose conjugacy superenhanced power graph is complete. Then the conjugacy
supercommuting graph of G is complete, so G is abelian. Then the conjugacy
superenhanced power graph coincides with the enhanced power graph, so G is cyclic.

Finally, let G be a group whose order supercommuting graph is complete. Take
two elements of G, with orders (say) g and h. Since g and h are adjacent, we can
replace them with elements of the same orders which commute, and so the order of
their product is the least common multiple of k and l. Thus the set peðGÞ is closed
under taking least common multiples (as well as under taking divisors), and so ð	Þ
holds. Conversely, if g 2 G has order equal to the exponent of G, then every element
in peðGÞ is the order of some power of g, and all these powers are joined in the
enhanced power graph and in the commuting graph. So the order supercommuting
graph is complete. h
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3.2 Dominant Vertices

A graph is complete if and only if every vertex is dominant (or universal), that is,
joined to all other vertices. So, as a generalization of Theorem 3.1, we could ask: for
each of the nine graphs, which elements of a group G are dominant vertices? The
answers are known for the basic graphs, and can be found in [5, Section 9.1]; we
summarise the results here.

(a) The set of dominant vertices of the power graph of G is the whole of G, if G is
a cyclic p-group; the identity and the generators of G, if G is cyclic but not a p-
group; the centre, if G is a generalized quaternion group; and only the identity
in all other cases.

(b) The set of dominant vertices in the enhanced power graph is a cyclic subgroup
of Z(G) called the cyclicizer of G; it is the product of the Sylow p-subgroups of
Z(G) for those primes p for which a Sylow p-subgroup of G is cyclic or
generalized quaternion.

(c) The set of dominant vertices in the commuting graph is the centre Z(G).

Now we solve the problem for the conjugacy supergraphs.

Theorem 5 If A is the power graph, enhanced power graph, or commuting graph,
then the set of dominant vertices in the conjugacy super A graph of G is the same as
the set of dominant vertices in the A graph.

Proof We show this first for the commuting graph. Suppose that g 2 G and g is
joined to all other vertices of G in the conjugacy supercommuting graph. By
Proposition 1, g is joined to an element of every conjugacy class of G; in other
words, its centralizer CGðgÞ meets every conjugacy class. Hence CGðgÞ ¼ G, so
g 2 ZðGÞ. Thus g is joined to all other vertices in the commuting graph.

Now suppose that AðGÞ is the power graph or enhanced power graph of G, and let
g be a dominant vertex in the conjugacy superA graph of G. Since the conjugacy
superA graph is a spanning subgraph of the conjugacy supercommuting graph,
g 2 ZðGÞ. So, for any h 2 G, h is joined to a conjugate of g. But the only conjugate is
g itself; so g is joined to all other vertices in AðGÞ. h

We have also solved the problem for the order superpower graph. If G has prime
power order then its order superpower graph is complete; so we can suppose not.

Proposition 2 Let G be a group not of prime power order, having exponent m. Then
the set of dominant vertices in the order superpower graph of G consists of the
identity and the elements of order m (if any).

Proof Let p1; . . .; pr be the prime divisors of |G| with r[ 1, and let paii be the largest
power of pi dividing the order of an element of G; then there are elements of order paii
in G. Suppose that n has the property that elements of order n are dominant, and that
n[ 1. Then, for each i, either paii divides n, or n divides paii . Since r[ 1, the second
cannot hold. (If, say, n divides pa11 , then n is a proper power of p1; then neither pa22 j n
or n j pa22 can hold.) Thus n is the product of the prime powers paii , which is equal to
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the exponent of G.
Conversely, if g has order m, the exponent of G, then oðhÞ j oðgÞ for all h 2 G, so

g is dominant. h

We have not found a characterisation of the dominant vertices in the (one)
remaining case, the order supercommuting graph.

Remark 4 If a graph has a dominant vertex, then it is connected, with diameter at
most 2. So it is customary to remove the dominant vertices in order to get non-trivial
questions about connectedness and diameter. This is one reason why it is important to
know such vertices. This remark suggests that a next step in the investigation of these
graphs would be to decide about the connectedness of the “reduced” graphs.

4 Some Graph Properties and Parameters

In this section, we discuss several further graph properties (perfectness, universality)
and parameters (clique number) for our graphs.

4.1 Perfectness and Universality

It is known that power graphs of finite groups are perfect, but enhanced power graphs
and commuting graphs are not necessarily perfect; indeed, any finite graph can be
embedded as an induced subgraph in the enhanced power graph (or the commuting
graph) of a finite group (see [5]). In this section we give some similar results for
supergraphs.

Theorem 6 The conjugacy or order superpower graph of a finite group is the
comparability graph of a finite partial preorder and hence is perfect.

Proof For this, we define directed versions of these graphs and show that they are
comparability graphs. For conjugacy, we put an arc from x to y if some conjugate of y
is a power of x (or equivalently if y is a power of some conjugate of x); for order, we
put an arc from x to y if oðyÞ j oðxÞ. Both are reflexive (if we add loops) and
transitive. h

Theorem 7 Every finite graph C is embeddable as an induced subgraph in the
conjugacy superenhanced power graph, and in the conjugacy supercommuting
graph, of some finite group.

Proof The proof in [5, Theorem 5.5] of the analogous result for the enhanced power
graph constructs an abelian group, where conjugacy coincides with equality, proving
the result for this case. Here, we give a different proof, which works for both graph
types. We use the fact that two elements of distinct prime orders are joined in the
enhanced power graph if and only if they are joined in the commuting graph. (One
way round is trivial since the enhanced power graph is a subgraph of the commuting
graph. In the other direction, if g and h have distinct prime orders and commute, then
both are powers of gh.) Now, if C is a complete graph on n vertices, then we can take
G to be the direct product of cyclic groups of distinct prime orders p1; . . .; pn; if X
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consists of one element of each prime order, then the induced subgraph of the
commuting graph of G on X is C. So we may assume that C is not complete.

First, we observe that it is possible to find a set of n prime numbers p1; . . .; pn such
that, if i 6¼ j and pi\pj, then pi j pj � 1. This is proved by induction. Suppose that
p1; . . .; pn�1 have been chosen. Then we choose pn to be congruent to 1 mod pi for
i ¼ 1; . . .; n� 1 (this is possible by the Chinese remainder theorem) and to be prime
(this is possible by Dirichlet’s theorem on primes in arithmetic progression).

Now for i; j 2 f1; . . .; ng, let Gij be the direct product of the non-abelian group of
order pipj and the cyclic group of order pk for every k 62 fi; jg; let xijk be an element
of order pk in Gij for k ¼ 1; . . .; n. We note that the induced subgraph of the
commuting graph of Gij on fxij1; . . .; xijng is the complete graph Kn with the edge
fi; jg deleted.

Given a graph C with vertex set f1; . . .; ng, let G be the direct product of the
groups Gij over all nonedges fi; jg of G; let xk be the element of G which projects
onto xijk in the factor Gij for all such pairs fi; jg. Then the element xk has order pk,
and xk and xl commute if and only if xijk and xijl commute for all fi; jg, that is, fk; lg
is an edge of C.

Finally, we note that, if two elements commute, they are joined in the conjucacy
supercommuting graph. Conversely, if xj and xk do not commute, then they project
onto non-commuting elements in Gjk ; the structure of the non-abelian group of order
pjpk shows that conjugates of these elements also do not commute. h

4.2 Clique Number

We describe the maximal cliques in the order superpower and superenhanced power
graphs.

We begin with some definitions. The spectrum p	ðGÞ of a finite group G (cf.
Sect. 3.1) is closed under divisibility (if k 2 p	ðGÞ and l j k then l 2 p	ðGÞ), so
p	ðGÞ is determined by the set p	maxðGÞ of its elements which are maximal in the
divisibility partial order.

A sequence ðm1;m2; . . .;mrÞ of distinct positive integers is a chain in the
divisibility partial order if mi j miþ1 for i ¼ 1; . . .; r � 1. It is a maximal chain if
m1 ¼ 1 and miþ1=mi is prime for i ¼ 1; . . .; r � 1. The top of the chain is mr.

For a finite group G and m 2 p	ðGÞ, we let G(m) denote the set of all elements of
order m in G.

Theorem 8

(a) A maximal clique in the order superpower graph has the form Gðm1Þ [
Gðm2Þ [ 
 
 
 [ GðmrÞ for some maximal chain whose top belongs to p	maxðGÞ.

(b) A maximal clique in the order superenhanced power graph has the form[

rjm
GðrÞ, for some m 2 p	maxðGÞ.
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Given this theorem, the clique numbers of these graphs are obtained by
maximizing over all maximal chains with top in p	maxðGÞ (in the first case) or
elements of p	maxðGÞ (in the second).

Proof (a) Given a clique C in the order superpower graph, let m be the largest
element of C. Then the orders of all other elements of C divide m, and so they form a
chain with top m. So C is contained in the union given in part (a) of the theorem, and
maximality implies that the chain is maximal, its top is in p	maxðGÞ, and that every
element of G(k) for k in the chain belongs to C.

(b) Given k and l, elements of G(k) and G(l) are joined in the order superenhanced
power graph if and only if lcmðk; lÞ 2 p	ðGÞ. So the set of orders of elements in a
clique has a unique maximal element m. As in the preceding argument, if C is
maximal, then the orders include every divisor of m and C contains G(k) whenever
k j n. h

For the superpower and superenhanced power graphs, we do not give a formula,
but explain what maximal cliques look like.

Proposition 3 Let G be a finite group.

(a) Let C be a maximal clique in the conjugacy superenhanced power graph of G.
Then there exists m 2 p	ðGÞ such that C is the union of a conjugacy class of
cyclic subgroups of order m.

(b) Let C0 be a maximal clique in the conjugacy superpower graph of G. Then
there exists m 2 p	ðGÞ and a maximal chain ðm1; . . .;mrÞ of divisors of m and
a conjugacy class of cyclic subgroups of G of order m (with union C) such that
C0 consists of all elements of C which have order mi for some i with 1� i� r.

Proof In either case, let m be the largest order of an element of the clique; then the
order of any element of the clique divides m. (This is clear for the power graph. For
the enhanced power graph, let g be an element of order m. If there are elements of
order q not dividing m, then there is one (say h) joined to g in the enhanced power
graph; but then there is an element of larger order to which both g and h are joined,
and so it is joined to all elements of the clique. Now the result follows as in the
preceding theorem. h

Note that we cannot conclude in this case that m 2 p	maxðGÞ. For example, in the
dihedral group D4 of order 8, the cyclic group C4 consisting of rotations is a maximal
clique in either graph; the reflections fall into two conjugacy classes, each of which
(together with the identity) forms a maximal clique. In general, it seems not an easy
task to decide which clique (as given in the Proposition) is largest, or to give a
formula for its size.

5 Open Problems and Further Directions

We mention here some questions which have arisen in this investigation which we
have not been able to answer, and some further directions for research.
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Problem 1 Extend these investigations to other graphs defined on groups (such as
the nilpotency and solvability graphs) and other equivalence relations (such as
automorphism conjugacy). This question for the conjugacy supergraphs has been
studied in several papers, for example, [16, 17].

Problem 2 Complete the characterization of the classes of groups G for which a
given pair of the super graphs on G coincide, especially for classes that are adjacent
in a row or column of the 3� 3 table (as in Theorem 3.1): see Theorems 2 and 3.

Problem 3 Characterize the dominant vertices in the order supercommuting graph.

Problem 4 What can be said about the connectedness of super graphs when
dominant vertices are deleted?

Problem 5 Characterize the cliques of maximum size in the conjugacy supergraphs.
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