
Chapter 8

Feature Extraction and Recognition

of Characters using Vector Contour

8.1 Introduction

In the previous chapter, a new and effective approach to extract the features of the

characters has been described. This approach is capable for not only to recognize

the characters but any object, having any shape. In this chapter we present a

new approach to recognize the characters of any types, just by extracting their

features, based on vector contour.

The process involved in our approach is very similar to existing approaches

as shown in figure 8.1:

1. Handwritten characters

2. Optical scanner for Digitalization

3. Isolation of characters

4. Preprocessing for Normalization and Thinning

5. Feature Detector (Matching)

* The entire chapter in the form of papers has been published in two parts: “ARPN Journal
of Systems and Software”, VOL. 2, NO.7, pp. 228-235, July 2012 and ”International Journal of
Artificial Intelligence & Applications (IJAIA)”, Vol.4, No.3, pp.23-38, May 2013.

100

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 101

6. Identity of characters (Recognition)

Handwritten

character

Optical

scanner

Isolation of

character

Recognition Feature

detector

Preprocessor

Figure 8.1: General Block diagram of handwritten character recognition

In pre-processing phase of characters, the character is bounded for normal-

ization for standard size and thereafter thinning of character for noise removal or

skeletonizing is done. The following steps are involved in our Preprocessing phase-

1. Extraction of a character in the given word.

2. Position normalization of character

3. Normalization of character

4. Thinning of normalized character

The preprocessing phase can be done using the standard techniques available.

8.2 Related concepts

8.2.1 Character Normalization

Normalization is done to make the size of all extracted character bitmaps equal.

In order to match the extracted isolated character, it is important that all patterns

should have the same size. So, size normalization is required. Size normalization

is the most efficient pre-processing technique. However, the use of pre-processing

techniques depends on many factors such as quality and shape of the data and the

recognition process employed.

There are various techniques available for normalization which can be re-

ferred from the test books or research papers. For the sake of completeness we try

to explain through figure 8.2. In this method, every input bitmap P , of dimension

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 102

P[x][y]
P’[x’][y’]

(0,0) (0,n)

(m,0) (m,n)

(0,0) (0,q)

(p,0) (p,q)

Figure 8.2: Normalization

′m×n′, is transformed into a normalized bitmap P ′, of dimension ′p× q′. The ge-

ometric transformations generally modify the spatial relationships between pixels

in an image. They are also termed as rubber sheet transformations.

8.2.2 Thinning

Thinning is the process to extract and apply additional constraints on the pixel

elements that are to be preserved so that a linear structure of the input image

will be recaptured without destroying its connectivity. Thinning plays a very

important role in the pre-processing stage of pattern recognition. This is due to

the fact that:

• It preserves essential structural information of an image.

• It reduces the space to store topological as well as shape information of an

image.

• It reduces the complexity of analyzing the image.

In the context of two - dimensional binary image processing, thinning is con-

sidered as an recursive process of removing points or layers of outline from a binary

image until all the lines or curves becomes single pixel wide. The reduced pattern

is called the skeleton. A good thinning algorithm must preserve the topology as

well as the shape of the original image in the skeleton.

Many thinning algorithms (or modifications of existing ones) have been pro-

posed in recent years, and a comprehensive survey of these methods is contained

in Lam et al. [194]. However, to name a few, Naccache and Singhal [205] made a

study of fourteen thinning algorithms based on iteration erosion of boundary. They

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 103

proposed the safe point thinning algorithm (SPTA). Saha et al. [206] proposed

an improvement on the algorithm by suggesting a rotational invariant single scan

boundary removal thinning algorithm (SBRTA). Lu and Wang [207] suggested

an improvement on this. Lam and Suen [208] evaluated another ten thinning

algorithms.

8.3 Feature Extraction and character identifica-

tion

A novice method, termed as character divider approach for feature extraction of

characters followed by the preprocessing steps is presented. There are 7 phases,

performed in our approach and is illustrated in the figure 8.3.

Character Pre-processing

Contour analysis of characters

Character embedding in circle

Circle partition

Data normalization & character identification using Monte Carlo method

Back propagation algorithm

Type classification

Figure 8.3: Phases for character identification

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 104

8.3.1 Phase1: Character Preprocessing

In this Phase the preprocessing of the character (as discussed in section 8.1) can

be done in three phases, given in figure 8.4.

We perform 3 steps for character isolation, illustrated below:

Step1: Extraction of Lines- The text image is scanned from top to bottom

and from left to right to extract number of lines in the written text. The algorithm

is given as Algorthim 1.

Step2: Extraction of Character- Within each line, top-left and bottom-right

co-ordinates of each character is obtained using the algorithm, given as Algorthim

2.

Step3: Position normalization of characters- For each character array ob-

tained from above two algorithm, redundant rows of ’0’s are removed to get the

actual character array, which fits into a bounded box.

Character

isolation

Normalizat

ion

Thinning

Figure 8.4: Phases of character preprocessing

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 105

Data: int inpu[rows][cols];

//input image binary image array

int line_count;

Result: Line extracted

initialization;

while all lines got scanned do

read current;

if scan[i][j] == 1 then

setline[line_count].start.x=1;

goto next row of array and look for ’1’ in that row;

end

if ’1’ found then

goto next row and so on till a row (kth row) of all ’0’s is encounterd;

setline[line_count].end.x = k-1;

//So, first line is obtained.;

line_count++;

end

end

Algorithm 1: Algorithm for Line Extraction

Following above three steps, all the characters of different sizes, in separate

2D binary array. So we need normalization as given in section 8.2.1 and illustrated

in detail as under: In the two quadrilateral regions, given in figure 8.2; the vertices

correspond to the tie points. The geometrical transformation process within the

regions is modeled by a pair of bilinear equations so that

x′ = c1x+ c2y + c3xy + c4

y′ = c5x+ c6y + c7xy + c8

These equations can easily be resolved for 8 coefficients ci, i = 1, . . . , 8. Once

the coefficients are known, they constitute the model used to transform all pixels

within the quadrilateral region characterized by tie points used to obtain the

coefficients.

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 106

Simplifying the above equations, we get,

c1 =
p

m
; c6 =

q

n
; c2, c3, c4, c5, c7, c8 = 0

Therefore,

x′ = (
p

m
)x

y′ = (
q

n
)y

If we try to normalize the thinned character skeleton, the resulting skeleton

is not found to be connected. So, the un-thinned character is normalized and later

thinned. Reverse mapping is done for normalization i.e.

1. For each pixel position P ′[r][c], the equivalent pixel position P [i][j] is found

using above relation (many pixel positions of Q may map to the same pixel

position of P)

2. The value (0 or 1) at P ′[r][c] pixel is set to that at the location P [i][j]

Data: char scanchar[j];

Result: Character extracted

while getline do

for(int i<0; i<j; i++){

if scanchar[i]==’1’ then

char[i].top_left.x=line[line_count].start.x;

char[i].top_left.y=that col no.;

end

if scanchar[i]==’0’ then

char[i].bottom_right.x=line[line_count].end.x;

char[i].bottom_right.y= that col no.;

end

end

//character gets extracted
Algorithm 2: Character extraction algorithm

After normalization, we do the thinning as per the Algorithm 3.

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 107

Data: char scanbitmap[j];

Result: Thinning algorithm

while no more pixels can be deleted do
Scan binary bitmap in 4 directions: up-down, down-up, left-right,

right-left.;

In each pass, pixels which are not simple and have more than one eight

neighbors (i.e. they are not end points) are deleted;

Conditions for deletion of a point from a given side of the matrix should

be checked before any other points are deleted. On each row points are

marked for deletion, but are not deleted until the points on the

following row have been marked.;

end

//The resulting bitmap constitutes a skeleton of the original pattern i.e. a

one-pixel wide pattern consisting of a subset of the original black pixels.
Algorithm 3: Thinning algorithm

8.3.2 Phase2: Contour analysis of characters for its pre-

classification

In this phase we do the contour analysis for each character starting from A to Z.

The contour contains the necessary information on the object shape. We define

contour as a boundary of an object, a population of pixels, separating object from

a background. We have encoded contour by the sequence consisting of complex

numbers. On a contour, the starting point is fixed. Starting point should be

the centroid of the pixel. Then, the contour is scanned (is admissible - clockwise

or anticlockwise depending on the continuity of the connectivity of the adjacent

pixels), and each vector of offset is noted by a complex number a+ ib, where a is

the point offset on x axis, and b is the offset on y axis. Offset is noted concerning

the previous point.

To illustrate our approach for defining the vector contour of a character, we

create the vector contour of ’B’ as given in figure 8.5. It is to be noted that

from the starting point there is no adjacent pixel in clockwise direction, hence

anticlockwise direction has been considered for deriving the vector contour.

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 108

So Vector Contour (VC) is the set of vectors, known as elementary vec-

tors(EV) which define the contour of the character. Hence for character ’B’, the

VC defines as:

V CB = {i, i, i, i, i, i, 1, 1− i,−i,−1− i,−1, 1, 1− i,−i,−1− i,−1}

We have pre-classified all the capital letters based on their vector contours.

Similarly we can compute the VC for all characters as shown for ’B’ in figure

8.5(P-118):

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 109

V CA = {−1− i,−i, 1− i, 1 + i, i,−1 + i}

V CB = {i, i, i, i, i, i, 1, 1− i,−i,−1− i,−1, 1, 1− i,−i,−1− i,−1}

V CC = {−1,−1− i,−1− i, 1− i, 1− i, 1}

V CD = {−i,−i,−i, 1− i, 1 + i, 1 + i, i,−1 + i,−1 + i,−1− i}

V CE = {−1,−1, i, i, 1,−1, i, i, 1, 1}

V CF = {i, i, 1,−1, i, i, 1, 1}

V CG = {−1,−1− i,−1− i, 1− i, 1− i, 1, i,−1}

V CH = {−i,−i,−i,−i, i, i, 1, 1, i, i,−i,−i,−i,−i}

V CI = {−1− i,−i, 1− i, 1− i,−i,−1− i,−1 + i, i, 1 + i, 1 + i, i,−1 + i}

V CJ = {1, 1,−1,−i,−i,−i,−i,−i− 1,−1,−1 + i}

V CK = {−i,−i,−i,−i, i, i, 1 + i, 1 + i,−1− i,−1− i, 1− i, 1− i}

V CL = {−i,−i,−i,−i, 1, 1}

V CM = {i, i, i, i, 1− i, 1− i, 1 + i, 1 + i,−i,−i,−i,−i}

V CN = {i, i, i, i, 1− i, 1− i, 1− i, 1− i,−i,−i,−i,−i}

V CO = {−1− i,−1− i,−i, 1− i, 1− i, 1, 1 + i, 1 + i, i, i,−1 + i,−1 + i,−1}

V CP = {i, i, i, i, 1 + i, 1− i,−1− i,−1 + i}

V CQ = {−1− i,−1− i,−i, 1− i, 1− i, 1, 1 + i,−1 + i, 1− i, 1− i, 1 + i, i, i,−1 + i,−1 + i,−1}

V CR = {i, i, i, i, 1 + i, 1− i,−1− i,−1 + i, 1− i, 1− i, 1− i}

V CS = {−1 + i,−1 + i,−1,−1− i,−1− i, 1− i, 1− i, 1− i,−1− i,−1− i,−1,−1 + i,−1 + i}

V CT = {1, 1,−1,−i,−i,−i,−i}

V CU = {−i,−i,−i, 1− i, 1, 1 + i, i, i, i}

V CV = {1− i, 1− i, 1− i, 1 + i, 1 + i, 1 + i, 1 + i}

V CW = {1− i, 1− i, 1− i, 1 + i, 1 + i, 1 + i, 1 + i, 1− i, 1− i, 1− i, 1 + i, 1 + i, 1 + i, 1 + i}

V CX = {1− i, 1− i, 1− i, 1− i,−1 + i,−1 + i,−1− i,−1− i, 1 + i, 1 + i, 1 + i, 1 + i}

V CY = {1− i, 1− i, 1 + i, 1 + i,−1− i,−1− i,−1− i,−1− i}

V CZ = {1, 1, 1,−1− i,−1− i,−1− i, 1, 1, 1}

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 110

Table 8.1: VC of characters & its VE

VC charac-
ter

No. of
Vector ele-
ments

No. of bits
required

A,C,L 6 3
B,Q 16 4
D,E,J 10 4
F,G,P,Y 8 3
H,W 14 4
I,K,M,N,X 12 4
O,S 13 4
R 11 4
T,V 7 3
U,Z 9 4

We define the VC for characters as the set of vector contour of all characters.

V C = {V CA, V CB, V CC , V CD, V CE, V CF , V CG, V CH , V CI , V CJ , V CK , V CL, V CM , V CN ,

V CO, V CP , V CQ, V CR, V CS, V CT , V CU , V CW , V CX , V CY , V CZ}

which is a two dimensional array. Table 8.1 illustrates the number of vector

elements in each of the VC set and hence the number of bits to represent them

by knowing that 1 bit is sufficient to represent 21 states/values and 2 bits are

sufficient to represent 22 states/values and so on...

8.3.3 Phase 3: Character embedding in circle

In this phase we circumscribe the character with a circle to create the boundary

to be analyzed for its (character) identification, as shown in figure 8.6.

8.3.4 Phase 4: Circle partition

In the previous phase, the centroid of each character pixel (black pixel 1’s) has

already been computed. Subsequently, in this phase, division of circumscribed

circle into eight parts (arcs) with centroid is carried out so that each partition

can take the range of 45 degrees, which has been assumed to be optimized value

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 111

Table 8.2: Partition number and its range

Partition
Number

Partition
Range R (in
degree)

1 0 < R ≤ 45
2 45 < R ≤ 90
3 90 < R ≤ 135
4 135 < R ≤ 180
5 180 < R ≤ 225
6 225 < R ≤ 270
7 270 < R ≤ 315
8 315 < R ≤ 360

with respect to the computation and information integrity. Table 8.2 describes

the range of degrees for each partition in circle.

8.3.5 Phase5: Data Normalization & character identifica-

tion using Monte Carlo Method

We use Monte Carlo method as described in [93] for data normalization in which

the following steps are performed: In each partition of the circumscribed circle,

count the number of pixel’s (1’s), say npi , where i is the partition number of

circle. So range of i is from 1 to 8 . Count the total number of pixels present in

the character array, say npt.

Do normalization by performing npi
npt

We have shown the enclosed character ’A’ with its partition in figure 8.6

(P-119).

In each partition, angle of each pixel is found which varies between particular

partition’s minimum range and maximum range. The summation of all angles of

all the pixels of each partition is done and then normalization of this partitioned

data vector is carried out. Then the centroid of the character i.e. the x and y co-

ordinates is taken and normalized and is also considered as data for identification

of characters. In all we got 10 partition data. This data is collected for all input

characters set written by different individuals. It uses the same pre-classification

as described in Phase 2, using vector contour.

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 112

8.3.6 Phase 6: Back propagation Algorithm

We have preclassified the characters using VC in phase 2. Then in phase 5, we

extracted the data for each partition for the given character. In this phase, this

partition data is fed as input to back propagation algorithm. Back propagation

algorithm is given in Algorithm 4.

while all [error(k)]≤ 0 do

for(each training pattern){

forward pass: calculate the output of 3 layers;

First layer://fans out the i/p to next layer;

Output[1,i]=input[1,i];

Second layer:;

input[2,j]=weight1[i,j]×o/p[1,i];

output[2,j]=1.0/(1.0+exp(-input[2,j]);

Third layer:;

input[3,k]=weight2(j,k)×output[2,j];

compute error:;

error[k]=output[3,k]-target[k];

Backward pass the error:;

δw2[j,k]=η×output[3,k]×(1-

output[3,k])×error[k]×output[2,j]+α× δw2[j,k];

output[3,k]×(1-output[3,k])×error[k]×weight2[j,k]+ α× δw1[i,j];

weight1[i,j]=weight1[i,j]- δw1[i,j];

weight2[j,i]=weight2[j,k]- δw2[j,k];

}

end

Algorithm 4: Back propagation algorithm

Networks are trained according to following Back propagation neural network

classification which is based on the VC, given in table 8.3.

Reason for taking 26 input nodes in each topology is because from the char-

acter 26 circle data are extracted i.e. 26 features of characters are extracted. The

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 113

Table 8.3: Topology for EV

Topology
No.

No. of In-
put nodes

No. of hid-
den nodes

No. of out-
put nodes

Character

1 26 20 3 A, C, L, F, G,
P, Y, T, V

2 26 20 4 B, Q, D, E,
J, H, W, I, K,
M, N, X, O, S,
R, U, Z

number of output nodes has been derived from the number of bits required as

shown in table 8.1 (P-110). There is no clear rule for the ’best’ number of hid-

den nodes, some authors propose to assign the number of hidden nodes by the

following formula:

No.ofhiddennodes =
no.ofinputnodes+ no.ofoutputnodes

2

The experienced mathematical researches can assign the number of hidden layers

using Fisher Information Matrix [209]. Characters A,C,L,F,G,P,Y,T,V are trained

with 26-20-3 configuration and rest of the characters are trained with 26-20-4

configuration.

Initially these networks are set up with weight generated from random num-

ber generator which may also affect the performance of the resulting Multi-layer

Feed-Forward (MLF) ANN. These weights are adjusted during training to desired

output as per the following procedure:

1. The input and output of each node (j) in the hidden and output layers are

computed.

Ij =
∑

i

wijoi + bj

j = 1, 2, . . . , 8 (no.of training data).

wij-weight of the connection from node i in the previous layer to node j.

oi-Output of node i in the previous layer.

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 114

bj-bias of node j.

oj = f(Ij) =
1

1 + e−Ij

which is non linear and differentiable.

2. Search for a set of weights that fits the training data such that the mean

squared error (MSE) can be minimized, using gradient descent method. Er-

ror of node j is given by

Errj =

oj(1− oj)(Tj − oj) j is an output node

oj(1− oj)
∑

k

ek.wjk j is a hidden node
(8.1)

oj-the output of node j

Tj-the true target value of node j

ek-the error of node j in the next layer

wjk-the weight of connection from node j to node k

Change in weight ∆wij = (I)ejoi

Change in bias ∆bj = (I)ej

l- learning rate (a rule of thumb):l = 1

t
, t is the number of iterations so far

wij = wij +∆wij

bj = bj +∆bj

3. Stop the process till all ∆wij are below some specified threshold

So, in total 8 training files which consist of extracted partition data of character

are trained and subsequently 8 weight files are generated.

8.3.7 Phase 7: Type classification

From table 8.3 (P-113), it can be seen that there are some elementary vectors in

set VC (Phase 2) which do have either horizontal or vertical or both symmetry.

V C0, V C1, V C3, V C8.

So in VC, 3 sub groups lie:

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 115

1. Horizontal symmetry based sub group number 1: (V CC , V CE, V CI)

2. No symmetry based sub group number 2: (V CF , V CG, V CJ , V CL, V CN , V CS), V CZ)

3. Vertical symmetry based sub group number 3: (V CM , V CU , V CV , V CW)

Since within the set of VC, characters can be placed in 3 subgroups as dis-

cussed above. So there is need for two stage back propagation neural classifiers,

which is described below:

A neural network having d input nodes, c output nodes can be considered

as a classifier to assign a given sample with d feature to one of 3 predefined sub

group numbers.

During recognition of unknown character it goes through 2 stage process.

During its first stage, the type classifier gets activated which indicate whether

the character is from horizontal or no symmetry or vertical symmetry subgroup.

Then according to the identification of subgroup from first stage, in second stage

particular type recognition network (type 1 or type 2 or type 3) gets activated

which finally gives true identity of character.

8.4 Pros and Cons of two stage Back propagation

neural classifier

There are two main advantages of using 2-stage Back propagation neural classifier:

1. A single problem can be decomposed into many small sub-problems, which

are easier to manage.

2. The output node of the ANN can be reduced for efficiency purpose.

If we look into the disadvantages, we could found only one that is if the first

classifier fails to interpret correctly, then the wrong output of the first classifier

will become the input of the second classifier, which will give the wrong prediction.

But that can always be minimized by making the use of efficient training algorithm

to train the hidden layer of ANN.

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 116

Table 8.4: Data from different persons

Subgroup
number

1 2 3

Training sam-
ple number

100 147 123

8.5 Experimental Results

8.5.1 Sample Text Files

Some test documents containing character sets written by different individuals in

their handwriting was collected and scanned using scanner to generate correspond-

ing tiff files and corresponding to which binary files were formed and processed.

First lines were separated out from text followed by separation of each charac-

ter which were then enclosed in a bounding box, then binaried, normalized and

thinned using a thinning algorithm. Some test documents containing phrases on

different lines were tested during experiments. A sample text file is shown in figure

8.7 (P-119).We collected character set in different handwritings from A-Z in a file.

8.5.2 Pre-processing of characters

The characters are pre-processed for identification. Figure 8.8 (P-119) shows the

result of ’H’ extraction and figure 8.9 (P-120) shows feature extraction (after

thinning), from sample text file1 (figure 8.7).

8.5.3 Normalized circle data of file

Normalized circle data of file for ’H’ is only shown.

0.086957 0.152174 0.196552 0.326078 0.108696 0.134351 0.134509 0.156900

0.189036 0.118818 0.153421 0.247432 0.339870 0.077045 0.066120

Several experiments were carried out to demonstrate the performance of this

data. For training and testing total number of samples taken from different persons

is shown in table 8.4.

Total number of samples for training = 370

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 117

Recognition rate of this approach found is 76%

8.6 Limitations

There are some limitations to our approach for character identification which are

give as under:

1. Sometimes the person can write the characters which are not purely sepa-

rated due to hurry-burry or the individual’s style of writing. In that case our

Vector contour will not be appropriate and our system would have to train

for large data sets and for longer duration to predict the given character

correctly.

2. We have partitioned the circumscribed circle into 8 parts. As the number

of partitions increases, the prediction would be more accurate but the com-

plexity will be increased and the designer must have to analyze the proper

balancing in between the number of partitions and its complexity.

3. We have used MLF ANN, for which the training time can be very lengthy.

There is a need of rather a relatively large dataset for training to get accurate

predictions.

8.7 Conclusion

We introduced a novel set of features that is well-suited for representing handwrit-

ten characters. The features are derived from the Vector Contour (VC) set and

symmetrical nature of the characters. For the sake of simplicity during the VC

analysis we assumed the value of a and b in a+ib as unity though actual value have

to be trained by collecting large data set. The feed forward neural network was

trained for VC and symmetrical nature identification which collaboratively is the

very unique feature for character, even VC itself is the most unique feature, if the

values of a and b are given correctly. Our character recognition system can also be

used for numeral recognition. We have introduced a mechanism for handwritten

character recognition and accordingly all the related algorithms.

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 118

Starting point Contour pixels

i

i

i

i

i

i

1

1-i

-i

-1-i

 -1

1

1-i

-i

-1-i

 -1

Vector-contour (VC)

Figure 8.5: Vector Contour of B

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 119

1

2 3

4

5

6 7

8

Figure 8.6: Circle partition with character ’A’

Figure 8.7: Sample Text File1

Figure 8.8: ’H’ extracted from input text file

CHAPTER 8. FEATURE EXTRACT. AND RECOG. USING VC 120

Figure 8.9: Feature extraction (after thinning)

