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Despite being a versatile and low-cost method, rock 
blasting produces undesirable severe effects. The pre-
sent study aims to examine the ground vibrations pro-
duced by blasting, which are of serious concern to 
mine operators as well as the nearby inhabitants. Forty-
nine field-scale trial blasts were conducted and recor-
ded to measure ground vibrations produced by blasting 
in a limestone quarry in Rajasthan, India. The multi-
variate linear regression (MLR) and artificial neural 
network (ANN) techniques were used to predict the 
peak particle velocity (PPV) with distance between the 
blasting site and measuring station, charge per delay 
and scaled distance as the input parameters. Subse-
quently, a coefficient of determination (R2) was calculated 
using MLR and ANN approaches. Additionally, to verify 
whether the recorded events exceeded the threshold 
levels, the values of PPV and dominant frequency pro-
pounded by the United States Bureau of Mines (USBM), 
German standard (DIN), and Director General of 
Mines Safety, India were carefully scrutinized. Results 
were compared based on R2 values obtained by the 
USBM predictor equation, MLR and ANN techniques. 
It was found that ANN provided a good prediction 
with a high degree of correlation (0.901) in compari-
son to MLR (0.754). Also, frequency analysis for the 
study field showed that the dominance of frequencies 
was in the range 10–40 Hz. Although the values were 
within safe limits, disturbances may be witnessed in 
nearby structures if PPV values are high at lower fre-
quency range. 
 
Keywords: Blasting, ground vibration, limestone quarry, 
peak particle velocity, threshold levels. 
 
BLASTING is one of the most economical methods used 
for fragmenting rock mass. However, rock blasting causes 
several undesirable effects, such as ground vibrations, air 
overpressure, flyrocks, dust hazards, etc. It is consequen-
tial to mention that merely 20%–30% of the explosive 
energy is used to fragment and displace the rock mass, 
while the rest is dissipated in the form of ground vibra-
tions, air blasts, noise and flyrocks, etc.1. 
 Ground vibrations due to blasting in surface mines are 
one of the basic concerns in the mining industry, and pre-
dicting it can be helpful in the minimization of environ-
mental problems. Generally, blasting-induced ground 

vibrations damage the free faces and cause backbreaks. 
These backbreaks hinder the drilling operations for sub-
sequent blast bounds and lead to improper blasting with 
excessive fines or generate over-sized boulders. This 
negatively impacts the economics of the mines, delays the 
production and weakens the socio-economic development 
of the surrounding areas. Therefore, it is important to 
control and predict the ground vibrations with precision. 
Further, uncontrolled ground vibration and frequencies are 
of significant concern as they may damage the existing 
surface structures and cause nuisance to residents in the 
vicinity of the mines. In recent years, environmental issues 
induced by blasting activities have become one of the 
most important concerns2–7. 
 Regulations on ground vibrations focus primarily on 
peak particle velocity (PPV), which has been studied by 
various researchers8–12. The United States Bureau of Mines 
(USBM) established the first PPV predictor equation. 
Modified predictors from other researchers and institu-
tions13–16. However, the PPV predictor equation of USBM 
is still the most popular one. 
 Some predictive state-of-the-art techniques like artificial 
natural network (ANN) and multivariate linear regression 
(MLR) have been used to assess blast effectiveness17–21. If 
there are concerns about damage due to blasting vibrations, 
several defined damage criteria (USBM, DIN 4150 and 
Directorate General of Mines Safety (DGMS)) can be 
used for analysis22–24. 
 The present study aims to predict ground vibrations by 
developing the predictor equations using ANN and MLR-
based statistical techniques for a limestone quarry in Raja-
sthan, India. The key objectives of this study are as follows: 
 (1) To determine the site-specific constants (K and β) 
for the quarry using statistical analysis and to develop the 
predictor equations for PPV. 
 (2) To predict PPV using the MLR and ANN tech-
niques and compare the value of coefficient of determina-
tion (R2) obtained by each method. 
 (3) To compare the recorded PPV and frequency values 
with the established damage criteria of USBM, DIN 4150 
and DGMS. 

Site description 

The trial blasts were carried out in an open-cast limestone 
quarry in Rajasthan. The limestone formation in the quarry 
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Table 1. Salient properties of limestone formation 

Age, group and period Dip direction of the formation Chemical composition (%) Texture and colour Hardness 
 

Lower Vindhyan age,  
 Khori group and  
 Tertiary period 

0° to 20° towards east–west CaO: 42–44 
MgO: 1–2 

SiO2: 14–18 

Light to dark grey. 
Granular texture 

Soft to moderately hard  
 (2.5–4 on Mho scale of  
 hardness) 

  Al2O3: 0.2–0.6   
  Fe2O3: 0.1–0.5   

 
 

 
 

Figure 1. Structure of a three-layer, feed-forward multilayer per-
ceptron (MLP) model. 
 
 
is mainly constituted of sedimentary carbonate rocks, 
which are usually skeletal fragments of marine organisms. 
The formation was of Eocene age in the tertiary period. 
The limestone was hard and compact with low silica con-
tent. The deposit belongs to the Nimbahera limestone 
formation. Table 1 shows the salient properties of this 
formation. Limestone, shale and clay were the major rock 
types of this formation. The deposit was fine-grained and 
massive in structure. It was exposed to structural disturb-
ances of very subdued magnitude, as evidenced by minor 
folds and joints. 

Background 

Approaches used for PPV prediction 

USBM predictor equation-based approach: Ground vibra-
tions are characterized by the measurement of PPV to esti-
mate the potential damage. PPV depends mainly on the 
maximum charge, distance between the blast and the 
measuring point, and is highly dependent on the ground 
characteristics25. PPV is related to the maximum charge 
per delay (CPD) and distance by the predictor equation 
established by USBM (eq. (1)), which is the most com-
monly used relationship for its estimation. 
 

 PPV (mm/s) ,DK
W

β−
 

= × 
 

 (1) 

 

where D is the distance between the blasting and measuring 
points (m), W the maximum CPD (kg) and ( / )D W is the 
scaled distance (SD; m/kg1/2). 
 K and β are the site constants to be determined by re-
gression analysis, and are dependent on ground characteri-
stics. 

MLR analysis: This method is used to model the linear 
relationship between a dependent variable and one or more 
independent variables26. It is based on the least-squares 
method and aims to minimize the sum of squares of the 
predicted and measured values. The MLR technique-based 
PPV prediction has been made in this study. 
 
ANN using multi-layer perceptron: ANN is a type of arti-
ficial intelligence based on the neuronal system of humans. 
There is a wide range of possibilities for solving ANN 
problems, particularly for the approximation of nonlinear 
behaviour without prior knowledge of inter-relationships 
between elements within a system27. An ANN is a highly 
integrated computational network of basic information 
processing components known as neurons or perceptrons. 
One of the most commonly applied ANNs is the multi-
layer perceptron (MLP) technique, which has been widely 
used by numerous researchers to predict ground vibra-
tions28–30. 
 Figure 1 shows the structure of the MLP model to meet 
the research objectives. It is a supervised model using feed-
forward architecture and can have multiple hidden layers. 
The MLP layers have different functions. The interface layer 
on input side of the network is known as the sensory layer 
(or the common input layer); the one on the display side 
is called the output layer. All intermediate layers are re-
ferred to as hidden layers. 
 MLP uses an iterative routine for gradient-based opti-
mization called back-propagation (BP) learning techni-
que31. The back-propagation algorithm performs learning 
on a multi-layer feed-forward neural network. Each layer 
is made up of units called perceptrons. The inputs to the 
network correspond to the attributes measured for each 
training step. The inputs are fed simultaneously into the 
units making up the input layer. These inputs pass through 
the input layer and are then weighted and fed simultane-
ously to the second layer of perceptrons, known as a hidden 
layer. The outputs of the hidden layer units can be input 
to another hidden layer and so on. The number of hidden 
layers is arbitrary, although only one is used in practice. 
The weighted outputs of the last hidden layer are input to 
units making up the output layer, which provide the net-
work’s prediction for a given training. It is a feed-forward 
network since none of the weights cycles back to an input 
unit or to a previous layer’s output unit. It is fully con-
nected in that each unit provides the input in the next 
forward layer. 
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Table 2. Regulatory limits of ground vibration according to United States Bureau of Mines (USBM) and  
 DIN criteria 

USBM-RI8507 DIN-4150 
 

 PPV (mm/s)  PPV (mm/s) 
 

Structure <40 Hz ≥40 Hz Structure 10 Hz 10–50 Hz 50–100 Hz 
 

Modern homes – dry 18.75 50 Industrial buildings 20 20–40 40–50 
Wall interiors   Residential buildings  5  5–15 15–20 
Older homes 12.75 50 More sensitive buildings  3  3–8  8–10 

PPV, Peak particle velocity. 
 
 

Table 3. Safe blasting limits according to Directorate General of Mines Safety (DGMS) 

 Dominant excitation frequency (Hz) 
 

Type of structure <8 8–25 >25 
 

Building/structures not belonging to the owner    
 Domestic houses/structures  5 10 15 
 Industrial buildings 10 20 25 
 Sensitive structures/buildings  2  5 10 

Buildings belonging to the owner during a limited span of time 
 Domestic houses/structures 10 15 25 
 Industrial buildings 15 25 50 

 
 

 
 

Figure 2. Safe blasting limits (United States Bureau of Mines (USBM) 
approach). 
 
 

 The perceptron inputs are weighted by a corresponding 
weight (w). The weight of the inputs and the bias (b) con-
stitute the input for the activation function f (ref. 32). The 
output (y) can be expressed in terms of activation func-
tion as given in eq. (2). 
 

 
1

,
N

i i
i

y f w x b
=

 
= +  

 
∑   (2) 

 
where xi is the ith input, wi the weight associated with the 
ith input, b the bias and f is the activation function of the 
perceptron. 

Regulatory limits on blast-induced ground  
vibrations and frequencies 

It has been established that the particle velocity of ground 
motion near structures is an effective criterion for the  
assessment of damage. According to USBM RI 8507, 
PPV provides the best description for ground vibrations33. 

 Over the last more than two decades, PPV and frequency 
have been together used for assessment of damage due to 
blasting. Accordingly, the USBM and DIN regulatory 
standards were developed (Table 2). Thus, if the recorded 
PPV values at a specific predominant frequency lay below 
the solid line (Figure 2), then PPV may be considered safe 
(USBM approach). DIN 4150 provides three lines for time-
dependent vibration limits for different structures (Figure 
3)25,33–35. The first line (line 1) is used for buildings, 
mostly for commercial and industrial purposes. The second 
line (line 2) is associated with a similar design for dwell-
ings and buildings. The third line (line 3) is often used for 
structures not included under lines 1 and 2, due to their in-
trinsic sensitivity to vibration. The potential damage at a 
low-frequency range (<40 Hz) is significantly higher than 
that at a high-frequency range (>40 Hz). This is due to 
the effects of resonance at the natural frequency of the 
structures and buildings that fall in between 5 and 16 Hz 
(ref. 36). Hence, if the values of PPV are plotted in con-
junction with frequency and they fall within the inner re-
gion, where the frequency is always greater than 40 Hz, it 
is considered safe. 
 According to the Indian standard as specified by the 
DBMS, Table 3 shows the regulatory limits in terms of 
PPV and frequency of ground vibrations37. Therefore, it 
is implicit that for a thorough study of blasting vibrations, 
measurement of frequency as well as PPV is essential. 

Research methodology 

The research methodology adopted here includes the con-
duct of real-time trial blasting and measurement of PPV and 
frequency. In the present study, a total of 49 trial-blasting 
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Table 4. Input and output parameters for analysis 

 
Blast no. 

Distance  
(m) 

Charge per  
delay (CPD, kg) 

Scaled distance  
(SD, m/kg1/2) 

PPV  
(mm/s) 

Frequency 
(Hz) 

 

B1 140 50 19.80 5.2 30 
B2 140 47.26 20.36 5.8 27 
B3 150 50 21.21 5.3 24 
B4 150 44.48 22.49 4.8 22 
B5 150 47.26 21.82 5.1 21 
B6 150 47.26 21.82 5.2 47 
B7 160 41.7 24.78 4.8 27 
B8 170 47.26 24.73 4.62 16 
B9 170 44.48 25.49 3.6 47 
B10 175 47.26 25.46 4.1 20 
B11 190 47.26 27.64 3.6 32 
B12 190 40.3 29.93 3.5 23 
B13 200 44.48 29.99 1.9 12 
B14 200 47.26 29.09 4.2 32 
B15 210 80.2 23.45 3.2 64 
B16 210 50.2 29.64 3.6 31 
B17 210 40.3 33.08 3.2 15 
B18 210 47.26 30.55 2.9 34 
B19 240 51.63 33.40 2.1 32 
B20 240 40.6 37.67 1.7 43 
B21 240 59.57 31.10 4.1 34 
B22 240 51.4 33.48 1.9 23 
B23 250 40.6 39.24 1.9 26 
B24 250 40.6 39.24 2.5 24 
B25 260 50.2 36.70 2.1 64 
B26 280 50.2 39.52 1.4 10 
B27 280 50.2 39.52 1.6 32 
B28 290 50.05 40.99 1.6 30 
B29 290 51.63 40.36 2.1 20 
B30 290 42.6 44.43 2.5 20 
B31 293 40.3 46.15 1.5 20 
B32 300 42.6 45.96 1.3 25 
B33 300 43.2 45.64 1.3 57 
B34 309 54.96 41.68 1.4 32 
B35 310 48.03 44.73 1.3 21 
B36 310 30.1 56.50 1.2 2 
B37 310 50.2 43.75 1.6 32 
B38 310 43.1 47.22 1.2 20 
B39 310 42.3 47.66 1.3 40 
B40 320 46.2 47.08 1.4 34 
B41 340 50.4 47.89 1.7 12 
B42 350 50 49.50 1.5 10 
B43 350 44.29 52.59 1.3 17 
B44 350 80.2 39.08 1.5 20 
B45 350 40.5 55.00 1.1 43 
B46 360 29.74 66.01 1.1 12 
B47 360 43.94 54.31 1.1 24 
B48 370 76.39 42.33 1.3 18 
B49 400 82.21 44.12 1.4 33.33 
CPD, Change per delay; SD, Scaled distance; PPV, Peak particle velocity. 

 
 

rounds were implemented and recorded (Table 4). For 
this, the seismographs were placed at fixed distances 
from the blasting site. 
 In order to determine the site-specific parameters (K 
and β ), regression analysis was used for the measured 
PPV and SD. Subsequently, the value of R2 between PPV 
and SD was obtained using regression analysis and a 
graph was plotted between PPV and SD. The MLR tech-

nique was then used to establish the connection between 
the input and output parameters for developing the pre-
dictor equation as follows 
 

 1 1 2 2 ,n nY a b X b X b X= + + + +  (3) 
 
where Y  is predicted value of Y, a the intercept and b is 
the partial regression coefficient. 
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 For this prediction, three parameters, namely Di, CPD 
and SD, were selected as input parameters and PPV as the 
output parameter. 
 To further substantiate the results, ANN (MLP) was 
used to predict PPV. The MLP module was used to build 
the neural network model. The MLP neural networks were 
trained using a back-propagation algorithm to update 
weights to reduce the error function. Out of 49 trial-
blasting datasets, about 70% were used for training and 
30% were assigned for testing. In the present ANN module, 
the training datasets provided the weights for building the 
model, while the testing datasets identified the errors and 
prevented overtraining. 
 To predict PPV (output), three input parameters were 
used, namely Di, CPD and SD, both for MLR and ANN 
techniques. Subsequently, R2 was determined. The values 
of R2 obtained using the generalized predictor equation, 
MLR and ANN approaches were carefully scrutinized. 
 Further, the PPV and frequency values of all 49 trial 
blasts were evaluated in light of the USBM, DIN and 
 
 

Table 5. Descriptive statistics of the parameter 

Parameter No. of data Minimum Maximum Mean 
 

Distance 49 140 400 257.69 
CPD 49 29.74 82.21  48.61 
SD 49 19.79 66.01  37.43 
PPV 49  1.10  5.80   2.56 
Frequency 49  2.00 64.00  27.63 
 
 

 
 

Figure 3. Safe blasting limits (DIN 4150 approach). 
 
 

 
 

Figure 4. Relationship between peak particle velocity (PPV) and 
scaled distance (SD). 

DGMS criteria in order to properly ascertain the damage 
risk of the nearest buildings and structures. 

Results and discussion 

Table 5 shows the primary descriptive statistics of all the 
input and output parameters of the study, together with 
their symbols. The salient results obtained from this study 
are discussed below. 

Determination of predictor equation using the 
USBM method 

The measured ground vibration datasets, including PPV 
and SD for the blasts were statistically analysed to deter-
mine the site constants (K and β ) of the USBM predictor 
equation for the quarry. The predictor equation developed 
using the statistical analysis is given in eq. (4). 
 
 PPV = 715.76 × SD–1.615,  (R2 = 0.8762). (4) 
 
The site constants K and β were determined by regression 
analysis and their values were 715.76 and –1.615 respec-
tively. 
 The value of 0.872 (R2) indicates that 87.2% of PPV 
variability is explained by regression analysis. Figure 4 
shows the relationship between PPV and SD on a log–log 
diagram. 

Prediction of PPV by the MLR technique 

The predictor equation for PPV (output parameter) in 
terms of input parameters (Di, CPD and SD) was obtained 
using the MLR technique. The MLR-based predictor 
equation is given as follows 
 
 PPV = 6.018 – Di × 0.020 + CPD × 0.026 
 

     + SD × 0.012. (5) 
 
The value of R2 was obtained and Table 6 provides the 
model summary. The predicted PPV value was plotted 
against its measured value (Figure 5). It is evident from 
Figure 6 that the predicted values of PPV using the MLR 
technique are almost similar to the observed values. The 
value of R2 determined by the MLR technique was found 
to be 0.754, which shows 75.4% authenticity of PPV pre-
diction. 
 
 

Table 6. Model summary of multi-variate linear regression (MLR) 

 
R 

 
R-square 

Adjusted  
R-square 

Standard error of the  
estimate 

 

0.868 0.754 0.726 0.6184450 
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Prediction of PPV by ANN technique 

To perform the MLP neural network analysis, Di, CPD 
and SD were selected as input parameters and PPV as the 
output parameter. Table 7 provides the ANN model pro-
cessing summary. The ANN architecture has three nodes 
for the input layer, three nodes for the hidden layer and 
one node for the output layer. Activation function was the 
hyperbolic tangent and identity function for hidden and 
output layers respectively. Sum of errors was used as the 
error function in the said architecture. Figure 7 shows the 
network diagram to predict PPV. 
 
 

 
 

Figure 5. Plot between observed and predicted PPV values using 
multi-variate linear regression (MLR) technique. 

 
 

 
 

Figure 6. Comparison curve for observed and predicted PPV 
values using MLR technique. 

 
 

 
 

Figure 7. Network diagram to predict PPV. 

 The model summary presented in Table 8 provides in-
formation related to the results of training and testing 
samples. Sum of square errors is given for both training 
and testing samples. Very low magnitude of sum of square 
error in the training and testing datasets indicates the 
power of the model to predict the outcome. As revealed in 
Table 8, the sum of square error is 0.918% for the train-
ing dataset and 1.241% for testing dataset. 
 The predicted values of PPV were plotted against its 
measured values (Figure 8). It is evident from Figure 9 
that the predicted and observed values of PPV by the 
ANN method are almost similar. This is indicative of a 
good prediction of PPV by the ANN method. The value 
of R2 was found to be 0.901. 
 The MLP-based neural network model also provided 
information about the impact of each independent variable 
 
 

Table 7. Model processing summary  
 of artificial neural network (ANN) 

 N Percentage 
 

Sample   
 Training 33  67.3 
 Testing 16  32.7 
Valid 49 100.0 
Excluded  0  

Total 49  
 

 

 
 

Figure 8. Plot between observed and predicted PPV values using 
artificial neural network (ANN) technique. 

 
 

 
 

Figure 9. Comparison curve for observed and predicted PPV 
values using MLR technique. 
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Table 8. Model summary of the ANN 

Training Sum of square error 0.918 
 Relative error 0.057 
 Stopping rule used One consecutive step(s) with no decrease in error 
Testing Sum of square error 1.241 
 Relative error 0.188 

 
 

 
 

Figure 10. Relative importance of distance (Di), SD and charge per 
delay (CPD). 

 
 

 
 

Figure 11. Damage risk assessment of the measured datasets ac-
cording to USBM criterion. 

 
 

 
 

Figure 12. Damage risk assessment of the measured datasets ac-
cording to DIN 4150 criterion. 

 
 
in terms of their normalized importance. Figure 10 reveals 
the importance of the input (independent) variables. It 
can be inferred from Figure 10 that CPD has the lowest 

 
Figure 13. Damage risk assessment of the measured datasets ac-
cording to DGMS (belonging to the owner) criterion. 
 
 

 
 

Figure 14. Damage risk assessment of the measured datasets ac-
cording to Director General of Mines Safety (not belonging to owner) 
criterion. 

 
 

 
 

Figure 15. Pie chart for the frequency of the studied blasts. 
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impact on PPV. This implies that the explosive charge in 
various blast rounds has been well-designed. The greater 
impact of Di and SD naturally implies the importance of 
ground conditions on PPV. 

Results of damage risk assessment for the studied  
blasts 

It is evident from Figures 11–14 that the PPV values for 
the trial blasts place almost all of them (excepting one 
with low frequency of 2 Hz) under the safe and acceptable 
category vis-à-vis various damage criteria assessment 
standards. 

Results of frequency analysis 

The classification of recorded frequency values from the 
study mine is shown in Figure 15 as a pie chart. 
 From Figure 15, it may be observed that only 2% of the 
measured frequencies lie in range 1–4 Hz, 10% in the 
range 4–15 Hz, 82% in the range 15–40 Hz and 10% in 
the range 4–15 Hz. Therefore, it may be interpreted from 
an Indian as well as global perspective that the PPV values 
vis-à-vis dominant frequencies in the study blast are safe. 
 The present methodology and the proposed equation 
can be used for other sites with similar ground characteri-
stics. 

Conclusion 

The results of this study lead to following conclusions: 
 

• Although USBM and MLR-based predictor equations 
have given acceptable results, this study reveals the 
superiority of ANN-based prediction of PPV in com-
parison to the MLR technique and USBM predictor 
equation. 

• It is found that the distance of the measuring station 
from the blasting location and SD together exert a 
significant impact on the prediction of PPV by MLP-
based neural network approach. However, CPD exerts 
slightly less impact than distance and SD. 

• Based on the established damage criteria of USBM, 
DIN 4150 and DGMS, the measured values of ground 
vibration (PPV) and frequency at the field were below 
the threshold levels, indicating them to be safe. 
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