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Characteristic, dynamic, and near-saturation regions of out-of-time-order
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We study characteristic, dynamic, and saturation regimes of the out-of-time-order correlation (OTOC) in the
constant-field Floquet system with and without longitudinal field. In the calculation of OTOC, we take local spins
in longitudinal and transverse directions as observables which are local and nonlocal in terms of Jordan-Wigner
fermions, respectively. We use the exact analytical solution of OTOC for the integrable model (without the
longitudinal field term) with transverse direction spins as observables and numerical solutions for other integrable
and nonintegrable cases. OTOCs in both cases depart from unity at a kick equal to the separation between the
observables when the local spins are in the transverse direction, and one additional kick is required when the
local spins are in the longitudinal direction. The number of kicks required to depart from unity depends on the
separation between the observables and is independent of the Floquet period and system size. In the dynamic
region, OTOCs show power-law growth in both models, the integrable one (without longitudinal field) and the
nonintegrable one (with longitudinal field). The exponent of the power-law increases with increasing separation
between the observables. Near the saturation region, OTOCs grow linearly at a very low rate.
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I. INTRODUCTION

Larkin and Ovchinnikov first introduced the concept of
out-of-time-order correlation (OTOC) for defining approaches
from quasiclassical to quantum systems [1]. In recent years
OTOCs have gotten attention in various fields [2–10], such
as quantum chaos and information propagation in quan-
tum many-body systems [11–17], quantum entanglement and
quantum information delocalization [6,18–23], and static and
dynamical phase transitions [9,24,25]. Several ideas for exper-
imental measurement of OTOCs were proposed [26–30] using
cold atoms or cavity and circuit quantum electrodynamics
(QED) or trapped-ion simulations. Experimental realizations
were made using nuclear spins of molecules [19,25,31],
trapped ions [32,33], and ultracold gases [34]. The chaotic
characteristics of OTOC manifest if a small disturbance in
the input of the system causes an exponential deviation in the
output of the system, which is known as the butterfly effect
[16,35].

Classical Hamiltonian systems which have the highest
amount of randomness and chaos are converted into the quan-
tum domain for observing the behavior of quantum chaos
[4,5]. OTOC finds a role in characterizing the quantum chaos
in these systems. A characteristic form of growth of OTOC
exists that can distinguish different classes of information
scrambling. In a chaotic case, OTOC grows very fast, which is
often described by an exponential behavior with a Lyapunov
exponent. If the chaos is absent, the growth of OTOC can be
much slower or even absent. In disordered systems, OTOC
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distinguishes many-body localization [36–38] from the An-
derson localization [39].

Growth of OTOC is also discussed in spin systems [20,40–
50]. Power-law growth of OTOC is observed in the dy-
namic region of the Luttinger-liquid model [48], XY model
[47], integrable quantum Ising chain [20], and some systems
exhibiting many-body localization [49,50]. Similar studies
have been done with the Ising model with tilted magnetic
fields, perturbed XXZ model, and Heisenberg spin chain with
random magnetic fields [43]. In these systems, OTOC is cal-
culated for different types of observables. For the observables
that are local, nonlocal, or mixed in terms of the Jordan-
Wigner (JW) fermions, the OTOCs grow as a power law in
time [20].

Quantum systems periodically driven by external forces
have received considerable attention for a very long time.
Examples are the kicked-rotor model, in which particles move
on a ring and field is applied in the form of kicks [51];
the Chirikov standard map [52]; and the Kapitza pendulum
[53]. These systems show the transition from integrability to
chaos, dynamical localization [54,55], and dynamical stabi-
lization [53,56]. In recent years, in quantum domains such as
time crystals [57,58], the topological system with ultracold
atoms [59,60], periodically driven quantum systems such as
particles moving in a modulated harmonic trap [61], kicked
quantum rotors [62–64], Floquet spin systems with constant
fields [9,65–69], and quenched fields [70–74] have received
considerable attention. Periodic perturbation can be realized
in experiments to understand specific properties of matter
[62,75–77]. OTOC generated by the sum of quadratic and
composite observables in terms of Majorana fermions studied
in integrable and nonintegrable kicked quantum Ising systems
[42] shows linear growth with time and starts to saturate at t �
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N/2, where N is the system size. OTOCs using local and non-
local observables for Floquet XY and synchronized Floquet
XY models were also studied recently [78]. In our previous
study [9], we were able to get the phase structure using time-
averaged longitudinal magnetization OTOC (LMOTOC), but
transverse magnetization OTOC (TMOTOC) failed to give
us the phase diagram. While thoroughly understanding the
comparison between the initial and time-averaged behaviors
of integrable TMOTOC and LMOTOC, we found different
characteristic times. In this paper, we carry out a comprehen-
sive study of the entire region of OTOC in the integrable and
nonintegrable Floquet spin models, not just the initial time or
averaged behavior. We will analyze whether the integrability-
breaking term changes the growth of OTOC. We extract the
differences and similarities of TMOTOC and LMOTOC for
integrable and nonintegrable models.

This paper is structured as follows: In Sec. II, we discuss
the Floquet transverse Ising models. Subsequently, in Sec. III,
we define TMOTOC and LMOTOC. Then, we discuss results
in Sec. IV, while comparing the calculations of integrable
and nonintegrable Floquet transverse Ising models in both
TMOTOC and LMOTOC. Finally, we conclude the results in
Sec. V.

II. MODEL

Consider a periodically driven interacting transverse Ising
Floquet system. The Hamiltonian of the system is given as

Ĥ (t ) = JxĤxx + hz

∞∑
n=−∞

δ
(

n − t

τ

)
Ĥz, (1)

where Jx is the nearest-neighbor exchange coupling strength
and hz is the external field in the transverse direction applied
in the form of kicks at equal intervals of time τ . Ĥxx =∑N

l=1 σ̂ l
x σ̂

l+1
x is the nearest-neighbor Ising interaction term,

and Ĥz = ∑N
l=1 σ̂ l

z is the interaction of unit magnetic field
with the total transverse magnetization.

The Floquet map corresponding to Eq. (1) is

Û0 = exp(−iτJxĤxx ) exp(−iτhzĤz ) (2)

In Eqs. (1) and (2) only transverse field is present and
the Hamiltonian is exactly solvable using JW transformation
[66,79,80]. Now, if we introduce a longitudinal field term
hxĤx = hx

∑N
l=1 σ̂ l

x , the Hamiltonian can be written as

Ĥ (t ) = JxĤxx + hxĤx + hz

∞∑
n=−∞

δ
(

n − t

τ

)
Ĥz. (3)

However, the model could not be transformed into free
fermions using the JW transformation because the longitudi-
nal field term when transformed into JW fermions gives an
interacting fermionic term [79,80]. The Floquet map corre-
sponding to this model is

Ûx = exp[−iτ (JxĤxx + hxĤx )] exp(−iτhzĤz ). (4)

Henceforth, in this paper, we denote the integrable transverse
Ising Floquet model by Û0 and the nonintegrable transverse
Ising Floquet model by Ûx.

III. TMOTOC AND LMOTOC

Let us consider a pair of observables Ŵ l and V̂ m at the
lth and mth sites, respectively. OTOC of these observables is
defined as

Cl,m(n) = −1

2
〈[Ŵ l (n), V̂ m(0)]†[Ŵ l (n), V̂ m(0)]〉. (5)

Observables Ŵ l and V̂ m are separated by distance �l =
|l − m|. Initially, at n = 0, both the observables commute
with each other, i.e., [Ŵ l (0), V̂ m(0)] = 0. As time increases,
higher-order terms of the time evolution of Ŵ l (0) given by the
Baker-Campbell-Hausdorff formula fail to commute with V̂ m,
resulting in noncommutative Ŵ l (n) and V̂ m. By examining the
noncommutativity of V̂ m at different positions, one can quan-
tify to some degree how Ŵ l (n) spread over the space. Here
Ŵ l (n) is (Û†

x/0)nŴ l (0)(Ûx/0)n. If Ŵ l and V̂ m are Hermitian
and unitary, OTOC simplifies to the form

Cl,m(n) = 1 − �[F l,m(n)], (6)

where � represents the real part, F l,m(n) =
〈Ŵ l (n)V̂ m(0)Ŵ l (n)V̂ m(0)〉 and 〈·〉 denotes the quantum-
mechanical average over the initial state.

OTOC is calculated with either the trace over a
maximally mixed state or a thermal ensemble. The
trace can be replaced by employing Haar random
states of 2N dimensions to evaluate expectation
values, that is, Tr[Ŵ l (n)V̂ m(0)Ŵ l (n)V̂ m(0)]/2N ≈
〈�R|Ŵ l (n)V̂ m(0)Ŵ l (n)V̂ m(0)|�R〉, where |�R〉 is a random
state. We replaced the random state by two fully polarized
special initial states according to the observables and found
that there is no remarkable differences in the characteristic,
dynamic, and saturation regions of OTOC. We observed
only one difference in the saturation region; there are
comparatively small oscillations when we consider the
random state. A detailed discussion is given in Appendix A.
Moreover, the special initial states may help us to get the
exact analytical formula, at least for integrable OTOC cases
with transverse-direction spins as observables.

In this paper we consider Ŵ l and V̂ m as local Pauli op-
erators either in the longitudinal direction σ̂ l,m

x or in the
transverse direction σ̂ l,m

z . For the Pauli operators in the trans-
verse direction as local observables, the OTOC, in this paper,
is defined as transverse magnetization OTOC and is given as

Cl,m
z (n) = 1 − �[

F l,m
z (n)

]
, (7)

where F l,m
z (n) = 〈φ0|σ̂ l

z (n)σ̂ m
z σ̂ l

z (n)σ̂ m
z |φ0〉. In the fermionic

representation, σ̂ l
z can be written as σ̂ l

z = −(
∏

j<l A jB j )Al ,
where Al and Bl are defined by fermionic creation (cl†) and
annihilation (cl ) operators as Al = cl† + cl and Bl = cl† − cl

[81]. Since σ̂ l
z contains the string operator, it is known as

the nonlocal operator in terms of the Jordan-Wigner fermion
[20,81].

For calculation purposes we take the initial state as |φ0〉 =
| ↑↑↑ · · · ↑〉, where | ↑〉 is the eigenstate of σ̂z with an eigen-
value of +1. If the observables are taken as Pauli operators
in the longitudinal direction of the Ising axis (i.e., the z axis),
then OTOC will be referred to as longitudinal magnetization
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OTOC. LMOTOC is given as

Cl,m
x (n) = 1 − �[

F l,m
x (n)

]
, (8)

where F l,m
x (n) = 〈ψ0|σ̂ l

x (n)σ̂ m
x σ̂ l

x (n)σ̂ m
x |ψ0〉. In the fermionic

representation, σ̂ l/m
x can be written as σ̂ l/m

x = Al/mBl/m. In the
fermionic representation σ̂ l/m

x is known as the local observable
[20,81]. In this case the initial state will be taken as |ψ0〉 =
| →→→ · · · →〉, where | →〉 is the eigenstate of σ̂x with an
eigenvalue of +1.

The analytical solution of TMOTOC for the initial state
|φ0〉 = | ↑↑↑ · · · ↑〉 and Floquet map defined by Eq. (2) with
Jx = 1 and hz = 1 was derived in Ref. [9] as

F l,m
z (n) = 1 −

( 2

N

)3 ∑
p,q,r

[ei(p−q)(m−l )|�r (n)|2	∗
p(n)	q(n)

− ei(−r−q)(m−l )�r (n)∗	∗
p(n)	q(n)�−p(n)

− ei(p+q)(m−l )�q(n)�r (n)∗	p(n)∗	−r (n)

+ ei(q−r)(m−l )�q(n)�r (n)∗|	p(n)|2], (9)

where the expansion coefficients 	q(n) and �q(n) are defined
as

	q(n) = |α+(q)|2e−inγq + |α−(q)|2einγq , (10)

�q(n) = α+(q)β+(q)e−inγq + α−(q)β−(q)einγq . (11)

The phase angle γq and the coefficients α±(q) and β±(q) are
given by

cos(γq) = cos(2τ ) cos(4τ ) − cos(q) sin(2τ ) sin(2τ ), (12)

α±(q)−1 =
√

1 +
(cos(2τ ) − cos(γq ± 2τ )

sin(q) sin(2τ ) sin(2τ )

)2
, (13)

β±(q) = ∓ sin(γq) − cos(2τ ) sin(2τ )[cos(q) + 1]

sin(q) sin(2τ )

× α±(q)e−i2τ . (14)

The allowed values of p, q, and r are from −(N−1)π
N to (N−1)π

N ,
differing by 2π

N for an even number of NF (NF = ∑
l c†

l cl ,
the number of fermions) and h̄ = 1. We use the above exact
solution to calculate TMOTOC for the integrable Û0 model.
However, TMOTOC for the nonintegrable Ûx model and
LMOTOC for both the integrable Û0 and nonintegrable Ûx

models will be calculated numerically.

IV. RESULTS

We analyze TMOTOC and LMOTOC for both the Û0 and
Ûx models in the following three regions, as depicted in Fig. 1.

(i) Characteristic region. Both observables Ŵ l and V̂ m

commute with each other until the characteristic time t�l ,
which is defined as the time after which Cl,m

z/x (n) [F l,m
z/x (n)]

deviates from 0 (1). The characteristic time depends upon the
separation between the spins (�l = |l − m|). As we increase
the separation between the spins, the characteristic time in-
creases, and it is independent of the Floquet period and system
size.

FIG. 1. Schematic of the various regions of OTOC in a typical
system.

(ii) Dynamic region. After the characteristic time, Cl,m
z/x (n)

becomes nonzero. In this dynamic region Cl,m
z/x (n) increases

rapidly.
(iii) Near-saturation region. After rapid growth, Cl,m

z/x (n)
starts to saturate to a finite value. However, the manner in
which Cl,m

z/x (n) saturates follows some trend with an oscillating
amplitude. We calculate such a trend by analyzing the behav-
ior of �[F l,m

z/x (n)] vs n.

Let us begin with TMOTOC for the Û0 system defined
by Eq. (2). First, we focus on the characteristic region of
TMOTOC with an increasing Floquet period. Let us consider
an operator Ŵ located at site l initially. We can see that the
considered Floquet evolution increases the size of Ŵ at each
Floquet step. In particular, the left end of the support of Ŵ (n)
and the right end of the support of Ŵ (n) will increase by 1
for each Floquet step. We therefore can see that F l,m

z (n) = 1
if n < |l − m|. However, once n � |l − m|, F l,m

z (n) will start
to deviate from 1.

Figure 2(a) shows the behavior of F l,m
z (n) with an in-

creasing Floquet period and fixed �l = 6. We can see from
Fig. 2(a) that F l,m

z (n) starts to deviate at the �lth (= sixth)
kick for the whole Floquet period τ . This characteristic time
is independent of the Floquet period of the system size N (we
have checked to N = 50). For a fixed Floquet period τ we
can see the behavior of �[F l,m

z (n)] with the number of kicks
and see the dependence of t�l on �l . In Fig. 2(b), for τ = 6ε

2 ,
we show �[F l,m

z (n)] vs the number of kicks by changing
the separation between the observables �l = |l − m|. We see
that increasing the separation between the spins increases the
characteristic time of the TMOTOC case and the number of
kicks required to deviate from unity is equal to the separation
between the observables (n = �l). The growth of TMOTOC
in the dynamic region follows a power law. The exponent of
the power law increases with the increase in the separation
between the local spin observables in a systematic manner
[Fig. 2(c)]. The exponent increases, reaches maximum at
�l = N

2 , and then decreases with increasing the distance be-
tween the spins [Fig. 2(d)]. The exponent of the power law
can be expressed as a triangular function:

b ≈ bmax − κ

∣∣∣N

2
− �l

∣∣∣, 1 � �l � N − 1, (15)
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FIG. 2. Integrable transverse Ising Floquet system with Jx = 1 and hz = 1 for N = 18. (a) Behavior of TMOTOC with the number of kicks
n while increasing the value of the Floquet period from 7ε

2 to 11ε

2 (right to left), differing by ε/2, with fixed �l = 6 (ε = π

28 ). (b) F l,m
z with

the number of kicks while increasing �l (left to right) and fixed Floquet period τ = 6ε/2. (c) Cl,m
z with the number of kicks (log-log) with

increasing �l (left to right) at constant Floquet period τ = ε

2 . (d) Exponent of the power law with increasing distance between the spins. (e)
�[F l,m

z ] with the number of kicks at different increasing �l (left to right).

where the constants κ = 3.2, bmax = 29, and b0 = 1.7. Equa-
tion (15) shows the dependence of the exponent of power law
on increasing the separation between the observables. It is
symmetric about �l = N

2 because of the periodic boundary
condition of the spin chains. �[F l,m

z (n)] reverts back to unity
after a few kicks in the saturation region. Revival time has
nontrivial dependence on n and �l [Fig. 2(e)]. TMOTOC ex-
tracted from the analytical expression (9) in the characteristic,
dynamic, and saturation regions can be summarized as

Cl,m
z (n) ≈

⎧⎪⎪⎨
⎪⎪⎩

0, nτ < t�l ,

(nτ )κ�l+2, t�l < nτ < ts,

reverted back, ts < nτ.

(16)

In the above expression t�l is the characteristic time, and ts is
the time at which TMOTOC starts saturating. The dynamic
region of TMOTOC decreases with increasing the Floquet
period τ , as shown in Figs. 3(a)–3(e). In general the depen-
dence on τ is such that we can define Cl,m

z ∝ (nτ )κ�l+2 in the
dynamic region.

Now, we use the nonintegrable Ûx model given by Eq. (4)
and analyze TMOTOC. Figure 4(a) shows the behavior of
F l,m

z (n) for varying τ and fixed �l = 6. From Fig. 4(a), we
can see that the number of kicks required for F l,m

z (n) to
deviate from unity is equal to the separation between the
observables (n = |l − m|). Hence, the characteristic time does
not depend on the Floquet periods. Let us explore the behavior
of TMOTOC with distance between the spins for a fixed τ

(say, τ = 6ε
2 ) and increase the separation between the spins

�l . As �l increases, the characteristic time t�l increases in
such a way that n = �l [Fig. 4(b)]. The dynamic region of
TMOTOC for the nonintegrable model again shows a power-

law behavior, and the exponent of the power law b depends
on �l [Fig. 4(c)]. b increases with increasing �l , reaches a
maximum (bmax) at �l = N

2 , and afterwards decreases sym-
metrically with increasing �l before coming down to b1 at
�l = N − 1. Since we consider the periodic boundary con-
dition, the exponent of the power law is symmetric about
�l = N

2 [Fig. 4(d)]. In a mathematical form we can express
b, approximately, by Eq. (15) with κ = 3.2, bmax = 28, and
bmin = 1.78. Saturation of �[F l,m

z (n)] in this nonintegrable
model follows a linear decaying behavior with a very small
slope for all �l [Fig. 4(e)]. TMOTOC for the Ûx model in all
regions is summed up as

Cl,m
z (n) ≈

⎧⎪⎪⎨
⎪⎪⎩

0, nτ < t�l ,

(nτ )κ�l+1, t�l < nτ < ts,

1 − μn, ts < nτ,

(17)

where μ = 0.002 and κ = 3.2. We calculate the exponent of
the power law by using the Hausdorff-Baker-Campbell (HBC)
formula for �l = 1, 2 and find approximate matches with the
exponent of the power law in the dynamic region of Eq. (17).
The detailed calculation is given in Appendix B.

Now we focus on LMOTOC for the Û0 model, which
shows similarity to TMOTOC for the same model. Figure 5(a)
shows the behavior of LMOTOC at different Floquet peri-
ods and fixed �l = 6. In LMOTOC, the number of kicks
required to deviate from unity is n = �l + 1. In comparison
with TMOTOC, LMOTOC required one more kick to cause
F l,m

x (n) to deviate from unity because σ̂ l
x (using the Baker-

Campbell-Hausdorff formula) provide spreading terms after
the first kick. Hence, the characteristic time does not depend
on the Floquet period; however, it depends on the separation
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FIG. 3. Integrable transverse Ising Floquet system with Jx = 1 and hz = 1 for N = 18. Behavior of TMOTOC with the number of kicks
n while increasing �l from 2 to 6 (left to right) at different Floquet periods: (a) τ = 2ε

2 , (b) τ = 3ε

2 , (c) τ = 4ε

2 , (d) τ = 5ε

2 , and (e) τ = 6ε

2
(ε = π

28 ).

between the observables in such a way that it increases lin-
early with increasing the separation between the observables
(n = �l + 1) [Fig. 5(b)]. In the dynamic region of LMOTOC
with a small Floquet period, similar to the TMOTOC case,
we get a power-law behavior. The exponent of the power law
increases with �l in the same manner as in the TMOTOC

case [Fig. 5(c)]. We can approximate the exponent with �l by
Eq. (15) with κ = 3.4, bmax = 32.9, and b0 = 1.9 [Fig. 5(d)].
The saturation region of LMOTOC for Û0 shows oscillating
behavior. The envelope of the oscillation decays linearly with
a constant slope for all �l [Fig. 5(e)]. This behavior is in
contrast to the saturation region of TMOTOC for Û0, which

FIG. 4. Nonintegrable closed-chain transverse Ising Floquet system with Jx = 1, hz = 1, and hx = 1 of size N = 18. (a) Behavior of
TMOTOC with the number of kicks n while increasing the value of the Floquet period from 7ε

2 to 11ε

2 (right to left), differing by ε

2 , with fixed
�l = 6 (ε = π

28 ). (b) Initial region of F l,m
z with the number of kicks with increasing �l (left to right) and fixed Floquet period τ = 6ε/2.

(c) Cl,m
z with the number of kicks (log-log) with increasing �l (left to right) at fixed τ = ε

2 . (d) Change in power with �l . (e) Saturation of
F l,m

z with the number of kicks at different increasing �l (left to right). The black dash-dotted line represents the linear decrease of the maxima
of the saturation amplitude.
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FIG. 5. Integrable closed-chain transverse Ising Floquet system with Jx = 1 and hz = 1 of size N = 18. (a) Behavior of LMOTOC with
the number of kicks n with increasing values of Floquet periods from 7ε

2 to 11ε

2 (right to left), differing by ε

2 , and �l = 6 (ε = π

28 ). (b) F l,m
x (n)

with the number of kicks with increasing �l (left to right) and fixed Floquet period τ = 6ε/2. (c) Cl,m
x (n) with the number of kicks (log-log)

with increasing �l (left to right) at fixed ε

2 . (d) Change in power with �l . (e) F l,m
x (n) with the number of kicks at different increasing �l (left

to right). The black dash-dotted line represents the linear decrease of the maxima of the saturation amplitude.

displays a reversal to early-time behavior. All the regions of
LMOTOC for Û0 can be encapsulated as

Cl,m
x (n) ≈

⎧⎪⎪⎨
⎪⎪⎩

0, nτ < t�l ,

(nτ )κ�l+6, t�l < nτ < ts,

1 − μn, ts < nτ.

(18)

Finally, we consider the Ûx model for LMOTOC calcula-
tions. We get a behavior in the characteristic regime similar
to that for LMOTOC with the Û0 model [Figs. 6(a) and 6(b)].
In the dynamic region, the growth is again a power law, and
the exponent increases with �l [Fig. 6(c)], but the trend is a
bit different than in the previous cases. Unlike in the previous
cases, we see a quadratic increase of the exponent by increas-
ing �l , until a maximum is reached. After the maximum bmax

at �l = N
2 , we see a symmetric decrease in the exponent until

�l = N [Fig. 6(d)]. We approximate b as follows:

b ≈
(

bmax − λ

∣∣∣N

2
− �l

∣∣∣2)
, 0 � �l � N, (19)

where λ = 2.8, bmax = 24.0, and b0 = 1.7. Equation (19)
describes the variation of the exponent of the power law
with increasing the separation between the observables. It is
parabolic in form, with the vertex at N

2 , and is also symmet-
ric about �l = N

2 because of the closed-chain consideration.
We calculate the exponent of the power law by using the
HBC formula for �l = 1 and find that the exponent approx-
imately matches Eq. (19). A detailed calculation is given in
Appendix C. Saturation region of LMOTOC for the noninte-
grable case is oscillating, and the maxima of the oscillation
decreases linearly (with a very small slope μ = 10−5, which
is the same for all �l) with the number of kicks [Fig. 6(e)].

The total region of LMOTOC for the Ûx system is given as

Cl,m
x (n) ≈

⎧⎪⎪⎨
⎪⎪⎩

0, nτ < t�l ,

(nτ )λ(�l )2
, t�l < nτ < ts,

1 − μn, ts < nτ.

(20)

In a nutshell, we see that the characteristic regions of LMO-
TOC have similar behavior for Û0 and Ûx systems. In both
cases, the commutator propagation varies with τ in a similar
way. But the dynamic region displays a contrast between Û0

and Ûx. In the integrable case, the exponent of the power
law increases linearly with �l , but in the nonintegrable case,
we see a quadratic growth of the power law with �l . In the
saturation region, both oscillate, and the envelope decreases
at different rates.

In this paper we considered single spins as observables
in our calculation of OTOCs. An experimental procedure
for the calculation of OTOC using single-spin observables
and the initial product state was given in Ref. [33]. Im-
plementation of the unitary operator on observable Ŵ l

[Ŵ l (n) = (Û†
x )nŴ l (0)(Ûx )n] followed by perturbation of ob-

servable V̂ m was discussed in Ref. [82]. The OTOC is
obtained by measuring the expectation value of the observ-
able (Û†

x )nŴ l (0)(Ûx )nV̂ m(Û†
x )nŴ l (0)(Ûx )nV̂ m [33]. There-

fore, LMOTOCs and TOMOTOCs can be calculated experi-
mentally.

V. CONCLUSION

We studied the behavior of TMOTOC and LMOTOC com-
prehensively using Û0 and Ûx systems. We divided LMOTOC
and TMOTOC into three distinct regimes: the characteristic-
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FIG. 6. Nonintegrable closed-chain transverse Ising Floquet system with Jx = 1, hz = 1, and hx = 1 for N = 18. (a) LMOTOC with the
number of kicks n while increasing the value of the Floquet period from 7ε

2 to 11ε

2 (right to left) differing by ε

2 , with fixed �l = 6 (ε = π

28 ).
(b) F l,m

x (n) with increasing �l from 2 to 6 (left to right) and fixed period τ = 6ε

2 . (c) Cl,m
x (n) with the number of kicks (log-log) while increasing

�l from 2 to 6 (left to right) and with fixed Floquet period τ = ε

2 . (d) Change in power with �l . (e) F l,m
x (n) with the number of kicks at different

increasing �l (left to right). The black dash-dotted line represents the linear decrease of the maxima of the saturation amplitude.

time regime, dynamic-time regime, and saturation-time
regime.

Characteristic times of TMOTOC and LMOTOC are in-
dependent of the integrability of the system. They are also
independent of the Floquet period and system size; however,
they depend on the separation between the observables. The
number of kicks required for F l,m to deviate from unity is
equal to the numerical value of the separation between the
observables in the case of TMOTOC; however, one extra
kick is required in the case of LMOTOC. The behavior of
the dynamic region is also independent of the integrability
of the system. In both systems Û0 and Ûx, LMOTOC and
TMOTOC show power-law growth. There is no signature of
the Lyapunov exponent. This power-law growth depends on

the separation between the spins and the Floquet period. The
rate of change of the exponent with respect to the separation
between the spins is independent of the integrability of the
system in TMOTOC; however, we see a dependence in the
case of LMOTOC. In TMOTOC for both systems Û0 and Ûx,
the exponent varies as a triangular function. In the case of
LMOTOC, we see a triangular function with linear increase
and decrease for the Û0 system but a quadratic increase and
decrease for the Ûx system. The saturation region of TMO-
TOC is different in both systems: the Û0 system reverts back,
but the Ûx system decays linearly. The saturation behavior
of LMOTOC shows oscillating decay with the envelope de-
caying linearly in both systems. Saturation of TMOTOC and
LMOTOC is independent of �l .

APPENDIX A: CALCULATION OF TMOTOC IN THE NONINTEGRABLE Ûx SYSTEM USING THE RANDOM STATE

If V̂ and Ŵ are two Hermitian operators that are localized on different positions l and m, respectively, OTOC [1] is given as

Cl,m(n) = −1

2
Tr{[Ŵ l (n), V̂ m]2}, (A1)

which is a measure of the noncommutativity of two operators, Ŵ l and V̂ m. These are infinite-temperature quantities and involve
the entire spectrum of 2N states. One can use the trick for evaluating OTOC by employing Haar random states of 2N dimensions
|�R〉 and calculate the expectation value over |�R〉. OTOC is

Cl,m(n) = −2N−1〈�R|[Ŵ l (n), V̂ m]2|�R〉 (A2)

since the behavior of OTOC is similar for both random states and special initial states (|φ〉 and |ψ〉, respectively). So we consider
special initial states, and OTOC is

Cl,m(n) = −2N−1〈ψ/φ|[Ŵ l (n), V̂ m]2|ψ/φ〉. (A3)

Figure 7 shows the behavior of TMOTOC in the nonintegrable Ûx system using the random initial state ψR drawn from the
Harr measure. Characteristic time is independent of the Floquet period [Fig. 7(a)], and it depends on the separation between the
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FIG. 7. Nonintegrable closed-chain transverse Ising Floquet system with Jx = 1, hz = 1, and hx = 1 of size N = 18. (a) Behavior of
TMOTOC with the number of kicks n while increasing the Floquet period from 7ε

2 to 11ε

2 (right to left), differing by ε

2 , with fixed �l = 6
(ε = π

28 ). (b) Initial region of F l,m
z with the number of kicks and increasing �l (left to right) at fixed Floquet period τ = 6ε/2. (c) Cl,m

z with the
number of kicks (log-log) with increasing �l (left to right) at fixed τ = ε

2 . (d) Change in the exponent of the power law with �l . (e) Saturation
of F l,m

z with the number of kicks with increasing �l (left to right).

observables. The number of kicks required to deviate from unity is equal to the separation between the observables [Fig. 7(b)].
The dynamic region of TMOTOC for the nonintegrable shows a power law [Fig. 7(c)] that is similar to Fig. 4(c). The exponent
of the power law b depends on �l [Fig. 7(d)], and its behavior is similar to Fig. 4(d). Saturation of �[F l,m

z (n)] follows a linear
decaying behavior with a very small slope (0.004) for all �l [Fig. 7(e)]. There is a very small oscillation in comparison to
Fig. 4(e).

APPENDIX B: TIME EVOLUTION OF TMOTOC

The Heisenberg evolution of an operator Ŵ (t ) can be expanded using the Hausdorff-Baker-Campbell (HBC) formula as

Ŵ (t ) =
∞∑

p=0

(it )p

p!
[Ĥ , [Ĥ , · · ·p times , [Ĥ ,Ŵ ]]]. (B1)

If Ŵ = σ̂
z/x
l , the HBC formula captures the spread of the operator over the spin sites and how it becomes more complex as time

increases. Furthermore, direct insertion of Eq. (B1) into Eq. (6) highlights the fact that the short-time growth is characterized by
the smallest p where [

Ĥ , [Ĥ , · · ·p times ,
[
Ĥ , σ̂

x/z
l

]
], σ̂ x/z

m

] = 0 (B2)

due to the time factor t n that weights the terms in the expansion. We remark that this mechanism points out that the short-time
growth is characterized by a general Hamiltonian structure of the system and not by the regular to chaotic regimes observed in
the studied spin chains.

We consider the Pauli operator in the transverse direction of the coupling and Ûx = ÛxxÛz, where Ûxx = exp [ − iτ (JxĤxx +
hxĤx )] and Ûz = exp(−iτhzĤz ). Using Eq. (B1), the Heisenberg evolution of the spin operator σ̂ l

z is obtained:

σ̂ l
z (n) = (Û †

z Û †
xx )nσ̂ l

z (ÛxxÛz )n; (B3)

after the first kick is applied, σ̂ l
z (1) is

σ̂ l
z (1) = Û †

z Û †
xxσ̂

l
z ÛxxÛz

= Û †
z (σ̂ l

z + iτ
[
Ĥxx + Ĥx, σ̂

l
z

] + (iτ )2

2!

[
Ĥxx + Ĥx,

[
Ĥxx + Ĥx, σ̂

l
z

]] + · · · )Ûz

= σ̂ l
z + iτ

{
Û †

z

[ − 2i
(
σ̂ l−1

x σ̂ l
y + σ̂ l

y σ̂
l+1
x + σ̂ l

y

)]
Ûz

} + · · ·

022403-8
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= σ̂ l
z + 2τ

[
Û †

z

(
σ̂ l−1

x σ̂ l
y + σ̂ l

y σ̂
l+1
x + σ̂ l

y

)
Ûz

] + · · ·
= σ̂ l

z + 2τ
{̂̂
σ l−1

x σ̂ l
y + σ̂ l

y σ̂
l+1
x + σ̂ l

y + iτ
( − 2i

[
σ̂ l−1

x σ̂ l
x + σ̂ l−1

y σ̂ l
y + σ̂ l

x σ̂
l+1
x + σ̂ l

y σ̂
l+1
y + σ̂ l

x

]) + · · · } + · · ·
= σ̂ l

z + [
2τ

(
σ̂ l−1

x σ̂ l
y + σ̂ l

y σ̂
l+1
x + σ̂ l

y

) + (2τ )2
(
σ̂ l−1

x σ̂ l
x + σ̂ l−1

y σ̂ l
y + σ̂ l

x σ̂
l+1
x + σ̂ l

y σ̂
l+1
y + σ̂ l

x

) + · · · ] + · · · . (B4)

We apply the second kick; then σ̂ l
z (2) is

σ̂ l
z (2) = Û †

z Û †
xx

{
σ̂ l

z + [
2τ

(
σ̂ l−1

x σ̂ l
y + σ̂ l

y σ̂
l+1
x + σ̂ l

y

) + (2τ )2
(
σ̂ l−1

x σ̂ l
x + σ̂ l−1

y σ̂ l
y + σ̂ l

x σ̂
l+1
x + σ̂ l

y σ̂
l+1
y + σ̂ l

x

) + · · · ] + · · · }ÛxxÛz

= σ̂ l
z + {

4τ
(
σ̂ l−1

y σ̂ l
x + σ̂ l

y σ̂
l+1
x + σ̂ l

y

) + (2τ )2
(
σ̂ l−1

x σ̂ l
x + σ̂ l−1

y σ̂ l
y + σ̂ l

x σ̂
l+1
x + σ̂ l

y σ̂
l+1
y + σ̂ l

x

)
+ (2τ )2

[
Û †

z Û †
xx

(
σ̂ l−1

y σ̂ l
y + σ̂ l

y σ̂
l+1
y

)
Û †

xxÛ
†
z

] + · · · } + · · · . (B5)

From the above equation, we extract the coefficient of τ 2 which contains the σ̂ l+2
y term. It is given as

(2τ )2
[
Û †

z Û †
xx

(
σ̂ l−1

y σ̂ l
y + σ̂ l

y σ̂
l+1
y

)
Û †

xxÛ
†
z

] = (2τ )2Û †
z

(
σ̂ l

y σ̂
l+1
y + iτ [Ĥxx + Ĥx, σ̂

l
y σ̂

l+1
y ] + · · · )Ûz (B6)

= (2τ )2
( · · · − 2τ σ̂ l−1

y σ̂ l
z σ̂

l+1
y − 2τ σ̂ l

y σ̂
l+1
z σ̂ l+2

y + · · · ).
For m = l + 2, Cl,m

z (2) = 64τ 6. We apply the third kick, and then σ̂ l
z (3) is

σ̂ l
z (3) = Û †

z Û †
xx

{
σ̂ l

z + [
4τ

(
σ̂ l−1

y σ̂ l
x + σ̂ l

y σ̂
l+1
x + σ̂ l

y

) + (2τ )2
(
σ̂ l−1

x σ̂ l
x + σ̂ l−1

y σ̂ l
y + σ̂ l

x σ̂
l+1
x + σ̂ l

y σ̂
l+1
y + σ̂ l

x

) + · · · ] + · · · }ÛxxÛz

= {
σ̂ l

z + [
6τ

(
σ̂ l−1

y σ̂ l
x + σ̂ l

y σ̂
l+1
x + σ̂ l

y

) + (2τ )2
(
σ̂ l−1

x σ̂ l
x + σ̂ l−1

y σ̂ l
y + σ̂ l

x σ̂
l+1
x + σ̂ l

y σ̂
l+1
y + σ̂ l

x

) + · · · ] + · · · }.
For �l = 1, m = l + 1, the dominating exponent of the power law of OTOC is

Cl,l+1
z (1) = 4τ 2〈φ0|

[(
σ̂ l

y σ̂
l+1
x + σ̂ l

y

)
, σ̂ m

z

]2|φ0〉 (B7)

= 4〈φ0|
( − iσ̂ l

y σ̂
l+1
y

)2|φ0〉 = 4τ 2.

Similarly, Cl,l+1
z (2) = 16τ 2, and Cl,l+1

z (3) = 36τ 2.
The dominating exponent of the power law of OTOC is Cl,l+2

z (1) = 0, Cl,l+2
z (2) = 64τ 6. This power-law growth approxi-

mately matches the dynamic region of the Eq. (17).

APPENDIX C: TIME EVOLUTION OF LMOTOC

We consider the Pauli operator in the longitudinal direction of the coupling. Using Eq. (B1), the Heisenberg evolution of the
spin operator σ̂ l

x is obtained:

σ̂ l
x (n) = (Û †

z Û †
xx )nσ̂ l

x (ÛxxÛz )n;

after the first kick is applied, σ̂ l
x (1) is

σ̂ l
x (1) = Û †

z Û †
xxσ̂

l
xÛxxÛz

= Û †
z

(
σ̂ l

x + iτ
[
Ĥxx + Ĥx, σ̂

l
x

] + (iτ )2

2!
[Ĥxx + Ĥx,

[
Ĥxx + Ĥx, σ̂

l
x

]
] + · · · )Ûz.

Since [Ĥxx + Ĥx, σ̂
l
x ] = 0, then

σ̂ l
x (1) = Û †

z σ̂ l
xÛz

= σ̂ l
x + iτ

[
Ĥz, σ̂

l
x

] + (iτ )2

2!
[Ĥz,

[
Ĥz, σ̂

l
x

]
] + · · · = σ̂ l

x (1) = σ̂ l
x − 2τ σ̂ l

y + · · · . (C1)

We apply the second kick; then σ̂ l
x (2) is

σ̂ l
x (2) = Û †

z Û †
xxσ̂

l
x (1)ÛxxÛz

= U †
z Û †

xx

(
σ̂ l

x − 2τ σ̂ l
y + · · · )ÛxxÛz

= (
U †

z Û †
xxσ̂

l
xÛxxÛz − 2τU †

z Û †
xxσ̂

l
yÛxxÛz + · · · )

= {
σ̂ l

x − 2τ σ̂ l
y − 2τU †

z

[
σ̂ l

y − 2τ (σ̂ l−1
y σ̂ l

z + σ̂ l
z σ̂

l+1
y + σ̂ l

z ) + · · · ]Ûz + · · · }
= (

σ̂ l
x − 2τ σ̂ l

y − 2τ {σ̂ l
y − 2τ σ̂ l−1

y σ̂ l
z − 2τ σ̂ l

z σ̂
l+1
y − 2τ σ̂ l

z + iτ
[ − 2iσ̂ l

x − 2τ (−2i)σ̂ l
z σ̂

l+1
y

] + · · · } + · · · )

= [
σ̂ l

x − 4τ σ̂ l
y + (2τ )2

(
σ̂ l

z σ̂
l+1
y + σ̂ l

x + σ̂ l
z

) + (2τ )3σ̂ l
z σ̂

l+1
y + · · · ]. (C2)
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We apply the third kick; then σ̂ l
x (3) is

σ̂ l
x (3) = Û †

z Û †
xx[σ̂ l

x − 4τ σ̂ l
y + (2τ )2(σ̂ l

z σ̂
l+1
y + σ̂ l

x + σ̂ l
z ) + (2τ )3σ̂ l

z σ̂
l+1
y + · · · ]ÛxxÛz

= [σ̂ l
x − 6τ σ̂ l

y + 2(2τ )2(σ̂ l
z σ̂

l+1
y + σ̂ l

x + σ̂ l
z ) + 2(2τ )3σ̂ l

z σ̂
l+1
y + · · · ] + · · · . (C3)

Consider �l = 1, m = l + 1Cl,l+1
x (1) = 0, Cl,l+1

x (2) = 64τ 6, and Cl,l+1
x (3) = 256τ 6. The exponent of the power law approxi-

mately matches Eq. (19).
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[22] C. B. Dağ, K. Sun, and L.-M. Duan, Phys. Rev. Lett. 123,
140602 (2019).

[23] S. Grozdanov, K. Schalm, and V. Scopelliti, Phys. Rev. Lett.
120, 231601 (2018).

[24] M. Heyl, F. Pollmann, and B. Dóra, Phys. Rev. Lett. 121,
016801 (2018).

[25] B. Chen, X. Hou, F. Zhou, P. Qian, H. Shen, and N. Xu, Appl.
Phys. Lett. 116, 194002 (2020).

[26] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M. Stamper-
Kurn, J. E. Moore, and E. A. Demler, arXiv:1607.01801.

[27] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Phys. Rev. A 94, 040302(R) (2016).

[28] G. Zhu, M. Hafezi, and T. Grover, Phys. Rev. A 94, 062329
(2016).

[29] M. Campisi and J. Goold, Phys. Rev. E 95, 062127 (2017).
[30] N. Yunger Halpern, Phys. Rev. A 95, 012120 (2017).
[31] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J.

Du, Phys. Rev. X 7, 031011 (2017).
[32] K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B.

Yoshida, N. Y. Yao, and C. Monroe, Nature (London) 567, 61
(2019).

[33] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P.
Zoller, R. Blatt, and C. F. Roos, Phys. Rev. Lett. 124, 240505
(2020).

[34] E. J. Meier, J. Ang’ong’a, F. A. An, and B. Gadway, Phys. Rev.
A 100, 013623 (2019).

[35] Y. Gu and X.-L. Qi, J. High Energy Phys. 08 (2016) 129.
[36] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
[37] E. Altman and R. Vosk, Annu. Rev. Condens. Matter Phys. 6,

383 (2015).
[38] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter

Phys. 6, 15 (2015).
[39] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[40] S. Xu and B. Swingle, Nat. Phys. 16, 199 (2020).
[41] S. Xu and B. Swingle, Phys. Rev. X 9, 031048 (2019).
[42] I. Kukuljan, S. Grozdanov, and T. Prosen, Phys. Rev. B 96,

060301(R) (2017).
[43] E. M. Fortes, I. García-Mata, R. A. Jalabert, and D. A.

Wisniacki, Phys. Rev. E 100, 042201 (2019).
[44] B. Craps, M. De Clerck, D. Janssens, V. Luyten, and C.

Rabideau, Phys. Rev. B 101, 174313 (2020).
[45] N. Roy and A. Sharma, J. Phys.: Condens. Matter 33, 334001

(2021).
[46] H. Yan, J.-Z. Wang, and W.-G. Wang, Commun. Theor. Phys.

71, 1359 (2019).
[47] J.-H. Bao and C.-Y. Zhang, Commun. Theor. Phys. 72, 085103

(2020).
[48] B. Dóra and R. Moessner, Phys. Rev. Lett. 119, 026802 (2017).
[49] J. Riddell and E. S. Sørensen, Phys. Rev. B 99, 054205 (2019).
[50] J. Lee, D. Kim, and D.-H. Kim, Phys. Rev. B 99, 184202 (2019).
[51] G. Casati, B. Chirikov, F. Izrailev, and J. Ford, Lecture Notes in

Physics (Springer, Berlin, 1979), Vol. 93, pp. 334.
[52] B. V. Chirikov, Research Concerning the Theory of Non-linear

Resonance and Stochasticity, Preprint No. 267 (Institute of Nu-
clear Physics, Novosibirsk, 1969).

022403-10

https://doi.org/10.1140/epjd/s10053-022-00352-3
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1103/PhysRevLett.121.210601
https://doi.org/10.1209/0295-5075/132/47003
https://doi.org/10.1103/PhysRevLett.125.014101
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1103/PhysRevLett.121.250602
https://doi.org/10.1103/PhysRevLett.121.024101
https://doi.org/10.1002/andp.201600318
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.21468/SciPostPhys.5.5.052
https://doi.org/10.1103/PhysRevLett.123.140602
https://doi.org/10.1103/PhysRevLett.120.231601
https://doi.org/10.1103/PhysRevLett.121.016801
https://doi.org/10.1063/5.0004152
http://arxiv.org/abs/arXiv:1607.01801
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1038/s41586-019-0952-6
https://doi.org/10.1103/PhysRevLett.124.240505
https://doi.org/10.1103/PhysRevA.100.013623
https://doi.org/10.1007/JHEP08(2016)129
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevE.100.042201
https://doi.org/10.1103/PhysRevB.101.174313
https://doi.org/10.1088/1361-648X/ac06e9
https://doi.org/10.1088/0253-6102/71/11/1359
https://doi.org/10.1088/1572-9494/ab8a28
https://doi.org/10.1103/PhysRevLett.119.026802
https://doi.org/10.1103/PhysRevB.99.054205
https://doi.org/10.1103/PhysRevB.99.184202


CHARACTERISTIC, DYNAMIC, AND NEAR-SATURATION … PHYSICAL REVIEW A 106, 022403 (2022)

[53] P. L. Kapitza, Sov. Phys. JETP 21, 588 (1951).
[54] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A 68, 013820

(2003).
[55] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. Lett. 91, 110404

(2003).
[56] L. Landau and E. Lifshitz, Course of Theoretical Physics (Else-

vier, Moscow, 1987), Vol. 6.
[57] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.

Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath,
N. Y. Yao, and C. Monroe, Nature (London) 543, 217 (2017).

[58] A. Russomanno, F. Iemini, M. Dalmonte, and R. Fazio, Phys.
Rev. B 95, 214307 (2017).

[59] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. Di
Liberto, N. Goldman, I. Bloch, and M. Aidelsburger, Nat. Phys.
16, 1058 (2020).

[60] W. Zhu, Y. D. Chong, and J. Gong, Phys. Rev. B 104, L020302
(2021).

[61] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027
(2014).

[62] H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen, Phys.
Rev. Lett. 80, 4111 (1998).

[63] M. B. d’Arcy, R. M. Godun, M. K. Oberthaler, D. Cassettari,
and G. S. Summy, Phys. Rev. Lett. 87, 074102 (2001).

[64] L. D’Alessio and A. Polkovnikov, Ann. Phys. (NY) 333, 19
(2013).

[65] V. Gritsev and A. Polkovnikov, Sci. Post Phys. 2, 021 (2017).
[66] A. Lakshminarayan and V. Subrahmanyam, Phys. Rev. A 71,

062334 (2005).

[67] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[68] G. K. Naik, R. Singh, and S. K. Mishra, Phys. Rev. A 99,

032321 (2019).
[69] S. K. Mishra, A. Lakshminarayan, and V. Subrahmanyam, Phys.

Rev. A 91, 022318 (2015).
[70] S. K. Mishra and A. Lakshminarayan, Europhys. Lett. 105,

10002 (2014).
[71] D. Rossini, S. Suzuki, G. Mussardo, G. E. Santoro, and A. Silva,

Phys. Rev. B 82, 144302 (2010).
[72] F. H. Essler and M. Fagotti, J. Stat. Mech. (2016) 064002.
[73] A. Russomanno, A. Silva, and G. E. Santoro, Phys. Rev. Lett.

109, 257201 (2012).
[74] A. Russomanno, A. Silva, and G. E. Santoro, J. Stat. Mech.

(2013) P09012.
[75] Z. Ovadyahu, Phys. Rev. Lett. 108, 156602 (2012).
[76] S. Iwai, M. Ono, A. Maeda, H. Matsuzaki, H. Kishida, H.

Okamoto, and Y. Tokura, Phys. Rev. Lett. 91, 057401 (2003).
[77] S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu,

M. Le Tacon, T. Loew, D. Haug, B. Keimer, and A. Cavalleri,
Phys. Rev. B 89, 184516 (2014).

[78] S. Zamani, R. Jafari, and A. Langari, Phys. Rev. B 105, 094304
(2022).

[79] T. Prosen, Prog. Theor. Phys. Suppl. 139, 191 (2000).
[80] T. C. V. Prosen, Phys. Rev. E 65, 036208 (2002).
[81] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge

University Press, Cambridge, 2011).
[82] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.

Bollinger, and A. M. Rey, Nat. Phys. 13, 781 (2017).

022403-11

https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevLett.91.110404
https://doi.org/10.1038/nature21413
https://doi.org/10.1103/PhysRevB.95.214307
https://doi.org/10.1038/s41567-020-0949-y
https://doi.org/10.1103/PhysRevB.104.L020302
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevLett.80.4111
https://doi.org/10.1103/PhysRevLett.87.074102
https://doi.org/10.1016/j.aop.2013.02.011
https://doi.org/10.21468/SciPostPhys.2.3.021
https://doi.org/10.1103/PhysRevA.71.062334
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevA.99.032321
https://doi.org/10.1103/PhysRevA.91.022318
https://doi.org/10.1209/0295-5075/105/10002
https://doi.org/10.1103/PhysRevB.82.144302
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1103/PhysRevLett.109.257201
https://doi.org/10.1088/1742-5468/2013/09/P09012
https://doi.org/10.1103/PhysRevLett.108.156602
https://doi.org/10.1103/PhysRevLett.91.057401
https://doi.org/10.1103/PhysRevB.89.184516
https://doi.org/10.1103/PhysRevB.105.094304
https://doi.org/10.1143/PTPS.139.191
https://doi.org/10.1103/PhysRevE.65.036208
https://doi.org/10.1038/nphys4119

