
Chapter 3

Second derivative of Gaussian based

matched filter approach for retinal

blood vessels segmentation

3.1 Introduction

The automated retinal blood vessel segmentation is a prominent task for computer aided

diagnosis of retinal pathologies such as glaucoma [139], hypertension [140], diabetes

[2, 44], obesity [12], etc. Vessels structure are similar to the cluster of lines so retinal

blood vessel segmentation is a line detection problem. After a deep literature survey it is

found that various methods have been proposed for retinal blood vessel segmentation. Ac-

cording to author M. M. Fraz et al. [6] the retinal blood vessel segmentation approaches

are mainly classified into seven categories, namely, the intensity based pattern recognition

techniques, mathematical morphology based, vessel tracking based, model based, parallel

hardware based, multi-scale based techniques and matched filter based approach. These

seven categories are briefly discussed in Chapter 2.

Here we start the discussion about the matched filter based approach because the pro-

posed approach is based on that due to their simplicity and effectiveness. The matched

filter based approach detect the retinal blood vessel by applying matched filter and thresh-



olding on the original input retinal image [12]. To design a matched filter kernel, three

points are important which include limited curvature of vessels which may be approxi-

mated by piecewise linear segments, the width of the vessels which gradually decreases

when one move away from the optical disk of the retinal image, and cross-sectional in-

tensity profile of retinal blood vessels which have approximate Gaussian shape. Due to

the consideration of the cross-sectional intensity profile of retinal blood vessels which is

approximated by Gaussian shape, the sequence of Gaussian shaped filters are required for

the detection of whole retinal blood vessels. Generally the matched filter provide a strong

response for both vessels as well as non-vessel edges. That’s why there will be many

false detections that may exist in the image after applying thresholding. The matched

filter based approaches use the prior knowledge about the Gaussian shaped cross-section

profile of the retinal blood vessel but cannot be used for other information such as about

the symmetry of the Gaussian shape with respect to their peak position and zero-crossing.

If these properties are used in proper way, the accuracy of retinal blood vessel segmenta-

tion can be improved.

To this end, a novel method, namely second order derivative of Gaussian based match-

ing filter (SDOG-MF) approach for retinal blood vessel segmentation have been proposed.

This approach considers two things namely the symmetry of the Gaussian shape with

respect to their peak position, and information about zero-crossing. The second order

derivative of Gaussian provide a strong response around their peak positions and zero-

crossings are useful to identify the positions where the second order derivatives become

zero, and these positions correspond to double edge positions. In this approach, we in-

vestigate and propose a fast and efficient retinal blood vessel segmentation method by

applying the SDOG matched filter. The proposed method concentrates towards the seg-

mentation of thin as well as thick retinal blood vessels.

3.2 Background

The proposed modified retinal image segmentation approach comes in the category of

matched filter based approach. There are various matched filters based retinal blood ves-
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sel segmentation approaches which exist in literature. In the previous section, the basic

concepts of matched filter are discussed. In this section, our objective is to present, how

much work has been done previously. First time author Chaudhuri et al. [12] proposed an

approach based on two-dimensional matched filters for the retinal blood vessels extrac-

tion by using some assumptions such as the intensity profile have been approximated by a

Gaussian function, the vessels have been approximated by piecewise linear segments and

the width of the vessels are constant. Finally, for the detection of blood vessel the matched

filter was applied in several orientations. The author T. William et al. [141] designed a

steerable filter, which was a filter with arbitrary orientations and had been organized from

the linear combinations of normal filters. Hoover et al. [2] proposed an approach for

retinal blood vessels segmentation by combining the local and regional-based properties

and used the threshold probing technique on a matched filter response image. Luo Gang

et al. [142] used an amplitude modified second order Gaussian filter for the detection of

retinal blood vessel and showed that the vessel width provide the size of blood vessels as

well as are useful for optimization of matched filter that improve the rate of efficiency of

vessel detection. Xiaoyi et al. [44] proposed an adaptive local thresholding framework

based on verification-based multi-threshold probing scheme which is also used for reti-

nal vessel detection. Al-Rawi et al. [13] proposed an improved matched filter for retinal

blood vessel detection and author Fielder et al. [143] proposed an automatic blood ves-

sels extraction approach for low quality and noisy retinal images. Chang Yao et al [71]

used a two-dimensional Gaussian matched filter for enhancement of retinal blood vessel

and then a simplified pulse coupled neural network [144] for the vessel segmentation by

firing neighborhood neurons. The author Cinsdikici et al. [45] proposed a hybrid model

of matched filter and ANT colony optimization [145] for retinal blood vessel extraction.

Zhang et al. [47] proposed matched filter with first-order derivative of Gaussian which

is the generalized and extended form of the classical Gaussian-shaped matched filter pro-

posed by Chaudhuri et al. [12].
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3.3 Methods and model

The first matched filter was proposed by author Chaudhuri et al. [12] to detect the reti-

nal blood vessels by using zero-mean Gaussian function based matched filter, which is

defined as

f (x,y) =−exp−((x2
+y2)/2σ2)

(3.1)

Where σ is variance which is used to increase the intensity profile. In case of retina, it is

assumed that the direction of blood vessels to be aligned along the y-axis of the optical

disk of the fundus image and L is the length of the segment for which the vessel have

a fixed orientation. Then two dimensional matched filter kernels are designed by author

Chaudhuri et al. [12] using a zero-mean Gaussian-shaped function which is defined as

f (x,y) =−exp(−x2/2σ2) f or |y| ≤ L/2 (3.2)

Where x is the perpendicular distance between point (x,y) and straight line passing through

the center of retinal blood vessel. The zero-mean Gaussian-shaped matched filter makes

it popular for retinal blood vessel detection but their exists a well-known problem that it

detects both the vessels and non-vessels edges. The author Zhang et al. [47] proposed

an extension and generalization of the zero-mean Gaussian-shaped matched filter known

as matched filter with first-order derivative of Gaussian by considering the cross section

of a vessel is a symmetric Gaussian function, and use a combination of two filters, the

zero-mean Gaussian filter and the first-order derivative of the Gaussian filter, to detect the

retinal blood vessels. As previously discussed the zero-mean Gaussian matched filter has

strong responses for both the vessels and non vessels of retinal image. So it is difficult

to bifurcate these two structure of the retinal image. Based on these facts the SDOG-

MF based segmentation approach is proposed by Singh N P et al. [204] . The second

derivative of Gaussian matched function is defined as

f (x,y) =− (x−σ )(x+σ )√
2πσ5

exp(−x2/2σ2)
(3.3)
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where |y| ≤ L/2.

This approach considers the symmetry of the Gaussian shape with respect to their peak

position and zero-crossings. The second order derivative of Gaussian (SDOG) provides

a strong response around their peak position and zero-crossing is useful to identify the

position where the second order derivatives become zero, and these positions correspond

to double edge positions. Our proposed approach is the combination of SDOG matched

filter, entropy based optimal thresholding, vessel length filtering and removing outliers

artifacts by using the concept of masking.

Generally, the blood vessels have low contrast with respect to their background so

SDOG matched filter is used to enhance the retina image and generate a matched filter

response (MFR) image, in which the entropy based optimal thresholding scheme [12]

have been applied to differentiate the retinal blood vessels from their background. After

that length filtering criterion [12] is applied to remove the misclassified pixels, and finally

the outliers artifacts are removed by applying mask, generated by using particular retinal

image which contains the boundary of retinal image. The model of the proposed work is

shown in Figure 3.1.

The author Xu et al. [51] state that the width of thin blood vessel segments varies from

3 to 5 and a thick blood vessel segment varies from 9 to 12 pixels. The author Azegrouz

et al. [146] state that the tortuosity of human retinal blood vessels is an indicator of

many diseases, which depends on the width of retinal blood vessels. The tortuosity of

thin retinal blood vessels is an indicator of the initial stage of diseases whereas a the

tortuosity of thick blood vessels indicates the next stage of the diseases. This gives an

idea to setup the parameters of SDOG matched filter. Hence, we consider the length of

vessel segment L = 5 that cover thin as well as thick blood vessels. The author Azegrouz

et al. [146] also state that in general the width of retinal blood vessels are 10 pixels but in

presence of retinal pathology it may increase. Therefore to evaluate the performance of

proposed approach use the kernel size 10×10 and angular revolution 30o. According to

these assumption, to cover all possible orientations, six different kernels are required in

proposed approach.
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Figure 3.1: Proposed Model
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To truncate the trail of Gaussian curve, x = ±1σ have been used. Finally, the kernel

is applied by convolving to retinal image and only the maximum response was retained

at each pixel. The above chosen parameters are based on exhaustive experimentation on

the chosen datasets and are associated to better performance in comparison to all other

previous implementations. For example, the proposed SDOG matched filter response

image, according to these assumptions are shown in Figure 3.2(d) and Figure 3.3(d) for

images taken from DRIVE data set and STARE data set respectively.

(a) (b)

(c) (d)

Figure 3.2: For image taken from DRIVE data set (a) Original image (b) Selected green

channel of input image (c) Gray-scale image (d) Proposed SDOG Matched Filter [204]

Response image
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(a) (b)

(c) (d)

Figure 3.3: For image taken from STARE data set (a) Original image (b) Selected green

channel of input image (c) Gray-scale image (d) Proposed SDOG Matched Filter [204]

Response image

3.3.1 Vessels Extraction and Local Thresholding

An effective thresholding scheme is required for extraction of blood vessels, after finding

enhanced blood vessel image by SDOG matched filter response. According to the authors

Chaudhuri et al. [12] and M. M. Fraz et al. [6] the entropy based optimal thresholding

perform better with respect to other thresholding techniques used by authors Al-Rawi et

al. [13], Xiaoyi and Mojon [44], Cinsdikici et al. [45], and Amin and Yan [46]. There-

fore in proposed approach, the entropy based optimal thresholding is used for extraction

of blood vessels. The Gray Level Co-occurrence Matrix (GLCM) is required to compute
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the optimal threshold value by taking the spatial distribution of gray levels and embedded

with co-occurrence matrix because the intensity of image pixels are not independent to

other pixels. The GLCM is important for finding the threshold value because it contains

the information of frequency distribution of gray level and edge information. Here, we

consider the size of GLCM matrix to be P×P of gray level image having spatial dimen-

sion R×C with range of gray levels [0,1,.....,P-1]. The GLCM matrix is represented by

T = [ti j]P×P. The element of matrix for each image pixel at specific coordinate (r,c) with

its gray level is specified by f (r,c) by considering its nearest neighboring pixels. The

co-occurrence matrix is designed by comparing gray level changes of f (r,c) to its cor-

responding gray levels by considering horizontally right and vertically lower transitions.

Thus the elements ti j of the co-occurrence matrix T is defined by Eqn-3.4 and Eqn-3.5.

ti j =

R

∑
r=1

C

∑
c=1

δ (3.4)

where

δ = 1 if































f (r,c) = i and f (r,c+1) = j,

or

f (r,c) = i and f (r+1,c) = j.

(3.5)

δ = 0 otherwise

For gray levels i and j the co-occurrence probability (pi j) calculated by using Eqn-3.6

pi j =
ti j

∑
i

∑
j
ti j

(3.6)

where ti j is the co-occurrence matrix define in Eqn-3.5. Due to the gray level variations

between enhanced retinal blood vessels and their background, the co-occurrence matrix

is divided in four quadrants, namely I, II, III and IV quadrant having threshold (Th) value

within range 0 ≤ Th ≤ P− 1 as shown in Figure 3.4. Further these four quadrants are

grouped into two classes. The class one contains quadrant Ist and IV th that is known as

local quadrant and second class contains quadrant IInd and IIIrd that is known as joint
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Figure 3.4: Division of Co-occurrence matrix

quadrant. For calculating local entropy thresholding only local quadrant is considered,

because it contains the gray level transition that arises within the blood vessel or the

background. The probability of quadrant Ist and IV th is calculated by using Eqn-3.7 and

Eqn-3.8 respectively.

PI =

Th

∑
i=0

Th

∑
j=0

pi j (3.7)

PIV =

P−1

∑
i=Th+1

P−1

∑
j=Th+1

pi j (3.8)

PI
i j =

ti j

Th

∑
i=0

Th

∑
j=0

ti j

(3.9)

for 0≤ i≤ Th and 0≤ j ≤ Th

similarly

PIV
i j =

ti j

P−1

∑
i=Th+1

P−1

∑
j=Th+1

ti j

(3.10)

for Th+1≤ i≤ L−1 and Th+1≤ j ≤ L−1

After that normalizing the probabilities of each quadrant in such a way that the sum-

mation of the probabilities of each quadrant equals one and normalization of the quadrant

probabilities of Ist and IV th quadrants ( PI
i j and PIV

i j ) are evaluated by using Eqn-3.9 and
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Eqn-3.10. In next step, we calculate the second-order entropy of the blood vessels ( i.e.Ist

quadrant ), denoted by HI (Th) and defined by Eqn-3.11. Similarly the second-order en-

tropy of the background is denoted by HIV (Th) and defined by Eqn-3.12.

HI (Th) =−1

2

Th

∑
i=0

Th

∑
j=0

PI
i j log2 PI

i j (3.11)

HIV (Th) =−1

2

P−1

∑
i=Th+1

P−1

∑
j=Th+1

PIV
i j log2 PIV

i j (3.12)

The total second-order local transition entropy HTotal (Th) is calculated by adding

HI (Th) and HIV (Th). Finally, the optimal local threshold denoted by Topt , is defined by

the gray level corresponding to maximum of HTotal (Th). The optimal threshold is able to

classify the retinal blood vessels from their backgrounds which is shown in Figure 3.5(a)

for DRIVE image and Figure 3.6(a) for STARE image.

3.3.2 Length filtering and removing outer artifacts

In Figure 3.5(a) and Figure 3.6(a) there exists some isolated and misclassified pixels,

and they are removed by applying length filtering by using eight-connected neighborhood

pixel label propagations to find a retinal blood vessels structure without any isolated and

misclassified pixels, as shown in Figure 3.5(b) and Figure 3.6(b). It may be possible

that some artifacts outside the region of interest may be included in retinal boundary.

Hence, for removing these artifacts, masking is applied by using the mask generated by

particular retinal image, as shown in Figure 3.5(c) and Figure 3.6(c). Finally, compliment

of the segmented image (shown in Figure 3.5(d) and Figure 3.6(d)) are generated for

evaluating the sensitivity, specificity and accuracy with respect to ground truth image

given in DRIVE and STARE databases respectively.

3.4 Results and discussions

The proposed SDOG-MF method have been implemented on publicly available retinal

fundus image databases, the DRIVE database [137] and the STARE database [2]. To
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(a) (b)

(c) (d)

Figure 3.5: Details of image taken from DRIVE data set (a) classified blood vessels from

their backgrounds (b) blood vessel without isolated and misclassified pixels (c) after re-

moving outer artifacts (d) complimented segmented image for comparison with the exist-

ing Ground Truth Image

evaluate the performance of proposed approach, the color retinal image and respective

ground truth image have been taken from DRIVE database as well as from STARE

database. To compare the performance of different retinal vessel segmentation algo-

rithms, we evaluated the accuracy, true positive rate (TPR), and the false positive rate

(FPR). These quantitative performance measures are widely used and defined in literature

[2, 44, 12, 26, 27, 66, 48, 56]. The accuracy of the segmentation algorithms is defined
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(a) (b)

(c) (d)

Figure 3.6: Details of image taken from STARE data set (a) classified blood vessels from

their backgrounds (b) blood vessel without isolated and misclassified pixels (c) after re-

moving outer artifacts (d) complimented segmented image for comparison with the exist-

ing Ground Truth Image

as the ratio of total correctly classified pixels with total number of pixels in the selected

image. The TPR is the ratio of total correctly classified vessel pixels with total number

of vessel pixels in the respective ground truth image and similarly the FPR is the ratio of

total correctly classified non-vessel pixels with total number of non-vessel pixels in the

respective ground truth image. The proposed vessels segmentation approach have been

implemented on Matlab R2013a on a PC having AMD E-450 APU, Radeon with 1.65

GHz processor having 2 GB RAM. The average execution time of entire process for 40

images of DRIVE database and 20 images of STARE database took about 5.20 and 2.4

minutes respectively.
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The comparative analysis of proposed vessel segmentation approach on the DRIVE

database is presented in Table 3.1 and graphical representation of comparative perfor-

mances are also shown in Figure 3.7, Figure 3.8, and Figure 3.9. All 20 original retinal

images and respective ground truth images segmented by first human observer in the test

set of DRIVE database were used to evaluate the performance of our proposed approach.

The performance measures of retinal blood vessel segmentation methods proposed by

[13], [30], [66] , [45], [62], [53], [46], and [68] were obtained from their original pub-

lished papers. The authors Jiang et al. [44] and Zana et al. [55] proposed their segmen-

tation approach in year 2003 and 2001, on that time the DRIVE database was not estab-

lished. Hence the performance of their approaches were evaluated by Staal et al. [26]

and Niemeijer et al. [27] respectively. The performance of vessel segmentation approach

proposed by Frangi et al. [147], Perez et al. [67], Espona et al. [35], Palomera-Perez et

al. [64],Martinez-Perez et al. [65], and Chaudhuri et al. [12] have been taken from survey

paper published by Fraz et al.[6]. All retinal blood vessels segmentation approaches used

for comparative analysis, are belongs to different categories as mentioned in Table 2.1

and Table 2.2 for DRIVE and STARE database respectively of Chapter 2. Whereas all

the authors used the same database, so for comparative analysis of proposed approach we

use their results. The overall TPR and accuracy measures of our proposed SDOG-MF

approach for DRIVE database are better than the various existing approaches and over-

all FPR is inferior to some other existing approaches as mentioned in Table 3.1 and the

graphical representation of TPR, FPR, and Accuracy are given in Figure 3.7, Figure 3.8,

and Figure 3.9 respectively.
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Table 3.1: Comparison of Vessel segmentation results on the DRIVE database

Author’s name TPR FPR Accuracy

Human observer 0.7761 0.0275 0.9473

Chaudhuri et al. [12] 0.6168 0.0259 0.9284

Zana et al. [55] - - 0.9377

Garg et al. [30] - - 0.9361

Perfetti et al. [62] - - 0.9261

Cinsdikici et al. [45] - - 0.9293

Al-Rawi et al. [13] - - 0.9510

Amin et al. [46] - - 0.9200

Anzalone et al. [68] - - 0.9419

Frangi et al. [147] 0.6565 0.0495 0.9270

Martinez-Perez et al. [65] 0.6389 - 0.9181

Jiang et al. [44] 0.6363 0.0338 0.9212

Perez et al. [67] 0.6600 0.0388 0.9220

Espona et al. [35] 0.6634 0.0318 0.9316

Palomera-Perez et al. [64] 0.6400 0.0330 0.9250

Zhang et al. [47] 0.7120 0.0276 0.9382

Marin et al. [53] 0.7067 0.0199 0.9452

Proposed Approach 0.6901 0.0354 0.9645

(SDOG-MF)

(a)

Figure 3.7: Comparison of Accuracy for DRIVE database.
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(a)

Figure 3.8: Comparison of TPR for DRIVE database.

(a)

Figure 3.9: Comparison of FPR for DRIVE database.
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(a)

Figure 3.10: Comparison of Accuracy for STARE database.

(a)

Figure 3.11: Comparison of TPR for STARE database.
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(a)

Figure 3.12: Comparison of FPR for STARE database.

Table 3.2: Comparison of Vessel segmentation results on the STARE database

Author’s name TPR FPR Accuracy

Human observer 0.8949 0.061 0.9354

Hoover et al. [2] 0.6751 0.0433 0.9267

Staal et al. [26] 0.697 0.019 0.9516

Soares et al. [48] 0.7165 0.0252 0.948

Mendonca et al. [56] 0.6996 0.027 0.944

Chaudhuri et al. [12] 0.6134 0.0245 0.9384

Zhang et al. [47] 0.7177 0.0247 0.9484

Martinez-Perez et al. [65] 0.7506 0.0431 0.9410

Jiang et al. [44] — — 0.9337

Kande et al. [54] — — 0.8976

Chakraborti et al. [148] 0.6786 0.0414 0.9379

Proposed Approach 0.7553 0.0577 0.9281

(SDOG-MF)

The comparative analysis of proposed SDOG-MF approach on the STARE database

is presented in Table 3.2 and graphical representation of comparative performances are

also shown in Figure 3.10, Figure 3.11, and Figure 3.12. The proposed approach has been

implemented on 20 retinal images, that contains 11 normal and 9 pathological retinal
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images and we used the manually segmented ground truth image by first observer for

evaluating the performance measures. The performance measures of retinal blood vessel

segmentation methods proposed by Hoover et al. [2] and Soares et al. [48] were evaluated

from their websites. The performance of the approach proposed by Staal et al. [26],

Mendonca et al. [56], Kande et al. [54] and Chakraborti et al. [148] were obtained from

their original papers. The TPR and FPR measures of our proposed SDOG-MF approach

are better for STARE database than the various existing approaches and overall accuracy is

slightly inferior to some other existing approaches as shown in Table 3.2 and the graphical

representation of TPR, FPR, and Accuracy are given in Figure 3.10, Figure 3.11, and

Figure 3.12 respectively..

3.5 Conclusions

The retinal blood vessels are highly responsible for the detection of retinal pathology

hence extraction of retinal blood vessels from their background is a prominent task.

Therefore this chapter presented a novel extension of matched filter based retinal blood-

vessel segmentation approach, namely SDOG-MF. The SDOG-MF approach was based

on second-order derivative of the Gaussian (SDOG) and local entropy thresholding. The

proposed approach was able to identify thin retinal blood vessels as well as thick blood

vessels. The proposed method has been implemented on twenty retinal images taken from

a test set of DRIVE database and nineteen out of twenty retinal images taken from STARE

database. The segmented results of the DRIVE and STARE database were compared with

hand-labeled ground truth images available in the respective database. The performance

of the proposed algorithm was compared with some other existing standard methods for

the same task available in the literature and it was found that the accuracy of proposed

approach was good enough for retinal fundus images taken from a test set of DRIVE

database whereas the TPR and FPR was improved in case of retinal fundus images taken

from STARE database.
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